Modern Web
Development with
ASP.NET Core 3

Second Edition

Ricardo Peres

Modern Web Development with
ASP.NET Core 3
Second Edition

An end to end guide covering the latest features of Visual
Studio 2019, Blazor and Entity Framework

Ricardo Peres

BIRMINGHAM - MUMBAI

Modern Web Development with ASP.NET
Core 3
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri

Content Development Editor: Tiksha Lad
Senior Editor: Afshaan Khan

Technical Editor: Gaurav Gala

Copy Editor: Safis Editing

Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Production Designer: Alishon Mendonsa

First published: November 2017
Second edition: June 2020

Production reference: 1240620
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78961-976-8

www.packt.com

http://www.packt.com

I would like to thank my son, Francisco, and daughter, Madalena, for all their love; they
are the reason why I wrote this book.

Big thanks to Guilherme Castela and Pedro Janudrio: the best of friends. I couldn’t have
done it without you guys!

In memory of my parents, Irene and Jorge Peres, with love and "saudades.”

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author

Ricardo Peres is a Portuguese developer, blogger, and book author and is currently a team
leader at Dixons Carphone. He has over 20 years of experience in software development
and his interests include distributed systems, architectures, design patterns, and .NET
development. He won the Microsoft MVP award in 2015 and has held this title up to 2020.

He also authored Entity Framework Core Cookbook — Second Edition and Mastering ASP.NET
Core 2.0, and was a technical reviewer for Learning NHibernate 4 for Packt. He also
contributed to Syncfusion's Succinctly collection, with titles on .NET development.
Ricardo maintains a blog—Development With A Dot—where he writes about technical
issues. You can catch up with him on Twitter at @rjperes75.

About the reviewers

Alvin Ashcraft is a developer who lives near Philadelphia. He has spent his 25-year career
building software with C#, Visual Studio, WPF, ASP.NET, and more. He has been awarded
the Microsoft MVP title nine times. You can find his daily links for .NET developers on his
blog, Morning Dew. He works as a principal software engineer for Allscripts, building
healthcare software. He was previously employed by software companies, including
Oracle. He has reviewed other titles for Packt Publishing, including C# 8 and .NET Core 3
Projects Using Azure, Mastering Entity Framework Core 2.0, and Learn ASP.NET Core 3.

Prakash Tripathi is a technical manager by profession and a speaker and author by
passion. He has extensive experience in the design, development, maintenance, and
support of enterprise applications, primarily using Microsoft technologies and platforms.
He is active in technical communities and has been awarded the Microsoft MVP title four
times in a row since 2016. He holds a master's degree in computer applications from
MANIT Bhopal, India.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface 1
Section 1: The Fundamentals of ASP.NET Core 3
Chapter 1: Getting Started with ASP.NET Core 7
Technical requirements 8
Getting started 8
Beginning with .NET Core 11
Supported platforms 17
Dependencies and frameworks 18
Targeting .NET Core or the full .NET framework 20
Understanding the generic host 22
Understanding the MVC pattern 24
Getting your context 28
Working with the context 30
Understanding the OWIN pipeline 31
Hosting ASP.NET Core 36
Kestrel 38
WebListener/HTTP.sys 38
IS 39
NGINX 39
Apache 39
Configuration 39
Features 40
Launch configuration 41
Setting the listen port and address 43
Using the command line 43
Using environment variables 44
Using launchSettings.json 44
Using code 45
Setting ports dynamically 45
Inversion of control and dependency injection 46
Validating dependencies 53
Knowing the environments 54
Understanding the project templates 57
What's new since version 2.0? 59
ASP.NET Core 2.1 59
SignalR 59
Razor class libraries 60

Razor pages improvements 60

Table of Contents

New partial tag helper
Top-level parameter validation
Identity Ul library and scaffolding
Virtual authentication schemes
HTTPS by default
GDPR-related template changes
MVC functional test improvements
API conventions and supporting types
Generic host builder
Updated SPA templates
ASP.NET Core 2.2
API code analyzers
Health check API
Endpoint routing
Problem details (RFC 7807) support
ASP.NET Core 3.0
C#8.0
.NET Standard 2.1
Blazor
Built-in JSON support
HTTP/2 support
gRPC
IdentityServer integration
Endpoint routing
Migrating to ASP.NET Core 3.x
Version set
The NuGet and dotnet tools
Summary

Questions

Chapter 2: Configuration
Technical requirements
Getting started
Configurations in .NET Core
Providers

File-based providers
JSON provider
XML provider
INI provider
Other providers
User secrets
Azure Key Vault
Command line
Environment variables
Memory
Docker
Default providers
Creating a custom provider

[ii]

Table of Contents

Using configuration values 84
Getting and setting values explicitly 84
Configuration sections 85
Getting all values 86
Binding to classes 87
Injecting values 89
Retrieving named configuration options 91
Reloading and handling change notifications 91
Running pre- and post-configuration actions 92

Changes from version 2.x 94

Configuring the runtime host 95

Understanding feature toggling 96
Included feature filters 98

Percentage filter 98

Time window filter 99

Custom feature filters 99
Consistency between checks 101
Disabled features handler 101
Summary 103
Questions 104
Chapter 3: Routing 105

Technical requirements 106

Getting started 106

Endpoint routing 107

Route configuration 110

Creating routing tables 110
Fallback endpoints 112

Using route templates 113

Matching route parameters 115

Using dynamic routing 116

Selecting routes from attributes 119
Using special routes 122

Host selection from attributes 122

Setting route defaults 123

Routing to inline handlers 124

Applying route constraints 126
HTTP methods 127
Default constraints 127
Creating custom constraints 128

Route data tokens 130

Routing to areas 131

Using routing attributes 132
Defining routes 133

[iii]

Table of Contents

Default routes
Constraining routes
Defining areas
Specifying action names
Defining non-actions
Restricting routes
Setting route values
Error handling in routing
Routing errors to controller routes
Using developer exception pages
Using a catch-all route
Using status code pages middleware
Status code pages
Routing to specific status code pages
Any status code
Summary
Questions

Chapter 4: Controllers and Actions
Technical requirements
Getting started
Using controllers
Controller base classes
POCO controllers
Adding context to POCO controllers
Intercepting actions in POCO controllers
Finding controllers
Controller life cycle
Actions
Finding actions
Synchronous and asynchronous actions
Getting the context
Action constraints
Action parameters
Model binding
Body
Form
Header
Query string
Route
Dependency injection
Custom binders
Property binding
Input formatters
Explicit binding
Canceling requests
Model validation

[iv]

135
135
135
136
136
136
137
137
138
138
139
140
140
141
142
143
144

145
146
146
146
147
149
149
151
152
153
155
155
156
157
157
159
162
163
163
163
164
164
164
165
167
168
168
170
170

Table of Contents

Action results 174
Redirecting 179
Streaming 181
Error handling 181
Response caching 182
Maintaining the state 184
Using the request 184
Using form data 185
Using the query string 185
Using the route 185
Using cookies 186
Using sessions 187
Using the cache 189
In-memory cache 190
Distributed cache 191
Redis 192
SQL Server 192
Using temporary data 193
Comparing state maintenance techniques 194
Dependency injection 195
Globalization and localization 195
Summary 201
Questions 202
Chapter 5: Views 203
Technical requirements 204
Getting started 204
Understanding views 206
Understanding the view life cycle 207
Locating views 209
Using view location expanders 210
Using view engines 212
Logging and diagnostics 218
View compilation 220
Passing data to views 223
Using the model 223
Using the ViewBag property 224
Using temporary data 225
Understanding view layouts 225
Understanding partial views 227
Passing data to partial views 228
Finding partial views 229
Understanding the special view files 230
Understanding the view options 231

Referencing the base path of the application 233

[v]

Table of Contents

Using areas 233
Dependency injection 234
Using translations 235

Using resources 235

Using translated views 238
Summary 238
Questions 239

Section 2: Improving Productivity

Chapter 6: Using Forms and Models 241
Technical requirements 241
Getting started 242
Using the form context 242
Working with the model 243

Using models of anonymous types 248
Using HTML helpers 249
Forms 249
Single-line text boxes 250
Multi-line text boxes 251
Passwords 252
Dropdowns 252
List boxes 253
Radio buttons 253
Checkboxes 253
Hidden values 254
Links 254
Labels 255
Raw HTML 255
IDs, names, and values 255
Generic editor and display 256
Utility methods and properties 256
Validation messages 257
Custom helpers 257
Using templates 260
Enforcing model binding 261
Model binders 262
Model binding sources 264
Dynamic binding 266
Model validation 267
Server-side validation 267
Configuration 269

Data annotation validation 269

Error messages 272
Self-validation 272
Custom validation 273

[vil

Table of Contents

Preventing validation
Automatic validation
Client-side model validation
Configuration
Custom validation
Using AJAX for validation
Validation
Enforcing restrictions
Returning content from AJAX
Uploading files
Direct access to submitted files
Summary
Questions

Chapter 7: Implementing Razor Pages
Technical requirements
Getting started
Assets search order
Working with the page model

Understanding page handlers
Doing model binding
Doing model validation
Maintaining state
Using view layouts
Using partial views
Using areas
Special files
Using filters
Using dependency injection
Configuring options
Understanding page routes
Enforcing security
Using the [Authorize] attribute
Conventions
Cross-site request scripting
Summary
Questions

Chapter 8: API Controllers
Technical requirements
Getting started with web APIs
Understanding REST
Model binding
Authorizing access to resources
Using JWTs
Applying OpenAPI REST conventions

[vii]

275
275
275
276
277
280
282
282
283
284
285
285
286

287
287
288
290
290
292
295
297
297
297
297
298
2908
299
299
299
301
302
302
302
303
303
304

305
305
306
307
308
309
309
312

Table of Contents

Returning validation results
Performing content negotiation
Output formatters
Handling null values
Handling errors
Understanding API versioning
Using header values
Using the query string
Deprecating versions
Default versions
Version mapping
Invalid versions
Generating APl documentation
Adding API documentation
Serving OData
Setting up OData
Getting metadata
Listing collections
Entity metadata
Querying
Filtering an entity
Projections
Paging
Sorting
Expansion
Counting
Configuring options
Limits
Maximum returnable records
Expansion
Summary
Questions

Chapter 9: Reusable Components
Technical requirements
Diving into the view components
Discovering view components
Using view components
View component results
Dependency injection
View components versus partial views
Exploring the tag helpers
Understanding the properties of a tag helper
Restricting the applicability of a tag helper
Discovering tag helpers
Dependency injection

314
315
318
319
320
323
324
324
325
325
326
326
326
332
333
334
336
336
337
338
338
340
341
341
342
343
343
343
344
344
344
345

346
346
347
347
348
349
350
351
351
355
356
356
357

[viii]

Table of Contents

Studying the included tag helpers
The <a> tag
The <cache> tag
The <component> tag
The <distributed-cache> tag
The <environment> tag
The <form> tag
The <script> tag
The <link> tag
The <select> tag
The <partial> tag
Validation message and summary
Tag helper components
Partial views
Partial views versus view components
Understanding Razor class libraries
Referencing static content
Referencing external components
Summary

Questions

Chapter 10: Understanding Filters
Technical requirements
Filters in the pipeline
Understanding the filter types
Synchronous versus asynchronous
Filter scope
Execution order
Applying filters through attributes
Filter ordering
Factories and providers
DI
Accessing the context
Applying authorization filters
Authorization policies
Resource filters
Understanding action filters
Result filters
Exception filters
Razor page filters
Always-run-result filters
Summary
Questions

Chapter 11: Security
Technical requirements

[ix]

358
359
360
361
361
362
362
363
363
364
364
365
365
367
368
369
370
370
371
372

373
373
374
374
376
376
377
378
379
380
381
383
384
385
386
388
390
392
393
395
396
397

398
399

Table of Contents

Authenticating users
Using claims
Windows authentication
Custom authentication
Identity
Adding custom properties
Updating the user interface
Using the Identity provider
Using ldentityServer
Using Azure Active Directory
Using social logins
Facebook
Twitter
Google
Microsoft

Cookie security
Supporting SameSite cookies
Authorizing requests
Authorization based on roles
Policy-based authorization
Authorization handlers
Resource-based authorization
Allowing anonymous access
Checking requests for forgery
Applying HTML encoding
Working with HTTPS
Certificates
Hosting our app
[IS Express
Kestrel
HTTP.sys
Forcing HTTPS
Redirecting to HTTPS
Using HSTS
HSTS preload
Understanding CORS
Using data protection
Protecting static files
Using an action to retrieve files
Using middleware to enforce security
Learning about the GDPR
Required cookies
Personal data
Binding security
Summary
Questions

[x]

399
401
402
404
405
408
410
413
416
419
421
422
422
423
423

424
425
426
427
428
429
433
434
435
437
438
438
439
439
440
440
441
442
442
443
443
446
447
447
448
450
450
452
452
453
454

Table of Contents

Section 3: Advanced Topics

Chapter 12: Logging, Tracing, and Diagnostics
Technical requirements
Introducing the .NET Core Common Logging framework
Using logging services
Defining log levels
Using logging providers
Filtering logs
Writing custom log providers
Using DI with the log providers
Using logging attributes
Writing custom logging middleware
Using tracing and diagnostics
Using performance (event) counters for obtaining metrics
Included counters
Custom counters
Performance monitoring
Tracing
Trace dumps
Using telemetry
Using trace identifiers
Azure Application Insights
Sending custom events
AWS CloudWatch
New Relic
Performing health checking
Summary
Questions

Chapter 13: Understanding How Testing Works
Technical requirements
Getting started with unit tests
Writing unit tests

Unit test frameworks
MSTest
NUnit
xUnit
Test setup
Injecting dependencies
Mocking
Assertions
User interface
Using the command line
Limitations of unit tests
Working on integration tests

456
457
457
458
459
461
462
464
467
467
469
470
474
474
475
477
478
482
483
483
485
488
492
493
494
498
498

499
500
500
501
502
502
505
508
512
512
515
517
518
521
522
522

[xil

Table of Contents

Summary 524
Questions 525
Chapter 14: Client-Side Development 526
Technical requirements 526
Introducing client-side development 527
Using LibMan 527
Using Node.js 528
Calling Node from .NET Core 530
Serving SPA files 531
Using SPA templates 533

Using TypeScript 534
Summary 536
Questions 537
Chapter 15: Improving Performance and Scalability 538
Technical requirements 539
Getting started 539
MiniProfiler 539
Stackify Prefix 541
Hosting ASP.NET Core 542
Choosing the best host 542
Configuration tuning 543
Maximum number of simultaneous connections 543

Limits 544
Timeouts 545
Understanding bundling and minification 546
Using asynchronous actions 547
Improving performance with caching 550
Caching data 550
In-memory cache 551
Distributed cache 554
Caching action results 557
Caching views 560
Compressing responses 560
Buffering responses 562
Summary 563
Questions 564
Chapter 16: Real-Time Communication 565
Technical requirements 565
Setting up SignalR 566
Learning core concepts 568
Hosting a hub 569
Choosing communication protocols 572
Automatic reconnection 573

[xii]

Table of Contents

Message serialization 574
Exploring the SignalR context 575
Using the query string 575
Knowing the message targets 576
Communicating from the outside 577
Communication from the same web application 577
Communicating from a different application 579
Using user authentication 581
Logging 581
Summary 583
Questions 584
Chapter 17: Introducing Blazor 585
Technical requirements 585
Getting started with Blazor 586
Hosting models 586
Implementing Blazor 589
Implementing Blazor Server 589
Implementing Blazor WebAssembly 591
Comparing Server and WebAssembly 593
Pages 593
Razor syntax 594
Namespace imports 595
Partial classes 596
Pages as code 596
Pages as components 596
Page layouts 596
Routing 598
Page routes 599
Route constraints 599

A catch-all route 600
Parameter binding from route 600
Page navigation 600
Building components 602
The <component> tag helper 602
Blazor component properties 603
Cascading properties 604
Catch-all properties 605

Child content properties 606
Components with generic parameters 607
Lists of components 608
Locating components 608
Rendering modes 609
The component life cycle 609
Reusing components in different projects 610

[xiii]

Table of Contents

Accessing the HTTP context 611
Sample components 611
Working with forms 614
Form editing 614
Form context 615
Form components 616
Form validation 617
Working with DOM elements 617
Two-way binding 618
Event handling 618
Referencing elements 621
Updating the state 621

DI 622
Injecting services 622
Registered services 622
Scoped lifetime 623
JavaScript interoperability 623
Calling JavaScript functions from .NET 623
Calling .NET methods from JavaScript 624
Maintaining state 625
Making HTTP calls 627
Applying security 628
Requesting authorization 628
Getting the current user 630
Checking permissions explicitly 632
CORS 632
Unit testing 633
Summary 633
Questions 634
Chapter 18: gRPC and Other Topics 635
Technical requirements 636
Using areas for organizing code 636
The use of areas in code 637
Tag and HTML helpers 638
Working with static files and folders 638
Configuration 638
Allowing directory browsing 639
Serving static files 640
Serving default documents 643
Applying security 643
File providers 644
Application lifetime events 645
Working with embedded resources 646
Hosting extensions 648

[xiv]

Table of Contents

Hosting startup
Hosting background services
ASP.NET Core model conventions
Applying URL rewriting

URL redirection

URL rewriting

Runtime evaluation

Redirecting to HTTPS

Platform-specific

Enforcing URL rewriting
Using EF Core

Registering DbContext

Using asynchronous methods

Eager loading

Initializing a database

Showing migration errors and running migrations
Integrating an EF context with an HTTP context

Building a REST service
Understanding the gRPC framework
Interface definition
Messaging kinds
Hosting a service
Request context
Interceptors
Listening options
Using HTTP client factories
Summary
Questions

Chapter 19: Application Deployment
Technical requirements
Deploying the application manually
Setting the target framework

Self-contained deployments and runtimes

Real-time rebuilding
Deploying with Visual Studio
Deploying through IIS
Deploying with NGINX
Deploying to Azure
Deploying to AWS
Deploying with Docker
Deploying as a Windows service
Summary
Questions

[xv]

649
649
651
656
657
658
658
660
661
661
661
662
662
663
663
665
665
667
670
671
673
674
676
676
678
678
684
685

686
686
687
688
689
690
691
692
695
696
697
699
702
703
703

Table of Contents

Chapter 20: Appendix A: The dotnet Tool 704
The dotnet Tool 704
Build 704
Creating projects from templates 705

Unit testing 705
Managing package references 706

Run 706
Publish 707

NuGet 708

Global tools 709

User secrets 710

File watcher 710

EF Core 711
Assessments 713
Other Books You May Enjoy 730
Index 733

[xvi]

Preface

In this book, we will discuss the new and latest features that have been added by Microsoft
to ASP.NET Core 3.

We will delve deep into the applications and understand how to apply them for the various
new tools that have been introduced. We will be looking at Blazor, gRPC, the dotnet tools,
error handling methods, and Razor Pages. We have so many new topics to look at this time,
so it is going to be one hell of a joyride. Sit back and enjoy!

Who this book is for

If you are a developer with basic knowledge of the ASP.NET MVC framework and want to
build powerful applications, then this book is for you. Developers who want to explore the
latest changes in ASP.NET Core 3.0 to build professional-level applications will also find
this book useful. Familiarity with C#, ASP.NET Core, HTML, and CSS is expected in order
to get the most out of this book.

What this book covers

Chapter 1, Getting Started with ASP.NET Core, explains the very basics of .NET and
ASP.NET Core, including the MVC pattern, which is the typical usage pattern of ASP.NET
Core.

Chapter 2, Configuration, presents you with the configuration options available to
.NET/ASP.NET Core developers.

Chapter 3, Routing, explains how an HTTP request is mapped to controller actions by
means of routes, how they are selected, and how the parameters are matched.

Chapter 4, Controllers and Actions, explains how controllers and actions work, what API
and OData controllers are, what the life cycle of a controller is, and how controllers are
found.

Chapter 5, Views, explains how to work with views, which make up the user interface of
ASP.NET Core.

Chapter 6, Using Forms and Models, shows us how to work with user-submitted data in
forms.

Preface

Chapter 7, Implementing Razor Pages, describes what Razor Pages are—an alternative
development model for ASP.NET Core.

Chapter 8, API Controllers, shows us how to work with API (non-visual) controllers.
Chapter 9, Reusable Components, talks about reusability in ASP.NET Core.

Chapter 10, Understanding Filters, talks about the different kinds of filters available to
ASP.NET Core developers.

Chapter 11, Security, shows us how to implement authentication and authorization. Here,
we will also cover how to enforce HTTPS security and how to prevent tampering.

Chapter 12, Logging, Tracing, and Diagnostics, explains how we can get a glimpse of what is
going on with our ASP.NET Core application.

Chapter 13, Understanding How Testing Works, explains how to add unit and
functional/integration tests to our solutions.

Chapter 14, Client-Side Development, covers how to integrate ASP.NET Core with common
client-side frameworks.

Chapter 15, Improving the Performance and Scalability, covers how to improve the
performance of our web application.

Chapter 16, Real-Time Communication, will help us learn how to apply real-time
communication techniques to code.

Chapter 17, Introducing Blazor, is a new addition to this version and will explain Blazer for
interoperability, dependency injections, HTTP calls, and more.

Chapter 18, gRPC and Other Topics, is a collection of topics and framework details that an
ASP.NET Core developer ought to know but that didn't fit into the rest of the chapters of
this book.

Chapter 19, Application Deployment, will help us learn how to deploy an ASP.NET Core
application to different targets, such as on-premises and the cloud.

Chapter 20, Appendix A: The dotnet Tool, provides a short description of the basics
and other useful topics relating to ASP.NET Core, including a description of its tools and
features.

[2]

Preface

To get the most out of this book

It is good to be familiar with C#, ASP.NET Core, HTML, and CSS to get the most out of this
book. It does go without saying that reading the first edition of this book will prove helpful.

Software/hardware covered in this book OS requirements
Docker Windows or Linux
Visual Studio 2019 Community edition Windows, Linux

Download the example code files

You can download the example code files for this book from your account
at www.packt . com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

LN =

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

[3]

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781789619768_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Keep in mind that, in general, claims do not mean anything, but, there are a few
exceptions: Name and Role can be used for security checks, as we will see in a moment..."

A block of code is set as follows:

var principal = new WindowsPrincipal (identity);
var isAdmin = principal.IsInRole (WindowsBuiltInRole.Administrator);

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:
"iisSettings": {
"windowsAuthentication": true,
"anonymousAuthentication": false,
"iisExpress": {
"applicationUrl": "http://localhost:5000/",
"sslPort": O

}
Any command-line input or output is written as follows:

Add-Migration "Initial"
Update-Database

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Right-click on the web project and select New Scaffolded Item..."

[4]

https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf

Preface

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[5]

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

Section 1: The Fundamentals of

ASP.NET Core 3

This first section will cover the fundamentals of ASP.NET Core and the Model-View-
Controller (MVC) pattern and how the two meet, and .NET Core and its concepts will be

explored.

This section has the following chapters:

Chapter
Chapter
Chapter
Chapter
Chapter

1, Getting Started with ASP.NET Core
2, Configuration

3, Routing

4, Controllers and Actions

5, Views

Getting Started with ASP.NET
Core

Welcome to my new book on ASP.NET Core 3!

NET and ASP.NET Core are relatively new in the technological landscape, as they
were only officially released in August 2017. Given that .NET is in the name, you would
think that these would probably only be new versions of the highly popular .NET
Framework, but that is not the case: we are talking about something that is truly new!

It's not just multiplatform support (howdy, Linux!), but it's so much more. It's the new
modularity in everything: the transparent way by which we can now change things—the
source code in front of our eyes teasing us to contribute to it, to make it better—is indeed a
lot different from previous versions of .NET Core!

In this first chapter, we are going to talk a bit about what changed in ASP.NET and .NET in
the core versions, and also about the new underlying concepts, such as OWIN, runtime
environments, and dependency injection (DI).

In this chapter, we will cover the following topics:

e History of ASP.NET Core

e Introduction to .NET Core

e Inversion of control and DI

e OWIN

e The MVC pattern

e Hosting

¢ Environments

e How the bootstrap process works for ASP.NET Core apps
¢ The generic host

Getting Started with ASP.NET Core Chapter 1

e What's new since ASP.NET Core 2
e The NuGet and dotnet tools

Technical requirements

This chapter does not require any particular software component, as it deals more with
concepts.

You can find the GitHub link at nttps://github.com/PacktPublishing/Modern-Web-
Development-with-ASP.NET-Core-3-Second-Edition.

Getting started

Microsoft ASP.NET was released 15 years ago, in 2002, as part of the then shiny new .NET
Framework. It inherited the name ASP (short for Active Server Pages) from its predecessor,
with which it barely shared anything else, other than being a technology for developing
dynamic server-side content for the internet, which ran on Windows platforms only.

ASP.NET gained tremendous popularity, it has to be said, and competed hand to hand
with other popular web frameworks, such as Java Enterprise Edition (JEE) and PHP. In
fact, it still does, with sites such as BuiltWith giving it a share of 21% (ASP.NET and
ASP.NET MVC combined), way ahead of Java (https://trends.builtwith.com/
framework). ASP.NET was not just for writing dynamic web pages. It could also be used for
XML (SOAP) web services, which, in early 2000, were quite popular. It benefited from the
.NET Framework and its big library of classes and reusable components, which made
enterprise development almost seem easy!

Its first version, ASP.NET 1, introduced web forms, an attempt to bring to the web the
event and component model of desktop-style applications, shielding users from some of the
less friendly aspects of HTML, HTTP, and state maintenance. To a degree, it was highly
successful; using Visual Studio, you could easily create a data-driven dynamic site in just a
few minutes! A great deal of stuff could be accomplished merely through markup, with no
code changes (read or compile) needed.

Version 2 came along a few years afterward, and among all the other goodies, it brought
with it extensibility in the form of a provider model. A lot of its functionality could be
adapted by the means of custom providers. Later on, it received the addition of the AJAX
Extensions, which made AJAX-style effects astonishingly easy. It set the standard for years
to come, leaving only room for more components.

[8]

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework

Getting Started with ASP.NET Core Chapter 1

To be honest, the following versions, 3.5, 4, and 4.5, only offered more of the same, with
new specialized controls for displaying data and charts for retrieving and manipulating
data and a few security improvements. A big change was that some of the framework
libraries were released as open source.

Between versions 3.5 and 4, Microsoft released a totally new framework, based on the
model-view-controller (MVC) pattern, and it was mostly open source. Although it sits on
top of the infrastructure laid out by ASP.NET, it offered a whole new development
paradigm, which this time fully embraced HTTP and HTML. It seemed to be the current
trend for web development across technologies, and the likes of PHP, Ruby, and Java, and
.NET developers were generally pleased with it. ASP.NET developers now had two
choices—Web Forms and MVC, both sharing the ASP.NET pipeline and .NET libraries, but
offering two radically different approaches to getting content to the browser.

In the meantime, the now venerable .NET Framework had grown up in an ever-changing
world. In the modern enterprise, the needs have changed, and sentences such as runs on
Windows only or we need to wait XX years for the next version became barely acceptable.
Acknowledging this, Microsoft started working on something new, something different
that would set the agenda for years to come. Enter .NET Core!

In late 2014, Microsoft announced .NET Core. It was meant to be a platform-independent,
language-agnostic, free, and open source full rewrite of the .NET Framework. Its main
characteristics were as follows:

e The base class libraries of NET were to be rewritten from scratch while keeping
the same (simplified) public APIs, which meant that not all of them would be
initially available.

e It was also able to run on non-Windows operating systems, specifically several
Linux and macOS flavors, and in mobile devices, so all Windows-specific code
(and APIs) would be discarded.

o All of its components were to be delivered as NuGet packages, meaning that only
a small bootstrap binary would need to be installed in the host machine.

e There was no longer a dependency (or, let's say, a very close relationship) with
IIS, so it was able to be autohosted or run inside a hosting process, like, well, IIS.

e It would be open source and developers would be able to influence it, either by
creating issues or by submitting pull requests.

This eventually took place in July 2016, when version 1.0 of .NET Core was released. The
.NET developers could now write once and deploy (almost) everywhere and they finally
had a say on the direction the framework was taking!

[9]

Getting Started with ASP.NET Core Chapter 1

Rewriting the whole .NET Framework from scratch is a task of epic proportions, so
Microsoft had to make decisions and define priorities. One of them was to ditch ASP.NET
Web Forms and to only include MVC. So gone were the days when ASP.NET and Web
Forms were synonyms, and the same happened with ASP.NET Core and MVC: it's now just
ASP.NET Core! And it's not just that the ASP.NET Web API, which used to be a different
project type, was now merged with ASP.NET Core as well (a wise decision from Microsoft,
as basically the two technologies, MVC and Web API, had a lot of overlap and even had
classes with the same name for pretty much the same purpose).

So, what does this mean for developers? Here are my personal thoughts about how the tech
has fared:

e C#, Visual Basic, and F#; F# has gained a lot of momentum among the developer
communities, and they have built templates for Visual Studio as well as lots of
useful libraries.

¢ Open source is great! If you want to change anything, you can just grab the code
from GitHub and make the changes yourself! If they're good enough, then
chances are that others may be interested in them too, so why not submit a pull
request to have them integrated?

e We don't need to decide upfront if we want to use MVC or the web API. It's just a
matter of adding one or two NuGet packages anytime and adding a couple of
lines to the Startup.cs file; the same controller can serve both API and web
requests seamlessly.

¢ Attribute routing is built in, so there's no need for any explicit configuration.

e ASP.NET Core now uses Open Web Interface for NET (OWIN) based
middleware and configuration, so you will need to (significantly) change your
modules and handlers so that they fit into this model; MVC/web API filters are
basically the same.

¢ There is no dependency on IIS or Windows, meaning that we can easily write our
apps in good old Windows/Visual Studio and then just deploy them to
Azure/AWS/Docker/Linux/macOS. It's actually pretty cool to debug our app in
Docker/Linux from Visual Studio! It can run self-hosted in a console application
too.

¢ A consequence of the latter is that there are no more IIS Manager or
web.config/machine.config files.

[10]

Getting Started with ASP.NET Core Chapter 1

¢ Not all libraries are already available for NET Core, meaning that you will either
need to find replacements or implement the features yourself. The website
https://icanhasdot.net/Stats has a good list of whatever is/is not available for
.NET Core, and there is also a list in the project's roadmap at https://github.

com/dotnet/core/blob/master/roadmap.md.

¢ Even the core (pun intended) .NET Core classes are still lacking some methods
that used to be there; take, for example, some methods in the
System.Environment class.

* You need to handpick the NuGet packages for the libraries you want to use,
including for classes that you took for granted in the old days. For .NET; this
includes, for example, System.Collections (https://www.nuget.org/
packages/System.Collections), as they are not automatically referenced.
Sometimes it's hard to find out which NuGet package contains the classes you
want; when this happens, http://packagesearch.azurewebsites.net may come
in handy.

e There is no more Web Forms (and the visual designer in Visual Studio); now it's
MVC all the way, or Blazor, which offers some resemblance to Web Forms, and
has some advantages too! Yay!

Let's see begin by looking at what .NET Core is all about.

Beginning with .NET Core

Talking about ASP.NET Core without explaining .NET Core is somewhat cumbersome.
.NET Core is the framework everyone is talking about, and for good reasons. ASP.NET
Core is probably the most interesting API right now, as it seems that everything is moving
to the web.

And why is that? Well, all these APIs relied heavily on Windows-native features; in fact,
Windows Forms was merely a wrapper around the Win32 API that has accompanied
Windows since its early days. Because .NET Core is multiplatform, it would be a
tremendous effort to have versions of these APIs for all supported platforms. But of course,
in no way does this mean that it won't happen; it's just that it hasn't happened yet.

With .NET Core, a host machine only needs a relatively small bootstrap code to run an
application; the app itself needs to include all the reference libraries that it needs to operate.
Interestingly, it is possible to compile a .NET Core application to native format, thereby
producing a machine-specific executable that includes in it all the dependencies, and can
even be run in a machine without the NET Core bootstrapper.

[11]

https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net

Getting Started with ASP.NET Core Chapter 1

As I said previously, .NET Core was written from scratch, which unfortunately means that
not all the APIs that we were used to have been ported. Specifically, as of version 3, the
following features are still missing;:

ASP.NET Web Forms (System.Web.UI)
XML Web Services (System.Web.Services)
LINQ to SQL (System.Data.Lingq)

Windows Communication Foundation server-side classes
(System.ServiceModel)

Windows Workflow Foundation (System.Workflow and System.Activities)
NET Remoting (System.Runt ime.Remoting)

Active Directory/LDAP (System.DirectoryServices)

Enterprise Services (System.EnterpriseServices)

Email (System.Net .Mail)

XML and XSD (System.Xml.Xsl and System.Xml.Schema)

I/O ports (System.I0.Ports)

Managed Addin Framework (System.Addin)

Speech (System. Speech)

Configuration (System.Configuration); this one was replaced with a new
configuration API (Microsoft.Extensions.Configuration)

Windows Management Instrumentation (System.Management)

Windows Registry (Microsoft.Win32) in operating systems other than
Windows

This is by no means an exhaustive list. As you can see, there are a lot of features missing.
Still, it is quite possible to achieve pretty much whatever we need to, provided we do
things in a different way and handle the extra burden! Mind you, Windows Forms and
WPF are already supported on all platforms.

The following APIs are new or still around, and are safe to use:

MVC and Web API (Microsoft.AspNetCore.Mvc)

Entity Framework Core (Microsoft .EntityFrameworkCore)

Roslyn for code generation and analysis (Microsoft.CodeAnalysis)

All Azure APIs

Managed Extensibility Framework (System.Composition)

Text encoding/decoding and regular expression processing (System. Text)

[12]

Getting Started with ASP.NET Core Chapter 1

JSON serialization (System.Runtime.Serialization.Json)
Low-level code generation (System.Reflection.Emit)

Most of ADO.NET (System.Data, System.Data.Common,
System.Data.SglClient, and System.Data.SqglTypes)

LINQ and Parallel LINQ (System.Ling)

Collections, including concurrent (System.Collections,
System.Collections.Generic, System.Collections.ObjectModel,
System.Collections.Specialized,

and System.Collections.Concurrent)

Threading, inter-process communication, and task primitives
(System.Threading)

Input/output, compression, isolated storage, memory-mapped files, pipes
(System.I0)

XML (System.Xml)

Windows Communication Foundation client-side classes
(System.ServiceModel)

Cryptography (System.Security.Cryptography)

Platform Invoke and COM Interop (System.Runtime.InteropServices)
Universal Windows Platform (Windows)

Event Tracing for Windows (System.Diagnostics.Tracing)

Data Annotations (System.ComponentModel .DataAnnotations)
Networking, including HTTP (System.Net)

Reflection (System.Reflection)

Maths and numerics (System.Numerics)

Reactive Extensions (System.Reactive)

Globalization and localization (System.Globalization, System.Resources)
Caching (including in-memory and Redis) (Microsoft .Extensions.Caching)
Logging (Microsoft.Extensions.Logging)

Configuration (Microsoft.Extensions.Configuration)

Again, this is not the full list, but you get the picture. These are just Microsoft APIs that are
made available for .NET Core; there are obviously thousands of others from different

vendors.

[13]

Getting Started with ASP.NET Core

Chapter 1

And why are these APIs supported? Well, because they are specified
in .NET Standard, and .NET Core implements this standard! More on this
in a moment.

In .NET Core, there is no longer a Global Assembly Cache (GAC), but there is a
centralized location (per user) for storing NuGet packages,

called $HOMEPATHS . nugetpackages, which prevents you from having duplicated
packages locally for all of your projects. .NET Core 2.0 introduced the runtime store, which
is somewhat similar to GAC. Essentially, it is a folder on a local machine where some
packages are made available and compiled for the machine's architecture. Packages stored
there are never downloaded from NuGet; they are instead referenced locally and do not
need to be included with your app. A welcome addition, I have to say! You can read more
about metapackages and the runtime store at https://docs.microsoft.com/en-us/

aspnet/core/fundamentals/metapackage.

As of ASP.NET Core 2.1, a change was made from the previous version: whereas before
there was a dependency on the Microsoft .AspNetCore.All metapackage, now the
dependency is on Microsoft.AspNetCore.App. To cut a long story short, this one has far
fewer dependencies. Specifically, the following dependencies have been removed:

Microsoft
Microsoft
Microsoft
Microsoft
Microsoft
Microsoft
Microsoft
Microsoft
Microsoft
Microsoft

Microsoft

.Data.Sqglite

.Extensions
.AspNetCore.
.Extensions
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.

.Data.Sglite.Core
.EntityFrameworkCore.Sqglite
.EntityFrameworkCore.Sglite.Core

.Caching.Redis

DataProtection.AzureStorage

.Configuration.AzureKeyVault

DataProtection.AzureKeyVault
Identity.Service.AzureKeyVault
AzureKeyVault.HostingStartup
ApplicationInsights.HostingStartup

Visual Studio templates for .NET Core since version 3.0 already reference this new
metapackage, and in general, things should just work; you may need to add explicit
references to one of these missing packages, if you use it.

[14]

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage

Getting Started with ASP.NET Core Chapter 1

Interestingly, since version 3, you no longer need to reference this metapackage in your
.csproj file; it is referenced by default when you reference the .NET Core 3 framework.
The following is a minimum .NET Core 3 . csproj file:

<Project Sdk="Microsoft.NET.Sdk.Web">
<PropertyGroup>
<TargetFramework>netcoreapp3.1</TargetFramework>
</PropertyGroup>
</Project>

For .NET Core 3.1, you should replace netcoreapp3. 0 with netcoreapp3.1.Ina
moment, we will learn more about this.

NuGet packages are at the heart of NET Core, and mostly everything needs to be obtained
from NuGet. Even projects in the same Visual Studio solution are referenced from one
another as NuGet packages. When using .NET Core, you will need to explicitly add the
NuGet packages that contain the functionality that you wish to use. It is likely that you may
come across some of the following packages in some of your projects:

Package Purpose

JWT authentication

Microsoft.AspNetCore.Authentication.JwtBearer

Microsoft.AspNetCore.Mvc.TagHelpers Tag helpers

Entity Framework

Microsoft.EntityFrameworkCore
Core

Microsoft.Extensions.Caching.Memory In-memory caching

Microsoft.Extensions.Caching.Redis Redis caching

General configuration

Microsoft.Extensions.Configuration
classes

Configuration from

Microsoft.Extensions.Configuration.EnvironmentVariables . .
environment variables

Configuration from
JSON files
Configuration from
user secrets (https:/
/docs.microsoft.
com/en—-us/

Microsoft.Extensions.Configuration.Json

Microsoft.Extensions.Configuration.UserSecrets

aspnet/core/

security/app-

secrets)
Microsoft.Extensions.Configuration.Xml Configuration in XML
Microsoft.Extensions.DependencyInjection Built-in DI framework
Microsoft.Extensions.Logging Logging base classes

[15]

https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets

Getting Started with ASP.NET Core

Chapter 1

Microsoft.Extensions.Logging.Console

Logging to the console

Microsoft.Extensions.Logging.Debug Logging to debug
System.Collections Collections

Classes and interfaces
System.ComponentModel used in the definition

of components and
data sources

Data annotations for

System.ComponentModel .Annotations validation and
metadata

System.Data.Common ADO.NET

. . Globalization and

.G1 1

System.Globalization localization APIs
System. IO Input/output APIs
System.Ling.Parallel Parallel LINQ
System.Net Networking APIs
System.Reflection Reflection
System.Security.Claims Security based upon

claims

System.

Threading.Tasks

Tasks implementation

System.

Xml.XDocument

XML APIs

System.

Transactions

Ambient transactions

Again, this not an exhaustive list, but you get the picture. You may not see references to all
of these packages, because adding one package that has dependencies will bring all these
dependencies along, and big packages have a lot of dependencies.

There are no more . exe files; now, all assemblies are .d11, which means that they need to
be run using the dotnet command-line utility. All .NET Core applications start with a
static Main method, as the NET Framework Console and Windows Forms did, but now we
need the dotnet utility to run them. The dotnet tool is a very versatile tool, and can be
used to build, run, deploy, and restore NuGet packages, execute unit tests, and create
NuGet packages from a project. As I said, it is also possible to compile an assembly to the
native format, but we won't be covering that here.

.NET Core ships with built-in DI, logging, and a flexible configuration framework, which
allows you to plug in your own providers if you so wish. All of the new APIs (such as
Entity Framework Core and ASP.NET Core) use these services uniformly. For the very first
time, we can see a coherent behavior across APIs.

[16]

Getting Started with ASP.NET Core Chapter 1

Also, most productivity APIs, such as ASP.NET and Entity Framework, allow you to
replace the services they're built upon with customized versions, allowing you to make
them work exactly the way you want them to—provided, of course, that you know what
you are doing—and these services are generally based upon interfaces. Everything is much
more modular and transparent.

Unit testing got first-class citizenship in .NET Core. Most new APIs were designed with
testability in mind (think, for example, of the new in-memory provider for Entity
Framework Core), and the tooling (dotnet) has an explicit option for executing unit tests,
which can be written in any framework (currently, xUnit, NUnit, MbUnit, and MSTest,
among others, have released unit test frameworks compatible with .NET Core). We will
cover unit testing in chapter 13, Understanding How Testing Works.

Next, let's look at the platforms that support .NET Core.

Supported platforms

.NET Core works on the following platforms:

e Windows 7 SP1 or higher

e Windows Server 2008 R2 SP1 or higher
¢ Red Hat Enterprise Linux 7.2 or higher
e Fedora 23 or higher

e Debian 8.2 or higher

e Ubuntu 14.04 LTS/16.04 LTS, or higher
e Linux Mint 17 or higher

e openSUSE 13.2 or higher

e CentOS 7.1 or higher

e Oracle Linux 7.1 or higher

e macOS X 10.11 or higher

This covers all modern Windows, Linux, and macOS distributions (Windows 7 SP1 was
released in 2010). It may well work in other distributions, but these are the ones that have
been thoroughly tested by Microsoft.

[17]

Getting Started with ASP.NET Core Chapter 1

So, how does this work? It turns out that whenever you request a NuGet package that
needs native libraries that are not included in the operating system, these are also included
in the .nupkg archive. .NET Core uses Platform Invoke (P/Invoke) to call the operating-
system-specific libraries. This means that you do not have to worry about the process to be
located—adding a NuGet package and publishing the project is the same no matter what
the target operating system will be.

Keep in mind that platform independence is transparent to you, the developer—unless, of
course, you also happen to be a library author, in which case you may need to care about it.

Let's now see how the different frameworks that used to make up .NET are now supported.

Dependencies and frameworks

Inside a .NET Core project, you specify the frameworks that you wish to target. What are
these frameworks? Well, .NET Core itself, but the classic .NET Framework as well,
Xamarin, Universal Windows Platform (UWP), Portable Class Libraries (PCL), Mono,
Windows Phone, and more.

In the early days of .NET Core, you would either target .NET Core itself, or/as well as one
of these other frameworks. Now it is advisable to target standards instead. Now we have
.NET Standard, and the differences between the two are as follows:

¢ NET Standard is a specification (a contract) that covers which APIs a .NET
platform has to implement.

e NET Core is a concrete .NET platform and implements the .NET Standard.

e The latest .NET Standard will always cover the highest .NET full framework
released.

David Fowler (https://twitter.com/davidfowl) of Microsoft came up with the following
analogy:

interface INetStandardlO
{
void Primitives();
void Reflection();
void Tasks () ;
void Collections();
void Ling();

interface INetStandardll : INetStandardlO

[18]

https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl

Getting Started with ASP.NET Core Chapter 1

{
void
void

}

ConcurrentCollections();
InteropServices();

interface INetFramework45 : INetStandardll

{

// Platform specific APIs

void
void
void
void
void
void
void

}

AppDomain () ;
Xml () ;
Drawing () ;

SystemWeb () ;
WPF () ;
WindowsForms () ;
WCF () ;

This should make it very easy to understand. As you can see, all .NET APIs that need
Windows (WPF, Windows Forms, Drawing) are only available in a specific platform (NET
4.5), not a standard. Standards are for cross-platform functionality.

For more information, please refer to https://docs.microsoft.com/en-
us/dotnet/articles/standard/library

So instead of targeting a specific version, such as .NET 4.5.1, .NET Core 1.0, Mono,
Universal Windows Platform 10, you should target a .NET Standard. Your project is
guaranteed to work on all platforms that support that standard (or a higher one), either
existing or waiting to be created. You should try to keep your dependency to the lowest
standard possible to increase the number of platforms that your app will work on, if that is
important to you.

[19]

https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library

Getting Started with ASP.NET Core Chapter 1

The current mapping between the different .NET frameworks and the .NET Standard they
implement at the time this book was written is always available at https://github.com/

dotnet/standard/blob/master/docs/versions.md.
NET Core 2.0 and .NET Standard 2.0 were made available in August 2017, and now four
frameworks target .NET Standard 2.0:

e NET Framework full
e NET Core 2.x

e Xamarin

e Mono

.NET Core 3.0 was made available on September 2019 and with it NET Standard 2.1.

You can have your dependencies specified per target or for all targets. In the former case,
all of the dependencies need to support all of the targets, and in the latter, we can have
different dependencies for each target. You'll probably want a mix of the two, with
common libraries as global dependencies and more specialized libraries specified only
where available. If you target more than one standard (or framework), then pay attention,
because you may have to resort to conditional definitions (#1i£) to target those features that
only exist in one of them. Let's see how.

The .NET Standard FAQ is available in GitHub at https://github.com/
dotnet/standard/blob/master/docs/faqg.md.

Targeting .NET Core or the full NET framework

It is important that you know that you can target the full NET framework in an ASP.NET
Core application! However, if you do this, you will lose the platform independence—that
is, you will only be able to run it on Windows.

By default, an ASP.NET Core project targets netcoreappl . x, netcoreapp? . x, Or
netcoreapp3.x, depending on whether you are targeting ASP.NET Core 1.x, 2.x, or 3.X,
but you can change it in the . csproj file. If you just want to target one framework, then
modify the TargetFramework element like this:

<TargetFramework>net461</TargetFramework>

[20]

https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md

Getting Started with ASP.NET Core

Chapter 1

Or, if you want to target more than one, replace TargetFramework

with TargetFrameworks :

<TargetFrameworks>netcoreapp3.0;net461</TargetFrameworks>

For more information, please refer to the Microsoft documentation at https://docs.

microsoft.com/en-us/dotnet/core/tools/csproj.

For .NET Core and .NET Standard, you should use the following names in
TargetFramework or TargetFrameworks:

.NET Core/Standard Version Moniker

.NET Core 1 netcoreappl.O
.NET Core 1.1 netcoreappl.l
.NET Core 2 netcoreapp2.0
.NET Core 2.1 netcoreapp2.1
.NET Core 2.2 netcoreapp2.2
.NET Core 3.0 netcoreapp3.0
.NET Core 3.1 netcoreapp3.1
.NET Standard 1.0 netstandardl.0
.NET Standard 1.1 netstandardl.1
.NET Standard 1.2 netstandardl.?2
.NET Standard 1.3 netstandardl.3
.NET Standard 1.4 netstandardl.4
.NET Standard 1.5 netstandardl.5
.NET Standard 1.6 netstandardl.6
.NET Standard 2.0 netstandard2.0
.NET Standard 2.1 netstandard2.1

Please see https://docs.microsoft.com/en-us/dotnet/standard/frameworks for the up-

to-date list. Next, let's see how generic hosting works.

[21]

https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

Getting Started with ASP.NET Core Chapter 1

Understanding the generic host

Starting with version 3.0, ASP.NET Core is now bootstrapped using a generic host. This
means that it is not tied specifically to HTTP or any other web protocol, but it potentially
supports any kind of protocol, including low-level TCP. The templates have changed and
now the bootstrap looks something like this:

Host
.CreateDefaultBuilder (args)
.ConfigureWebHostDefaults (webBuilder =>

{
webBuilder.UseStartup<Startup>();

)i

We are now using the Host class to create an instance of a class that implements
IHostBuilder, not IWebHostBuilder, although the result is the same.

We can interfere in the bootstrap process by means of extension methods. Specifically, we
can configure the following:

e Services registration

e Logging

¢ Configuration

Web hosting defaults (host, startup class)

Here is a full example of changing the configuration:

Host
.CreateDefaultBuilder (args)
.ConfigureHostConfiguration (builder =>
{
//host configuration (Kestrel or HTTP.sys)
builder.Properties["key"] = "value";

})

.ConfigureAppConfiguration (builder =>

{
//app configuration
builder.Add (new JsonConfigurationSource { Path =
"./configuration.json", Optional = true });
builder.Properties["key"] = "value";

})

.ConfigurelLogging (builder =>

{
//add logging providers
builder.AddConsole () ;

})

[22]

Getting Started with ASP.NET Core Chapter 1

.ConfigureServices (services =>

{
//register services
services.AddSingleton<IMyService, MyService>();

})
.ConfigureWebHostDefaults (webBuilder =>

{

builder.ConfigureKestrel (options =>

{
//set Kestrel options

1)

//set the startup class
webBuilder.UseStartup<Startup> () ;
H)

It normally doesn't make sense to change the IHostLifetime of the application, because
this is tied to the type of the application we're building. The options we have are as follows:

e Consolelifetime: The default, cross-platform host; listens to CTRL-C and
SIGINT, SIGTERM signals for stops

e SystemdLifetime: For operating systems that use systemd, such as MacOS and
Linux; listens to SIGTERM signals

® WindowsServiceLifetime: Only for Windows; listens to Windows service
events

It is the host's responsibility to call the THostApplicationLifetime events when the
application has finished loading, is about to stop, or has stopped. You can read about it in
Chapter 18, gRPC and Other Topics.

Services registered in ConfigureServices will be available to be injected into the
Startup class's constructor, and will also be present in the services parameter passed to
its ConfigureServices method. The same goes for the logging providers and to the app
configuration. Next, let's move on to the MVC pattern.

[23]

Getting Started with ASP.NET Core Chapter 1

Understanding the MVC pattern

Let's go back to ASP.NET now. For those of you that are still working with Web Forms,
what is this MVC thing anyway, and where did it come from?

Let's face it: it was pretty easy to do terrible things in Web Forms, such as add lots of
sensitive code in the page (which wouldn't be compiled until the page was accessed by the
browser), adding complex business logic to a page class, having several megabytes of code
in View State going back and forth on every request, and so on. There was no mechanism at
all, other than the developer's discretion, to do things the right way. Plus, it was terrible to
unit test it, because it relied on browser submission (POST) and JavaScript to have things
working properly, such as binding actions to event handlers and submitted values to
controls. There had to be a different solution, and in fact, there was.

The model-view-controller (MVC) design pattern was defined in the late 1970s and early
1980s of the past century (scary, isn't it?). It was conceived as a way to properly separate
things that shouldn't conceptually be together, such as the code to render a user interface
(UI) and the code that contains the business logic and data access that will feed and control
that UL In the MVC paradigm (and its offspring), we have controllers that expose public
actions. Inside each action, the controller applies any business logic it needs to and then
decides which view it should render, passing it enough information (the model) so that it
can do its job. A controller knows nothing about UI elements—it just takes the data and
execution context it needs to operate inside the action and goes from there. Likewise, a view
will not know anything about databases, web services, connection strings, SQL, and the
like—it just renders data, possibly making simple decisions about the way to do it. As for
the model, it's basically anything you want that contains the information required by the
view, including lists of records, static user information, and more. This strict separation
makes things much easier to manage, test, and implement. Of course, the MVC pattern is
not specific to the web—it can be used whenever this separation of concerns is useful, such
as when we have a Ul and some code to control it.

The following diagram presents the relationship between views, controllers, and models:

[24]

Getting Started with ASP.NET Core Chapter 1

User Input Updates

Image taken from https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/november/asp-net-single-page-applications-build-modern-responsive-web-apps-with-asp-net

MVC is normally associated with object-oriented programming (OOP), but there are
implementations in a myriad of languages, including JavaScript and PHP. The NET MVC
implementation has the following basic characteristics:

¢ Controller classes are either Plain Old CLR Objects (POCOs) or inherit from a
base class, Controller. Inheriting from Controller is not required (unlike in
previous versions), but it does make things slightly easier. Controller classes are
instantiated by the ASP.NET Core DI framework, which means they can have the
services they depend upon passed into them.

¢ Actions are public methods in a controller; they can take parameters, both simple
types as well as complex ones (POCOs). MVC uses what is called model binding
to translate information sent from the browser (the query string, headers,
cookies, forms, DI, and other locations) into method parameters. The choice of
which method to invoke from which controller from the request URLs and
submitted parameters is achieved by a mix of a routing table, convention, and
helper attributes.

e The model is sent from the controller to the view in the return of an action
method, and it can be basically anything (or nothing). Of course, action methods
for API calls do not return views, but can return a model together with an HTTP
status code. There are other ways to pass data to the view, such as the view bag,
which is essentially an untyped dictionary of data (a big bag); the difference
between the two is that the model is normally typed. A model is automatically
validated and bound to the action method parameters.

[25]

Getting Started with ASP.NET Core Chapter 1

¢ Views consist of domain-specific language (DSL) files that are interpreted by a
view engine and turned into something that the browser can interpret, such as
HTML. ASP.NET Core features an extensible view engine framework, but
includes a single implementation, Razor. Razor offers a simple syntax that allows
developers to mix HTML and C# to get hold of the model passed in and make
decisions as to what to do with it. Views can be constrained by layouts (Web
Forms developers can think of layouts as master pages) and they can include
other partial views (similar to web user controls in Web Forms). A view for the
Razor view engine has the . cshtml extension, and cannot be accessed
directly—only as the result of an action invocation. Views can be precompiled so
that syntax errors are detected sooner.

e Filters are used to intercept, modify, or fully replace the request; built-in filters
enable you to, for example, prevent access to unauthenticated users or redirect to
an error page in the event of an exception occurring.

Now, there are other patterns similar in purpose to MVC, such as model-view-presenter
(MVP) or model-view-ViewModel (MVVM). We will only focus on Microsoft's
implementation of MVC and its specifics. In particular, the version of MVC that ships with
ASP.NET Core is version 6, because it builds on version 5, which was previously available
for the .NET full framework, but both add and drop a couple of features. Because it now
sits on the new .NET Core framework, it is fully based on OWIN, so there's no more
Global.asax.cs file. More on this later on.

The way in which MVC is implemented in ASP.NET focuses on the following:

e URLs: They are now more meaningful and Search Engine Optimization (SEO)
friendly.

e HTTP verbs: Verbs now exactly state what the operation is supposed to do—for
example, GET is used for idempotent operations, POST for new contents, PUT for
full content updates, PATCH for partial content updates, and DELETE for
removals, among others.

e HTTP status codes: These are used for returning operation result codes, which is
more important in the case of Web APIs.

For example, issuing a GET request to http://somehost /Product /120 is likely to return
a view for a product with an ID of 120, and a DELETE request for the same URL will
probably delete this product and return either an HTTP status code or a nice view
informing us of the fact.

[26]

Getting Started with ASP.NET Core

Chapter 1

URLs and their binding to controllers and actions are configurable through routes, and it is
likely that this URL will be handled by a controller called ProductController and an
action method that is configured to handle GET or DELETE requests. Views cannot be
extracted from the URL because they are determined inside the action method.

We will cover Microsoft's implementation of MVC in depth in the following chapters. Of
course, being a .NET Core feature, all of its components are available as NuGet packages.
Some of the ones you will likely find are as follows:

Package Purpose
Microsoft .AspNetCore.Antiforgery Antiforgery APIs
Microsoft.AspNetCore.Authentication Authentication base
classes
Microsoft.AspNetCore.Authentication.Cookies Auth.entlcatlon through
cookies
Microsoft.AspNetCore.Authentication.JwtBearer JWT authentication
Microsoft.AspNetCore.Authorization Authorization APIs
Microsoft.AspNetCore.Diagnostics Diagnostics APIs
Microsoft.AspNetCore.Hosting Hosting base classes
Microsoft.AspNetCore.Identity Identity authentication
Identity with Entity
Microsoft.AspNetCore.Identity.EntityFrameworkCore Framework Core as the
store
Microsoft.AspNetCore.Localization.Routing Loca,hzatlon through
routing
Microsoft.AspNetCore.Mvc The core MVC features
Support for Cross-
Microsoft.AspNetCore.Mvc.Cors Origin Request
Scripting (CORS)
Microsoft.AspNetCore.Mvc.DataAnnotations Vahdatl,on through data
annotations
Microsoft.AspNetCore.Mvc.Localization Localization-based
APIs
. T
Microsoft.AspNetCore.Mvc.TagHelpers Tag hdpe .s
functionality
Microsoft.AspNetCore.Mvc.Versioning Web API Versioning
Microsoft.AspNetCore.ResponseCaching Response Caching
Microsoft.AspNetCore.Routing Routing

[27]

Getting Started with ASP.NET Core

Chapter 1

Microsoft.AspNetCore.Server.IISIntegration

IIS integration

Microsoft .AspNetCore.Server.Kestrel

Kestrel server

Microsoft.AspNetCore.Server.WebListener
(Microsoft.AspNetCore.Server.HttpSys in ASP.NET Core 2)

WebListener server
(now called HTTP . sys).
See https://docs.
microsoft.com/en-us/
aspnet/core/
fundamentals/

servers/httpsys.

Microsoft.AspNetCore.Session

Session functionality

Microsoft.AspNetCore.StaticFiles

Ability to serve static
files

You may or may not need all these packages, but you should make yourself familiar with

them.

In ASP.NET Core 2.0, there was the Microsoft .AspNetCore.All NuGet
metapackage, and since 2.1 there is Microsoft.AspNetCore.App. The
former included lots of packages, so a decision was made to have another
metapackage with far fewer dependencies. Since version 2.1, all projects
will include Microsoft.AspNetCore.App, and you may need to add
other dependencies, such as SQLite, Redis, Azure Storage, and
ApplicationInsights. You can read a discussion about it at https://

github.com/aspnet/Announcements/issues/287

Next, let's see how context execution works.

Getting your context

You will probably remember the Ht tpContext class from ASP.NET. The current instance
of this class would represent the current context of execution, which included both the
request information and the response channel. It was ubiquitous, and even though in Web
Forms it was sometimes hidden, it was the way by which the web application

communicated with the client.

[28]

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287

Getting Started with ASP.NET Core Chapter 1

Of course, ASP.NET Core also has an Ht tpContext class, but there is a big difference: there
is no longer a Current static property that lets us get hold of the current context—instead,
the process is a bit more convoluted. Anyway, all of the infrastructure
classes—middleware, controllers, views, Razor pages, view components, tag helpers, and
filters—allow easy access to the current context. Those who don't can leverage the
IHttpContextAccessor interface through DI and get a pointer to the current context:

//this is required to register the IHttpContextAccessor
//services.AddHttpContextAccessor () ;

public MyType (IHttpContextAccessor httpContextAccessor)
{

var httpContext = httpContextAccessor.HttpContext;
}

So, besides User, Request, and Response properties, which are mostly similar to their
pre-Core counterparts, we also have the following:

e A Features collection, which exposes all of the features implemented by the
current hosting server (Kestrel, WebListener/HTTP . sys, and more).

* A RequestServices property, which gives us access to the built-in DI
framework (more on this in the following chapters).
e A TraceIdentifier property, which uniquely identifies a request in ASP.NET
Core 2.x; in earlier versions, we had to access this through a feature.
¢ A Connection object, from which we can obtain relevant information about the
client connection, such as the client certificates, for example:
e The Authentication object, giving easy access to security
primitives, such as sign in, sign out, deny, and more.
¢ The Session object, which is implemented by the
ISessionFeature feature, and is exposed directly by the
HttpContext.

e The ClientCertificate property contains any SSL certificate
sent by the client as part of the handshake protocol.

The context is a vital part of an ASP.NET Core application, as we will see.

[29]

Getting Started with ASP.NET Core Chapter 1

Working with the context

The main operations we will likely be doing with the context are as follows:

¢ Reading values from the request

Writing to the response

Reading and writing cookies

Getting the current user

Getting the address of the remote user

Accessing the session
e Accessing services from the DI framework

Here are some examples:

//writing to the response
HttpContext.Response.StatusCode = 200;
HttpContext.Response.ContentType = "text/plain";
HttpContext.Response.WriteAsync ("Hello, World!");

//getting values from the request

var id = HttpContext.Request.Query["id"].Single();

var host = HttpContext.Request.Host;

var payload = HttpContext.Request.Form["payload"].SingleOrDefault ();

//reading and writing cookies
var isAuthenticated = HttpContext.Request.Cookies["id"].Any () ;
HttpContext .Response.Cookies.Append ("id", email);

//getting the current user
var user = HttpContext.User;

//getting the address of the remote user
var ip = HttpContext.Connection.RemoteIpAddress;

//accessing the session
HttpContext.Session.SetString("id", email);
var id = HttpContext.Session.GetString("id");

//getting services from DI
var myService = HttpContext.RequestServices.Get<IMyService>();

Essentially, everything we will be doing through constructs, such as MVC's controllers and
actions, are built around these and other simple Ht tpContext operations. The next topic
we will look at is the OWIN pipeline.

[30]

Getting Started with ASP.NET Core Chapter 1

Understanding the OWIN pipeline

Previous versions of ASP.NET had a very close relationship with Internet Information
Services (IIS), Microsoft's flagship web server that ships with Windows. In fact, IIS was the
only supported way to host ASP.NET.

Wanting to change this, Microsoft defined the Open Web Interface for .NET (OWIN)
specification, which you can read about at http://owin.org. In a nutshell, it is the standard
for decoupling server and application code, and for the execution pipeline for web requests.
Because it is just a standard and knows nothing about the web server (if any), it can be used
to extract its features.

.NET Core borrowed heavily from the OWIN specification. There are no more
Global.asax, web.config, or machine.config configuration files, modules, or

handlers. What we have is the following;:

e The bootstrap code in Program.Main declares a class that contains a convention-
defined method (startup will be used if no class is declared).

e This conventional method, which should be called Configure, receives a
reference to an IApplicationBuilder instance (it can take other services to be
injected from the service provider).

¢ You then start adding middleware to the IApplicationBuilder; this
middleware is what will handle your web requests.

A simple example is in order. First, the bootstrap class, which is by default named
Program:

public class Program
{
public static void Main(string [] args) =>
CreateWebHostBuilder (args) .Build () .Run() ;

public static IHostBuilder CreateHostBuilder (string [] args) =>
Host
.CreateDefaultBuilder (args)
.ConfigureWebHostDefaults (builder =>
{
builder.UseStartup<Startup>();
)i

[31]

http://owin.org
http://owin.org
http://owin.org
http://owin.org
http://owin.org
http://owin.org
http://owin.org

Getting Started with ASP.NET Core Chapter 1

Things can get more complicated, but don't worry too much about it now. Later on, I will
explain what this all means. For the time being, it's enough to know that we are leveraging
a Host to host Kestrel (the default host), and passing a conventional class called startup.
This startup class looks like this (in a simplified way):

public class Startup
{

public IConfiguration Configuration { get; }

{

this.Configuration = configuration;

}

public void Configure (IApplicationBuilder app)
{
app.Run (async (context) => {
await context.Response.WriteAsync ("Hello, OWIN World!");
}

}

There are a couple of things here that deserve an explanation. First, you will notice that the
Startup class does not implement any interface or inherit from an explicit base class. This
is because the Configure method does not have a predefined signature, other than its
name, taking as its first parameter an IApplicationBuilder. For example, the following
is also allowed:

public void Configure (IApplicationBuilder app, IWebHostEnvironment env) {

}
This version even gives you more than what you asked for. But I digress.

The IApplicationBuilder interface defines a Run method. This method takes a
RequestDelegate parameter, which is a delegate definition that accepts an Ht tpContext
(remember that?) as its sole parameter and returns a Task. In my example, we made it
asynchronous by adding async and await keywords to it, but it need not be so. All you
have to do is make sure you extract whatever you want from the HttpContext and write
whatever you want to it—this is your web pipeline. It wraps both the HTTP request and
response objects, and we call it middleware.

The Run method is a full-blown pipeline on its own, but we can plug other steps
(middleware) into the pipeline by using the (pun intended) Use method:

app.Use (async (context, next) =>

{

[32]

Getting Started with ASP.NET Core Chapter 1

await context.Response.WriteAsync ("Hello from a middleware!");
await next ();

1)

This way, we can add multiple steps, and they all will be executed in the order they were
defined:

app.Use (async (context, next) =>

{
await context.Response.WriteAsync ("step 1!");
await next ();

1)

app.Use (async (context, next) =>

{

await context.Response.WriteAsync ("step 2!");

1)

Just keep in mind that the order does matter here; the next example shows this:

app.Use (async (context, next) =>
{
try
{
//step 1
await next ();

}

catch (Exception ex)

{
await context.Response.WriteAsync ($"Exception {ex.Message} was
caught!");

)i

app.Use (async (context, next) =>
{

//step 2

throw new Exception();
)i

Because the first step was added before the second, it wraps it, so any exceptions thrown by
step two will be caught by step one; if they were added in a different order, this wouldn't
happen.

The Use method takes an HttpContext instance as its parameter and returns a
Func<Task>, which is normally a call to the next handler, so that the pipeline proceeds.

[33]

Getting Started with ASP.NET Core Chapter 1

We could extract the lambda to its own method, like this:

async Task Process (HttpContext context, Func<Task> next)
{

await context.Response.WriteAsync ("Step 1");

await next ();

app.Use (Process) ;

It is even possible to extract the middleware to its own class and apply it using the generic
UseMiddleware method:

public class Middleware
{

private readonly RequestDelegate _next;

public Middleware (RequestDelegate next)
{
this._next = next;
}
public async Task InvokeAsync (HttpContext context)
{
await context.Response.WriteAsync ("This is a middleware class!");
}
}

//in Startup.Configure
app.UseMiddleWare<Middleware> () ;

In this case, the constructor needs to take as its first parameter a pointer to the next
middleware in the pipeline, as a RequestDelegate instance.

I think by now you've got the picture: OWIN defines a pipeline to which you can add
handlers which are then called in sequence. The difference between Run and Use is that the
former ends the pipeline—that is, it won't call anything after itself.

The following diagram (from Microsoft) clearly shows this:

[34]

Getting Started with ASP.NET Core Chapter 1

Middleware 1 Middleware 2 Middleware 3
// logic
next(); /{ logic

next(); // logic

// more logic
// more logic

[/ more logic

Image taken from https://docs.microsoft.com/en-us/dotnet/architecture/blazor-for-web-forms-developers/middleware

The first middleware, in a way, wraps all of the next ones. For example, imagine that you

want to add exception handling to all the steps in the pipeline. You could do something like
this:

app.Use (async (context, next) =>

{
try
{
//log call
await next (context);
}
catch (Exception ex)
{
//do something with the exception
}

await context.Response.WriteAsync ("outside an exception handler");
1)

The call to next () is wrapped ina try. . .catch block, so any exception that may be

thrown by another middleware in the pipeline, as long as it was added after this one, will
be caught.

You can set the status code of a response, but be aware that, if an
exception is thrown, it will be reset to 500 Server Error!

[35]

Getting Started with ASP.NET Core Chapter 1

You can read more about Microsoft's implementation of OWIN at https://docs.

microsoft.com/en-us/aspnet/core/fundamentals/owin.

Why is OWIN important? Well, because ASP.NET Core (and its MVC implementation) are
built on it. We will see later that in order to have an MVC application, we need to add the
MVC middleware to the OWIN pipeline in the Startup class's Configure method,
normally as shown in the following code, using the new endpoint routing and the default
route:

{
endpoints.MapDefaultControllerRoute () ;

)i

As you know, this book talks essentially about the MVC pattern, but we could go equally
with this kind of middleware, without any MVC stuff; it's just that it would be much harder
to tackle complexity, and MVC does a very good job of that.

OWIN is essentially ASP.NET Core middleware. Everything that we add in a Usexxx
extension is middleware. Let's look at how we can host an ASP.NET Core project next.

Hosting ASP.NET Core

You probably noticed, when we talked about OWIN, that I mentioned that the sample app
was hosted in Kestrel. Kestrel is the name of a platform-independent web server fully
written in .NET Core (of course, using the native libraries of your operating system). You
need to host your web application somewhere, and .NET Core offers the following options:

e Kestrel: Platform independent, your host of choice if you want to have your code
run on any platform.

e WebListener: A Windows-only host, offering significant performance
advantages over Kestrel, but also has the disadvantage of needing Windows;
starting with ASP.NET Core 2, it is now called HTTP. sys.

e IIS: As in the past, you can continue to host your web app in IIS, on Windows,
benefiting from the old pipeline and configuration tools.

[36]

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin

Getting Started with ASP.NET Core Chapter 1

A server in this context is merely an implementation of IServer, an interface defined in the
Microsoft.AspNetCore.Hosting NuGet package. This defines the base contract that a
server offers, which can be described as follows:

e A start method, where all the fun begins. It is responsible for creating the
HttpContext, setting up the Request and Response properties, and calling the
conventional Configure method.

e A collection of Features that are supported by the implementation. There are
dozens of features, but at the very least, a server needs to support
IHttpRequestFeature and IHttpResponseFeature.

Each of these server implementations is provided in NuGet packages:

Server Package

Kestrel Microsoft.AspNetCore.Server.Kestrel

Microsoft.AspNetCore.Server.WebListener
(Microsoft.AspNetCore.Server.HttpSys from ASP.NET Core 2)

s Microsoft.AspNetCore.Server.IISIntegration

WebListener/HTTP . sys

IIS cannot be used on its own. IIS is, of course, a Windows-native application and is
therefore not available through NuGet, but the
Microsoft.AspNetCore.Server.IISIntegration package includes the IIS ASP.NET
Core module, which needs to be installed in IIS so that it can run ASP.NET Core apps with
Kestrel (WebListener is not compatible with IIS). There are, of course, other server
implementations by third-party providers (take, as an example, Nowin, available at
https://github.com/Bobris/Nowin). The ASP.NET Core module acts as a reverse proxy,
receiving requests through IIS and then calling ASP.NET Core, in the same process space.
Other reverse proxies are Apache and NGINX. Reverse proxies are useful because they
provide additional features that are not part of ASP.NET Core; they accept requests, do
their magic, and forward the requests to ASP.NET Core so that it too can do its magic.

So, what is there to know about these, and how can we select one of these hosting servers?

[371]

https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin

Getting Started with ASP.NET Core Chapter 1

Kestrel

Kestrel is the default, multiplatform, web server. It offers acceptable performance, but lacks
lots of features that are expected in real life:

e No support for Windows authentication (as time passes, this becomes less of a
problem)

¢ No direct file transmission

¢ No strong security protection (large requests, and more)

From this, it should be clear that Kestrel is not meant to be used in production unless it is
sitting behind a reverse proxy (such as NGINX, Apache, or IIS). It is configured at bootstrap
through the UseKestrel extension method, and if you need to configure its options, you
will need to supply an additional lambda:

Host.CreateDefaultBuilder (args)
.ConfigureWebHostDefaults (webBuilder =>
{

webBuilder
.UseStartup<Startup> ()
.UseKestrel (opt => { opt.Limits.MaxConcurrentConnections =
10; 1)

1)

You can read more about it at https://docs.microsoft.com/en-us/aspnet/core/

fundamentals/servers/kestrel.

WebListener/HTTP.sys

This one is for Windows only, as it is a wrapper around HTTP . sys, the Windows
subsystem that handles web requests. It offers by far the best performance, supports
HTTP/2, WebSockets, Windows Authentication, direct file transmission, port sharing,
response caching, and mostly anything that you can think of. The disadvantage, of course,
is that it requires Windows 7 or Windows Server 2008 R2 and later. At bootstrap, use the
UseWebListener extension method to add it to the host builder, possibly with a
configuration parameter:

.UseWebListener (opt =>
{

opt.ListenerSettings.Authentication.AllowAnonymous = false;

})

[38]

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel

Getting Started with ASP.NET Core Chapter 1

Since ASP.NET Core 2.0, WebListener is called HTTP . sys.

IS

We already know about IIS. IIS can be used as a reverse proxy for Kestrel, or to add
features that the host does not support, such as Windows Authentication. For that, we
should include support for IIS by calling UseIISIntegration. Here, the configuration
should be done through the Web . config file, which in this case is a requirement (the
Visual Studio template will add this file to the root of your project).

NGINX

NGINX (pronounced EngineX) is a UNIX and Linux reverse proxy that can be used with
ASP.NET Core. We will talk a bit more about NGINX in chapter 19, Application
Deployment.

Apache

Apache, the popular UNIX and Linux server (which actually also runs in Windows) can
also act as a reverse proxy. You can find more information in chapter 17, Deployment.

Configuration

As we've seen, usually, the server is chosen using a Host instance. As a minimum, you
need to tell it which server to use and what the root directory is:

Host.CreateDefaultBuilder (args)
.ConfigureWebHostDefaults (webBuilder =>
{
webBuilder
.UseStartup<Startup> ()
.UseKestrel ()
.UseContentRoot (Directory.GetCurrentDirectory());

[39]

Getting Started with ASP.NET Core

Chapter 1

Actually, the calls to UseKestrel and
UseContentRoot (Directory.GetCurrentDirectory ()) are already done by
ConfigureWebHostDefaults, so you can skip them.

Features

Different servers will offer different features. Essentially, a feature in this context is just a
configuration that is available per request and offers properties that can be inspected and
changed. Here are some of the features that are included out of the box:

Interface

Feature

IExceptionHandlerPathFeature

Access the last error that occurred and the request path, if we
are using centralized exception handling.

IEndpointFeature

Access to endpoint routing.

IHttpRequestFeature

Access to the request object and collections (form, headers,
cookies, query strings, and more).

IHttpResponseFeature

Access to the response object and collections (headers,
cookies, content, and more).

IHttpAuthenticationFeature

Authentication based on claims and principals.

IHttpUpgradeFeature

Support for HTTP upgrades (see https://tools.ietf.
org/html/rfc2616.html#section-14.42).

IHttpBufferingFeature

Response buffering.

IHttpConnectionFeature

Properties for local host calls.

IHttpRequestLifetimeFeature

Detecting whether a client has disconnected, and the ability
to actually disconnect it.

IHttpResetFeature

Used to send reset messages to protocols that support it
(HTTP/2).

IHttpSendFileFeature

The ability to directly send a file as a response.

IHttpWebSocketFeature

WebSockets.

IHttpRequestIdentifierFeature

Uniquely identifying requests.

IHttpsCompressionFeature

Access to request and response compression.

IFormFeature Access to request form data.

ISessionFeature Supphes the session functlon'ahty. Needs to be added by the
session middleware; not available otherwise.

IQueryFeature Access query string.

ITlsConnectionFeature

Retrieving client certificates.

ITlsTokenBindingFeature

Working with TLS tokens.

IStatusCodePagesFeature

Redirecting to errors based on the HTTP status code.

[40]

https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42

Getting Started with ASP.NET Core Chapter 1

This is by no means the full list, as it may change, depending on your exact configuration
(your choice of host, and so on). There is no base interface for features. All of these features
can be obtained through the Features property of the Server or from the

HttpContext by requesting its interface:

var con = HttpContext.Features.Get<IHttpConnectionFeature>();

This is one way to obtain access to the functionality that the feature supplies, but for some
features, there are workarounds. For example, the ASP.NET Session object can be
obtained directly from the Ht tpContext. Features are essentially how the HttpContext
class gets the behavior it exposes; for example, request and response objects, sessions, and
more. Middleware classes can provide their own features so that they are available
downstream by adding them directly to the Features collection:

HttpContext.Features.Set (new MyFeature());

There can be only one feature per type—for example, one per IMyFeaturel, one per
IMyFeature2, and so on.

Launch configuration

Visual Studio can have more than one configuration per project, meaning that it can launch
your project in several ways, and there's a toolbar button that shows just this fact:

P 1IIS Express = G- 48 -

b IS Ex IS Express

v IS Express

Web
Web Browser (Google Chrome)

Browse With...

[41]

Getting Started with ASP.NET Core Chapter 1

In particular, we can choose whether to launch our web application using IIS (or IIS
Express) as the host, or use whatever is specified in the code (Kestrel or HTTP . sys). The
launch settings are stored in the PropertieslaunchSettings. json file, which is created
by default by Visual Studio. This file has the following (or similar) contents:

"iisSettings": {
"windowsAuthentication": true,
"anonymousAuthentication": true,
"iisExpress": {

"applicationUrl": "http://localhost:24896/",
"sslPort": 0

}

}I

"profiles": {

"IIS Express": {

"commandName": "IISExpress",
"launchBrowser": true,
"environmentVariables": {

"ASPNETCORE_ENVIRONMENT": "Development"

}I
"Web": {
"commandName": "Project",
"launchBrowser": true,
"launchUrl": "http://localhost:5000",
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development"

Where I have "web", you should have the name of your application.

Here, we can see the default ports plus the environment name to be used (to be discussed
shortly). This file does not need to be changed by hand (although it can be); you can see it
in visual form using the project properties:

[42]

Getting Started with ASP.NET Core Chapter 1

= |

Application

Configuration: |N/A 7 Platform: |N/A -
Build
Profile [us Express v] [New._] Delete
Launch: IIS Express -
Launch URL: Absolute or relstive URL |
Environment Variables: Name Value

ASPNETCORE_ENVIRONMENT | Development

Web Server Settings

App URL: | http:fflocalhost:24896/
[] Enable SSL

Enable Anonymous Authentication
Enable Windows Authentication

Let's now look at a special case in which the port needs to be set dynamically.

Setting the listen port and address

There may be a need for setting the listen port—for example, you already have one or more
servers running on the same machine. When this happens, you can either pick one port that
you are sure is not being used or you can let ASP.NET Core pick one for you. Setting the
listen address is also relevant if you want to restrict where you want to accept requests
from. There are many ways to achieve this; let's go through them one by one.

By default, ASP.NET Core accepts requests at the following locations:

e http://localhost:5000
® https://localhost:5001 (when using a local certificate)

Using the command line

When you start your application using dotnet, you can pass the -—urls parameter to
specify the URLSs to which it should listen:

dotnet run --urls "http://localhost:5000;https://localhost:5001"

[43]

Getting Started with ASP.NET Core Chapter 1

This, of course, is static. Here you specify that you are binding HTTP to 1ocalhost only,
on port 5000 and HTTPS to localhost too, on port 5001. If you want to bind to any host,
you should use 0.0.0.0 instead of localhost.

This approach is a good one for Docker deployments. Let's now see how to do this, using
environment variables.

Using environment variables

Another alternative is to use the ASPNETCORE_URLS environment variables. It is basically
the same as the previous approach:

//Linux, MacOS
export ASPNETCORE_URLS="http://localhost:5000;https://localhost:5001"

//Windows
set ASPNETCORE_URLS="http://localhost:5000;https://localhost:5001"

This is also OK for Docker.

Next, let's look at how to use the configuration file for Visual Studio.

Using launchSettings.json

The launchSettings. json is where Visual Studio keeps the configuration details for
running a web solution. Its structure looks like this:

{

"iisSettings": {
"windowsAuthentication": false,
"anonymousAuthentication": true,
"iisExpress": {
"applicationUrl": "http://localhost:7788",

"sslPort": 44399
}
} 14
"profiles": {
"IIS Express": {
"commandName": "IISExpress",
"launchBrowser": true,
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development"

b

[44]

Getting Started with ASP.NET Core Chapter 1

"Web": {
"commandName": "Project",
"launchBrowser": true,
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development"

}I
"applicationUrl": "https://localhost:5001;http://localhost:5000"

}

You can see where the URLs, address, and port are specified in bold, and where you can
change them. For IIS Express, you need to edit
the .vs\config\applicationhost.config, located inside the root solution folder.

This approach is, of course, only for local development.

Using code

We can also specify the listen addresses in code, which is more useful for dynamic cases,
where we want to build the address dynamically:

public static IHostBuilder CreateHostBuilder (string[] args) =>
Host

.CreateDefaultBuilder (args)

.ConfigureWebHostDefaults (webBuilder =>

{

webBuilder

.UseStartup<Startup> ()
.UseUrls ("http://localhost:5000",
"https://localhost.5001");

Setting ports dynamically

What if we need to use a dynamically assigned port? This may occur when the port that
we'd like to use is already taken. ASP.NET Core fully supports this by setting the port to 0,
but this needs to be done at the actual host level. This only works with Kestrel; HTTP . sys
does not support this. Let's see how we can do this:

public static IHostBuilder CreateHostBuilder (string[] args) =>
Host
.CreateDefaultBuilder (args)
.ConfigureWebHostDefaults (webBuilder =>
{

[45]

Getting Started with ASP.NET Core Chapter 1

webBuilder
.UseStartup<Startup> ()
.UseKestrel (options =>

{
options.ListenAnyIP (0);

1)
1)

If you want to find out which addresses we are using, you must make use of a feature
called I1ServerAddressesFeature. One way to do this is to have a look at it in the
Configure method, but only after the application starts:

public void Configure (IApplicationBuilder app, IWebHostEnvironment env,
IHostApplicationLifetime events)

{

events.ApplicationStarted.Register (() =>

{
var feature = app.ServerFeatures.Get<IServerAddressesFeature>();
var addresses = feature.Addresses;

P

//rest goes here

}

This example illustrates two concepts: server features and host application events. I register
a handler to the ApplicationStarted event, and when it is raised, I ask for a server
feature, IServerAddressesFeature, that contains all the addresses, including ports, that
my application is currently bound to. From here, I can see the port that was chosen.

We read about server features in this chapter. Application events are
discussed in chapter 18, gRPC and Other Topics.

Now that we've learned the basics of hosting, let's now focus on another key aspect of
ASP.NET Core: the inversion of control and the DI framework pattern.

Inversion of control and dependency
injection
Inversion of control (IoC) and dependency injection (DI) are two related but different

patterns. The first tells us that we should not depend on actual, concrete classes, but instead
on abstract base classes or interfaces that specify the functionality we're interested in.

[46]

Getting Started with ASP.NET Core Chapter 1

Depending on its registrations, the IoC framework will return a concrete class that matches
our desired interface or abstract base class. DI, on the other hand, is the process by which,
when a concrete class is built, the dependencies it needs are then passed to its constructor
(constructor injection, although there are other options). These two patterns go very well
together, and throughout the book, I will use the terms IoC or DI container/framework to
mean the same thing.

.NET always had support for a limited form of IoC; Windows Forms designers used it at
design time to get access to the current designer's services, for example, and Windows
Workflow Foundation also used it to get registered extensions at runtime. But in .NET
Core, Microsoft centralized it and made it a first-class citizen of the ecosystem. Now,
virtually everything is dependent on the IoC and DI framework. It is made available in the
Microsoft.Extensions.DependencyInjection NuGet package.

An IoC and DI container allow services (classes) to be registered and accessed by their
abstract base class or an interface that they implement. Application code does not need to
care about the actual class that implements the contract, and this makes it very easy to
switch the actual dependencies in the configuration or at runtime. Other than that, it also
injects dependencies into the actual classes that it is building. Say, for example, you have
this scenario:

public interface IMyService
{

void MyOperation();
}

public interface IMyOtherService
{

void MyOtherOperation();
}

public class MyService : IMyService
{

private readonly IMyOtherService _other;

public MyService (IMyOtherService other)
{
this._other = other;
}
public void Operation ()
{
//do something
}

[47]

Getting Started with ASP.NET Core Chapter 1

If you register a MyService class with the DI container, then when it builds an actual
instance, it will know that it will also need to build an instance of IMyOtherService to
pass to the MyService constructor, and this will cascade for every dependency in the
actual IMyOtherService implementation.

The Host, when it is building the host, initializes an IServiceCollection instance, which
is then passed to the Startup class's ConfigureServices method. This is a conventional
method that should be used for our own registrations.

Now, a service registration has three components:

¢ The type under which it will be registered (the unique key of the registration)
e Its lifetime
¢ The actual instance factory

A lifetime can be one of the following:

e Scoped: A new instance of the service will be created for each web request (or
scope), and the same instance will always be returned for the same request
(scope) whenever we ask the DI framework for it.

¢ singleton: The instance to be created will be kept in memory, and it will always
be returned.

e Transient: A new instance will be created whenever it is requested.

The instance factory can be one of the following;:

¢ An actual instance, which is always regarded as a Singleton; of course, this
cannot be used with the Transient or Scoped lifetimes

e A concrete Type, which will then be instantiated as needed

e AFunc<IServiceProvider, object> delegate that knows how to create
instances of the concrete type after receiving a reference to the DI container

You register services and their implementations through
the ConfigureServices method's services parameter, which is an
IServiceCollection implementation:

//for a scoped registration
services.Add (new ServiceDescriptor (typeof (IMyService), typeof (MyService),
ServiceLifetime.Scoped);

//for singleton, both work
services.Add (new ServiceDescriptor (typeof (IMyService), typeof (MyService),
ServiceLifetime.Singleton);

[48]

Getting Started with ASP.NET Core Chapter 1

services.Add (new ServiceDescriptor (typeof (IMyService), newMyService());

//with a factory that provides the service provider as a parameter, from

//which you can retrieve //other services

services.Add (new ServiceDescriptor (typeof (IMyService), (serviceProvider) =>
new MyService (), ServicelLifetime.Transient);

There are several extension methods that allow us to do registrations; all of the following
are identical:

services.AddScoped<IMyService, MyService>();
services.AddScoped<IMyService> (sp =>

new MyService ((IMyOtherService) sp.GetService

(typeof (IMyOtherService))));
services.AddScoped (typeof (IMyService), typeof (MyService));
services.Add (new ServiceDescriptor (typeof (IMyService), typeof (MyService),
ServicelLifetime.Scoped));

The same goes for all other lifetimes.

The DI container also supports generic types—for example, if you register an open generic
type, such as MyGenericService<T>, you can ask for a specific instance, such as
MyGenericService<ServiceProviderOptions>:

//register an open generic type
services.AddScoped (typeof (MyGenericService<>)) ;

//build the service provider
var serviceProvider = services.BuildServiceProvider();

//retrieve a constructed generic type
var myGenericService = serviceProvider.GetService
<MyGenericService<string>>();

It is possible to traverse an IServiceCollection object to see what's already registered. It
is nothing but a collection of ServiceDescriptor instances. If we want, we can access
individual registrations and even replace one for another.

It is also possible to remove all registrations for a certain base type or interface:

services.RemoveAll<IMyService> () ;

The RemoveAll extension method is available on
theMicrosoft.Extensions.DependencyInjection.Extensionsnanuﬂpace

[49]

Getting Started with ASP.NET Core Chapter 1

One very important thing to bear in mind is that any services that
implement IDisposable and are registered for either the Scoped or the
Transient lifetimes will be disposed of at the end of the request.

The DI framework has the concept of scopes, to which scoped registrations are bound. We
can create new scopes and have our services associated with them. We can use the
IServiceScopeFactory interface, which is automatically registered and it allows us to do
things like this:

var serviceProvider = services.BuildServiceProvider ();
var factory = serviceProvider.GetService<IServiceScopeFactory>();
using (var scope = factory.CreateScope())
{
var svc = scope.ServiceProvider.GetService<IMyService>();

}

Any scope-bound service returned from the service provider inside the CreateScope inner
scope is destroyed with the scope. Interestingly, if any scope-registered service implements
IDisposable, then its Dispose method will be called at the end of the scope.

You need to keep a few things in mind:

e The same Type can be registered multiple times, but only for the same lifetime.

* You can have several implementations registered for the same Type, and they
will be returned in a call to GetServices.

¢ Only the last registered implementation for a given Type is returned
by GetService.

* You cannot register a Singleton service that takes a dependency that is Scoped,
as it wouldn't make sense; by definition Scoped changes every time.

* You cannot pass a concrete instance to a Scoped or Transient registration.

* You can only resolve, from the factory delegate, services that have themselves
been registered; the factory delegate, however, will only be called after all
services have been registered, so you do not need to worry about the registration
order.

e The resolution will return null if no service from the given Type is registered;
no exception will be thrown.

¢ An exception will be thrown if a registered type has on its constructor a
nonresolvable type—that is, a type that is not registered on the DI provider.

[50]

Getting Started with ASP.NET Core Chapter 1

Several .NET Core APIs supply extension methods that perform their registrations—for
example, AddMvc , AddDbContext or AddSession. By default, ASP.NET Core's bootstrap
automatically registers the following services:

Service Type

Microsoft

.AspNetCore.

Hosting.Builder.IApplicationBuilderFactory

Microsoft

.AspNetCore.

Hosting.IWebHostEnvironment

Microsoft

.AspNetCore.

Hosting.IStartup

Microsoft

.AspNetCore.

Hosting.IStartupFilter

Microsoft

.AspNetCore.

Hosting.Server.IServer

Microsoft

.AspNetCore.

Http.IHttpContextFactory

Microsoft

.Extensions.

Configuration.IConfiguration

Microsoft

.Extensions.

Hosting.IHostApplicationLifetime

Microsoft

.Extensions.

Logging.ILogger<T>

Microsoft

.Extensions.

Logging.ILoggerFactory

Microsoft

.Extensions.

Logging.ILoggerFactory

Microsoft

.Extensions.

ObjectPool.ObjectPoolProvider

Microsoft

.Extensions.

Options.IConfigureOptions<T>

Microsoft

.Extensions.

Options.IOptions<T>

Microsoft

.Extensions.

Options.IConfigureOptions<T>

Microsoft

.Extensions.

Options.IOptionsSnapshot<T>

Microsoft

.Extensions.

Options.IOptionsMonitor<T>

Microsoft

.Extensions.

Options.IOptionsChangeTokenSource<T>

Microsoft.

Extensions.

Options.IOptionsFactory<T>

System.Diagnostics.DiagnosticListener

System.Diagnostics.DiagnosticListener

System.Diagnostics.DiagnosticSource

After all the registrations are done, eventually, the actual dependency framework will be
built from the IserviceCollection instance. Its public interface is none other than the
venerable IServiceProvider, which has been around since .NET 1.0. It exposes a single
method, Get Service, which takes a Type as its single parameter to resolve.

[51]

Getting Started with ASP.NET Core Chapter 1

There are, however, a few useful generic extension methods available in the
Microsoft.Extensions.DependencyInjection package and namespace:

® GetService<T> ():Returns an instance of the service type that has already been
cast appropriately, if one is registered, or null otherwise

® GetRequiredService<T> (): Tries to retrieve a registration for the given service
type, and throws an exception if none is found

® GetServices<T> (): Returns all of the services whose registration keys match (is
identical, implements, or is a subclass) to the given service key

You can register multiple services for the same Type, but only the last that is registered will
be retrievable using Get Service (). Interestingly, all of them will be returned using
GetServices ()!

Keep in mind that the latest registration for a Type overrides any previous
one, meaning that you will get the latest item when you use a
GetService, but all of the registrations are returnable by Get Services.

Although the most common usage will probably be constructor injection, where the DI
framework creates a concrete type passing it all of its dependencies in the constructor, it is
also possible to request at any given time an instance of the service we want, by using a
reference to a IServiceProvider, like the one available in the following context:

var urlFactory = this.HttpContext.RequestServices.
GetService<IUrlHelperFactory>();

This is called the service locator pattern and some people consider it an antipattern. I won't
go over it here, as I believe this discussion is pointless.

The IServiceProvider instance itself is registered on the DI provider, making it a
possible candidate for injection!

If, by any chance, you want to build an instance of a type that takes on its constructor
services that should come from the DI provider, you can use the
ActivatorUtilities.CreateInstance method:

var instance = ActivatorUtilities.CreateInstance<MyType> (serviceProvider);
Or, if we have a reference to a Type, you can use the following:

MyType instance = (MyType)
ActivatorUtilities.CreatelInstance (serviceProvider, typeof (MyType));

[52]

Getting Started with ASP.NET Core Chapter 1

Finally, I need to talk about something else. People have been using third-party DI and IoC
frameworks for ages. .NET Core, being as flexible as it is, certainly allows us to use our
own, which may offer additional features to what the built-in one provides. All we need is
for our DI provider of choice to also expose an IServiceProvider implementation; if it
does, we just need to return it from the ConfigureServices method:

public IServiceProvider ConfigureServices (IServiceCollection services)

{
//AutoFac
var builder = new ContainerBuilder();
//add registrations from services
builder.Populate (services);
return new AutofacServiceProvider (builder.Build());

}

AutofacServiceProvider also implements IServiceProvider, and therefore we can
return it from ConfigureServices and have it as replacement for the out-of-the-box DI
container.

Allin all, it's very good to see IoC and DI. This is just the basics; we will talk about DI in
pretty much all of the rest of this book.

Validating dependencies

Normally, you inject dependencies to controllers (and other components) through their
constructors. The problem is, we may not know that a service that we depend upon is
missing its registration until it's too late—we try to access a controller that depends upon it
and it crashes.

When running in the Development environment, this is checked for us. We register all
controllers as services:

services
.AddControllers()
.AddControllersAsServices () ;

[53]

Getting Started with ASP.NET Core Chapter 1

Then, when accessing a controller, the web app—any web app, not one that has a specific
dependency—ASP.NET Core will try to validate all of the dependencies that it has
registered, and, if it finds one for which a dependency is not found, an exception is thrown.
This exception will tell you exactly what service is missing. ASP.NET Core also checks the
validity of scoped services—for example, you cannot have a service registered as

Scoped be retrieved from outside of a scope (usually a web request).

You can actually control this behavior for environments other than Development by
adding the following to the bootstrap code in Program:

public static IHostBuilder CreateHostBuilder (string[] args) =>
Host
.CreateDefaultBuilder (args)
.ConfigureWebHostDefaults (builder =>
{
builder.UseStartup<Startup>();
builder.UseDefaultServiceProvider (options =>
{
options.ValidateOnBuild = true;
options.ValidateScopes = true;
)i
F) i

Note the ValidateOnBuild and ValidateScopes properties. ValidateOnBuild is for
doing what we just saw—testing that the dependency graph is valid—and
ValidateScopes is for testing that services that require a scope are retrieved from inside
one. By default, both are false, exceptin the Development environment.

So next, let's move on to understand the environments in which we work.

Knowing the environments

.NET Core has the concept of the environment. An environment is basically a runtime
setting in the form of an environment variable called ASPNETCORE_ENVIRONMENT. This
variable can take one of the following values (note that these are case sensitive):

e Development: A development environment, which probably does not need
much explaining

e Staging: A preproduction environment used for testing

e Production: An environment (or as similar as possible) in which the application
will live once it is released

[54]

Getting Started with ASP.NET Core Chapter 1

To be specific, you can pass any value, but these have particular significance to .NET Core.
There are several ways by which you can access the current environment, but you're most
likely to use one of the following methods, extension methods and properties of the
IWebHostEnvironment interface (add a using reference to the
Microsoft.Extensions.Hosting namespace):

e TsDevelopment ()

e IsProduction ()

e TsStaging()

e TsEnvironment ("SomeEnvironment")

e EnvironmentName

The IsDevelopment, IsProduction, and IsStaging extension methods are just
convenience methods using the IsEnvironment method. Based on the actual environment,
you can make decisions about the code, such as picking a different connection string, web
service URL, and so on. It is important to point out that this has nothing to do with debug
or release compiler configurations.

You normally get an instance of IWwebHostEnvironment from the arguments to
the Configure method of the Startup class:

public void Configure (IApplicationBuilder app, IWebHostEnvironment env) {

}

But you also get it from the DI container, which is available from the HttpContext class,
among other places, as the RequestServices property:

var env = HttpContext.RequestServices.GetService<IWebHostEnvironment> () ;
Or you can just inject IWebHostEnvironment into your controller as the following:

public IActionResult Index([FromServices] IWebHostEnvironment env) { ... }

This allows you to check your current environment any time, so that you have conditional
logic.

The IWebHostEnvironment replaces the old IHostingEnvironment
interface available in pre-3 .NET Core, now deprecated.

[551]

Getting Started with ASP.NET Core Chapter 1

A final note: service configuration plays well with environments. Instead of a single
ConfigureServices method, we can have multiple methods, named
ConfigureDevelopmentServices, ConfigureStagingServices, and
ConfigureProductionServices. To be clear, any environment name can be added after
the Configure prefix and before Services. The environment-specific method (for

example, ConfigureDevelopmentServices) will be called instead of the generic one
(ConfigureServices):

public void ConfigureDevelopmentServices (IServiceCollection services)

{

//WILL be called for environment Development

public void ConfigureServices (IServiceCollection services)

{
//will NOT be called for environment Development

}

And, if we want to take it a bit further, we can even do the same for the Startup class: we
can create one class per environment, with it as the suffix:

public class StartupDevelopment
{

public StartupDevelopment (IConfiguration configuration) { ... }
public void ConfigureServices (IServiceCollection services) { ... }

public void Configure (IApplicationBuilder app, IWebHostEnvironment env)

{ ...}
}

Or, if we want to dynamically specify a class that resides in a different assembly, we'll have
to slightly change the code in the Program class, so as to bootstrap from an assembly:

public static IHostBuilder CreateHostBuilder (string[] args) =>
Host

.CreateDefaultBuilder (args)
.ConfigureWebHostDefaults (builder =>
{

builder.UseStartup (typeof (Startup) .Assembly.FullName) ;
1)

We can do it from an assembly instead of from a specific class:

public static IHostBuilder CreateHostBuilder (string[] args) =>
Host

.CreateDefaultBuilder (args)

[561]

Getting Started with ASP.NET Core Chapter 1

.ConfigureWebHostDefaults (builder =>
{
builder.UseStartup<Startup>();

1)

A nice feature that can help us better organize our code! Let's now have a look at the
standard project templates that we can use to start creating our projects.

Understanding the project templates

The Visual Studio template for creating an ASP.NET Core project, since version 3.x, adds
the following (or very similar) contents to the Program class:

public static void Main(string[] args)
{

CreateHostBuilder (args) .Build () .Run();
}

public static IHostBuilder CreateHostBuilder (string[] args) =>
Host
.CreateDefaultBuilder (args)
.ConfigureWebHostDefaults (builder =>
{
builder.UseStartup<Startup>();

)i

This has changed a bit since previous versions and is now more opinionated; I already
showed this when talking about OWIN earlier in this chapter.

The Host class exposes the static CreateDefaultBuilder, which returns a fully built
IHostBuilder instance. The CreateDefaultBuilder method is actually doing a lot of
things behind our backs:

e Creates a ConfigurationBuilder and adds the environment variables provider
to it (see chapter 2, Configuration, for more details)

¢ Adds the appsettings.json (mandatory) and
appsettings.<environment>.json (optional) JSON files and provider to the
configuration builder

e Configures the user secrets configuration, if running in development mode
¢ Configures command-line configuration, if command-line arguments were

passed
e Sets Kestrel as the host to use and loads Kestrel-related configurations

[571

Getting Started with ASP.NET Core Chapter 1

e Sets the content root to be the current directory

e Sets the host to use the URLs passed as the ASPNETCORE_SERVER. URLS
environment variable, if it exists

¢ Configures logging to the console, debug, EventSource, and EventLog (if in
Windows)

¢ Adds IIS integration
e Sets the default host lifetime as ConsoleHostLifetime

¢ Configures service provider parameters to validate the scope of registered
services and lifetimes if running in the Development environment

¢ Registers some services, such as IConfiguration

These are the defaults you get, but you can override any of them by using some extension
methods over the THostBuilder interface:

Host
.CreateDefaultBuilder (args)
.ConfigureAppConfiguration((context, builder) =>
{
//add or remove from the configuration builder
})
.ConfigureContainer<MyContainer> ((context, container) =>
{
//configure container
})
.ConfigurelLogging ((context, builder) =>

{
//add or remove from the logging builder

)i

.ConfigureServices (services =>

{

//register services

)
.ConfigureWebHostDefaults (builder =>

{
builder.UseStartup<Startup>();

)i

After the default builder is instantiated, we ask it to use the Startup class, which is where
we can configure the exact stuff we want, such as registered services, middleware
components, and so on

IHostBuilder then builds an IHost and then we ask it to run. This is what actually gets
our application working.

[581]

Getting Started with ASP.NET Core Chapter 1

We have talked about the Startup class before. Basically, it exposes two methods,

named ConfigureServices and Configure by convention; the first is used to register
services and their implementations with the default DI provider (and possibly use a
different one), and the second one is used to add middleware components to the ASP.NET
Core pipeline.

The main things you need to remember here are as follows:

e Kestrel is the default host server.

¢ Configuration providers for JSON and the environment are added automatically;
user secrets are added if running in Development environment. There should be
one appsettings.json file and possibly one
appsettings.<environment>. json file, with overrides per environment.

¢ Logging is enabled for the console and debug pane of Visual Studio.

Now that we have looked at these templates, let's see what has changed since version 2.0
and how the different tools, templates, features, and so on are affected by it.

What's new since version 2.0?

Let's see what is new in version 2.0 by going through the following sections.

ASP.NET Core 2.1

ASP.NET Core 2.1 was released on the web on May 30 2018. It doesn't contain a large
number of breaking changes or fantastic new features, but I would highlight the following
ones.

SignalR

SignalR, the real-time communication library for ASP.NET Core, finally made it out of
prerelease. It has lots of goodies that didn't exist in pre-Core versions, and we will cover it
in its own chapter.

[591]

Getting Started with ASP.NET Core Chapter 1

Razor class libraries

It is now possible to package Razor Ul files (. cshtml) as NuGet packages. This opens the
door to lots of interesting possibilities. There will be more on this in the chapter about
component reuse.

Razor pages improvements

Razor pages, introduced in ASP.NET Core 2.0, now also support areas and have a couple of
additional features. We will go through them in the chapter on views.

New partial tag helper

There's a new <partial> tag helper that provides a somewhat cleaner alternative to
RenderPartial. Again, it will be discussed in the chapter about component reuse.

Top-level parameter validation

In previous versions of ASP.NET Core, you had to explicitly check the validation status of
your model, usually through a call to ModelState.IsValid. Now, this is no longer the
case, and the validation of parameters using any validator is configured is done
automatically. We'll talk more about this in the chapter dedicated to forms and models.

Identity Ul library and scaffolding

Together with the new Razor Ul class libraries, Visual Studio now has support for
scaffolding, and ASP.NET Core Identity is a good candidate for this. What this means is
that if we select ASP.NET Core Identity as the authentication provider, we can cherry pick
the UI components we're interested in (login page, login status, and so on) and provide the
rest. This will be covered in the chapter dedicated to security.

Virtual authentication schemes

There's a new mechanism by which we can abstract (and possibly combine) different
authentication providers: it's called virtual authentication schemes, and we will talk about
it in the chapter on security.

[60]

Getting Started with ASP.NET Core Chapter 1

HTTPS by default

What else can I say? HTTPS is now the default, but configurable through the Visual Studio
wizard. Hopefully, it will both make your applications more secure and prevent some
subtle problems that only arise when deploying to production. It will be covered in the
chapter on security.

GDPR-related template changes

The Global Data Protection Regulation (GDPR) imposed a number of constraints when it
comes to tracking users and storing their data. The new Visual Studio templates and the
ASP.NET Core 2.1 APIs introduced some changes related to cookie tracking and explicit
user consent. We will talk about all these in the security chapter.

0 If you want to know more about GDPR, please visit https://eugdpr.org.

MVC functional test improvements

Functional (or integration) tests are now easier to set up because .NET Core 2.1 makes some
assumptions that are generally ok. There will be more on this in the chapter on testing.

API conventions and supporting types

There have been some improvements in regards to providing metadata and discoverability
for API endpoints, all of which will be covered in a new chapter about API controllers and
actions.

Generic host builder

This may not be too important for ASP.NET Core developers, but there's a new host builder
that can be used to build non-HTTP endpoints. Because this is too specific, we won't talk
about it in this book.

[61]

https://eugdpr.org
https://eugdpr.org
https://eugdpr.org
https://eugdpr.org
https://eugdpr.org
https://eugdpr.org
https://eugdpr.org

Getting Started with ASP.NET Core Chapter 1

Updated SPA templates

There are new templates for single-page applications (SPAs) available for some of the
most popular JavaScript frameworks: Angular, React, and React with Redux. I will (briefly)
cover these in the chapter about client-side development.

ASP.NET Core 2.2

ASP.NET Core 2.2 was released in December 2018. Some of the changes are outlined in the
following sections.

API code analyzers

Visual Studio can now automatically add attributes that describe the return types and
codes for API actions based on conventions.

Health check API

Health check APIs were previously available as prerelease code, but are now available as
stable and fully supported checks for multiple conditions.

Endpoint routing

There is now a faster routing mechanism that also allows the inferring of the current route
much earlier in the pipeline. It also includes parameter transformers.

Problem details (RFC 7807) support

There is new support for the implementation of RFC 7807 problem details for representing
API errors.

ASP.NET Core 3.0

ASP.NET Core 3.0 was released in September 2019. Here are some of its biggest changes.

[62]

Getting Started with ASP.NET Core Chapter 1

C# 8.0

Together with .NET Core 3.0, Visual Studio 2019 was updated to support the new language
features of C# 8.0.

.NET Standard 2.1

The new .NET Standard was also released, with a much greater API surface.

Blazor

Blazor (server hosting model) is now included with .NET Core 3.

Built-in JSON support

.NET now features its own JSON library, System. Text . Json.

HTTP/2 support

HttpClient now supports HTTP/2 and is enabled by default in Kestrel.

gRPC

gRPC for .NET has been released. Visual Studio and dotnet now have templates for gRPC.

IdentityServer integration

Authentication is now capable of integrating with IdentityServer out of the box.

Endpoint routing

Endpoint routing is now the default.

[63]

Getting Started with ASP.NET Core Chapter 1

Migrating to ASP.NET Core 3.x

Updating a project to version 3 should be as simple as updating the TargetFramework
property of the . csproj files to contain netcoreapp3.0 (or netcoreapp3.1, for NET
Core 3.1) instead of netcoreapp2 . 0 and removing any references to
Microsoft.AspNetCore.App. It is also mandatory to

remove DotNetCliToolReference, as it is deprecated and its purpose replaced by global
tools. Of course, when Visual Studio asks you to update the NuGet packages of your
solution, you should do it to use the latest features.

For a detailed, step-by-step tutorial, please go to https://docs.

microsoft.com/en-us/aspnet/core/migration/20_21.

Version set
Some features of ASP.NET Core will only be available if you explicitly ask for them. This is
done by calling the SetCompatibilityVersion extension method:

services .AddMvc () .SetCompatibilityVersion
(CompatibilityVersion.Version_3_0);

The values you can pass to the SetCompatibilityVersion method are as follows:

e Latest: Use the latest features (at the time of the writing of this book, version 3)
e Version_2_0: Use only the subset supported as of ASP.NET Core 2.0

e Version_2_1: Use the features introduced in version 2.1

e Version_3_0: Use the features of version 3

Because we want to explore all features available to ASP.NET Core, let's call it with
either Latest or Version_3_0. If you don't specify a value, it will default to the latest
major version: 3.

There is no flag for version 3.1 because this release does not contain
breaking changes from version 3.

[64]

https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21

Getting Started with ASP.NET Core Chapter 1

Let's now move on to look at some tools that will be covered in more depth in the two
appendices at the end of the book.

The NuGet and dotnet tools

There are two tools that are closely related to the .NET Core SDK:

e dotnet

® nuget

These tools are must-haves for .NET development: the first, dotnet, is what, NuGet
ecosystem of libraries and installs, publishes, and otherwise manages sets of NuGet
packages. This one is

dotnet always executes with the most recent .NET Core version available on the system. In
Appendix 1, you will find a good description of this tool and its usages.

You can get the nuget tool from https://www.nuget.org/packages/NuGet . CommandLine.

Summary

In this first chapter, we went through some of the biggest changes in ASP.NET Core and
.NET Core. You are introduced to some of the key concepts in .NET Core: the NuGet
distribution mode, the OWIN pipeline, the hosting model, environments, the improved
context, and the built-in dependency framework, which are new in ASP.NET Core 3. We
also had a look at the nuget and dotnet tools, the Swiss army knife of command-line .NET
development, which will be covered in more detail in Appendix 1.

In the next chapter, we will start our .NET Core journey by exploring the configuration of
an application.

[65]

https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine

Getting Started with ASP.NET Core Chapter 1

Questions

By now you should be able to answer the following questions:

What are the benefits of DI?

What are environments?

What does MVC mean?

What are the supported lifetimes in the built-in DI container?
What is the difference between .NET Core and the .NET Standard?
What is a metapackage?

What is OWIN?

Nk N =

[66]

Configuration

This chapter covers the configuration of an ASP.NET Core application. Every application
needs configuration in one form or another because it makes it much easier to change the
underlying behavior should anything happen—think about connection strings, credentials,
Internet Protocol (IP) addresses, or any other kind of data that can change over time and is
therefore not appropriate to be hardcoded.

Configuration can be done in many ways, some of which don't even require redeploying
your application, which is a huge benefit. Luckily, .NET Core was conceived with this in
mind and is also very extensible, so it can cover most scenarios, basic and advanced. It also
plays nicely with other aspects, such as security and dependency injection.

Also, a very typical configuration just features switching or toggling: something is either
enabled or not. .NET Core 3 introduced a new feature toggling library that is outside the
main configuration framework, but it will be covered here.

After reading this chapter, you should be able to understand the following;:

e How the configuration works on the .NET Core framework

Which configuration sources we have available

How to extend it to be more helpful and match your necessities

Runtime host configuration

The new feature toggle mechanism introduced in .NET Core 3

Configuration Chapter 2

Technical requirements

In order to implement the examples introduced in this chapter, you will need the NET
Core 3 software development kit (SDK) and some kind of text editor. Of course, Visual
Studio 2019 (any edition) meets all the requirements, but you can also use Visual Studio
Code, for example.

The source code can be retrieved from GitHub here: nttps://github.com/
PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition.

Getting started

Previous versions of .NET had a relatively simple configuration system, where all settings
went into Extensible Markup Language (XML) files with the . config extension. There
was a basic schema that could handle both system settings and untyped key-value pairs,
but they were all strings. There was also some degree of inheritance, as some of the settings
could be defined machine-wide and then overridden per application, and even in virtual
applications underneath an Internet Information Services (IIS) application. It was possible
to define custom sections with typed settings and complex structures by writing and
registering .NET classes.

However, as convenient as this would seem, it turns out it had its limitations—namely, the
following;:

e Only XML files were supported; it was not possible to have other configuration
sources out of the box.

e It was difficult to have different configuration files/configuration sections per
environment (staging, quality assurance (QA), production, and more).

e It was not possible to receive notifications when the configuration changed.
e It was tricky to save changes.

Moreover, as dependency injection was not part of the core .NET infrastructure, there was
no way to have configuration values injected into its services automatically. Let's see how
.NET Core 3 helps us overcome these limitations.

[68]

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Configuration Chapter 2

Configurations in .NET Core

Realizing this, Microsoft made configuration a first-order concept in .NET Core and did so
in quite a flexible, extensible way. It all starts with a builder instance; we add providers to

it, and when we've finished, we just ask it to build a configuration object that will hold all

the values loaded from each provider in memory.

This configuration object will be capable of returning configuration settings from any of the
added providers transparently, which means that regardless of the source, we use the same
syntax for querying configuration options. It will hold an in-memory representation of all
the values loaded from all registered providers, and will allow you to change them, or add
new entries.

The base class model for the configuration application programming interface (API) in
NET Core looks like this:

r
IConfiguration ¥
Interface

r '

IConfigurationRoot ¥ IConfigurationSection

Interface Interface

=+ IConfiguration = IConfiguration

y

I I i

IConfigurationProvider ¥ IConfigurationSource IConfigurationBuilder L

Interface Interface Interface

(P IConfigurationProvider (P IConfigurationSource (P IConfigurationBuilder

[S i -

ConfigurationProvider ¥ FileConfigurationSource ConfigurationBuilder ¥

Abstract Class Abstract Class Class
, | . , |

FileConfigurationProvider ¥ JsonConfigurationSource

Abstract Class Class

-+ ConfigurationProvider = FileConfigurationSource
e . EP. .

JsonConfigurationProvi... ¥

Class

~+ FileConfigurationProvider

[69]

Configuration Chapter 2

So, the provider mechanism is split into two base interfaces and their implementations, as
follows:

e IConfigurationSource is responsible for creating a concrete instance of an
IConfigurationProvider; each of the available providers (coming next)
implements this interface.

e IConfigurationProvider specifies the contract for actually retrieving values,
reloading, and more; the root class that implements this is
ConfigurationProvider, and there's also a particular implementation that
serves as the root for all file-based providers, FileConfigurationProvider.

ConfigurationBuilder itself is just a specific implementation of the
IConfigurationBuilder interface, and there are no other implementations. Its contract
specifies how we can add providers and build the configuration from them, as illustrated in
the following code block:

var builder = new ConfigurationBuilder () .Add (sourcel)
.Add (source?2) ;

var cfg = builder.Build();
As for the configuration itself, there are three base interfaces, as follows:

e IConfiguration: This specifies the methods for retrieving and setting
configuration sections and values, monitoring changes, and more.

e IConfigurationRoot: This adds a method for reloading the configuration to
IConfiguration and the list of providers used to build the configuration.

e IConfigurationSection: This is a configuration section, meaning that it can be
located somewhere beneath the configuration root in a location identified by a
path (the keys of all of the parent sections, up to and including its own key) and a
key that uniquely identifies that section in its parent.

We will shortly see the ways by which we can use the configuration values, but for now, it
is worth mentioning that we can retrieve and set individual settings through the
overloaded [] operator in IConfiguration, like this:

Cfg["key"] = "Value";
string value = cfg["key"];

This takes a string as key and returns a string as the value, and in the next sections, we
will see how we can circumvent this limitation. If no entry for the given key exists, it
returns null.

[70]

Configuration Chapter 2

All keys are case-insensitive. A path is composed of a colon (:)-combined
set of keys and subkeys that can be used to get to a specific value.

The .NET Core configuration has the concept of sections. We can get hold of a particular
section, or even check whether it exists altogether, by running the following code:

var section = cfg.GetSection ("ConnectionStrings");
var exists = section.Exists();

By convention, sections are separated by :. Getting a value from a section with a section-
specific key is the same as retrieving it from the configuration root with a fully qualified

key. For example, if you have a key of A:B:C, this is the same as having a key of C inside
section B of section 2, as illustrated in the following screenshot:

var valueFromRoot = cfg["A:B:C"];

var aSection = cfg.GetSection ("A");

var bSection = aSection.GetSection("B");
var valueFromSection = bSection["C"];

For the record, the core configuration API is implemented in the
Microsoft.Extensions.Configuration and
Microsoft.Extensions.Configuration.Binder NuGet packages, which are
automatically included by other packages, such as those of the specific providers. Let's now
have a look at the available providers.

ASP.NET Core 2 and later automatically registers the IConfiguration
instance in the dependency injection framework; for previous versions,
you need to do this manually.

Providers

The available Microsoft configuration providers (and their NuGet packages) are as follows:

e JavaScript Object Notation (JSON) files:

Microsoft.Extensions.Configuration.Json

XML files: Microsoft.Extensions.Configuration.Xml

Initialization (INI) files: Microsoft.Extensions.Configuration.Ini

e User secrets: Microsoft .Extensions.Configuration.UserSecrets

Azure Key Vault: Microsoft.Extensions.Configuration.AzureKeyVault

[71]

Configuration Chapter 2

¢ Environment variables:
Microsoft.Extensions.Configuration.EnvironmentVariables

e Command line: Microsoft .Extensions.Configuration.CommandLine
e Memory: Microsoft.Extensions.Configuration

e Docker secrets: Microsoft .Extensions.Configuration.DockerSecrets

Some of these are based upon the FileConfigurationProvider class:
JSON, XML, and INI.

When you reference these packages, you automatically make their extensions available. So,
for example, if you want to add the JSON provider, you have two options, detailed next.

You can add a JsonConfigurationSource directly, like this:

var jsonSource = new JsonConfigurationSource {
Path = "appsettings.json" };
builder.Add (jsonSource) ;

Alternatively, you can use the AddJsonFile extension method, like this:

builder.AddJsonFile ("appsettings.json");

Most likely, the extension methods are what you need. As I said, you can have any number
of providers at the same time, as illustrated in the following code snippet:

builder
.AddJsonFile ("appsettings.json")
.AddEnvironmentVariables ()
.AddXmlFile ("web.config");

You just need to keep in mind that if two providers return the same configuration setting,
the order by which they were added matters; the result you get will come from the last
provider added, as it will override the previous ones. So, for example, imagine you are
adding two JSON configuration files, one that is common across all environments
(development, staging, and production), and another for a specific environment; in this
case, you would likely have the following:

builder
.AddJsonFile ("appsettings.json")
.AddJsonFile ($"appsettings.{env.EnvironmentName}.json");

[72]

Configuration Chapter 2

This is so the environment-specific configuration file takes precedence.

Each provider will, of course, feature different properties for setting up; all file-based
providers will require, for instance, a file path, but that doesn't make sense when we're
talking about environment variables.

File-based providers

Both JSON, XML, and INI configuration sources are based on files. Therefore, their classes
inherit from the FileConfigurationSource abstract base class. This class offers the
following configuration properties:

e path: The actual, fully qualified physical path where the file is to be found; this is
a required setting.

e Optional: A Boolean flag for specifying whether the absence of the file causes a
runtime error (false) or not (t rue); the defaultis false.

¢ ReloadOnChange: Here, you decide whether to automatically detect changes to
the source file (t rue) or not (false); the defaultis false.

e ReloadDelay: The delay, in milliseconds, before reloading the file in the event
that a change was detected (ReloadOnChange set to t rue); the default is 250
milliseconds.

e OnLoadException: A delegate to be called should an error occur while parsing
the source file; this is empty by default.

e FileProvider: The file provider that actually retrieves the file; the default is an
instance of PhysicalFileProvider, set with the folder of the Path property.

All of the extension methods allow you to supply values for each of these properties, except
OnLoadException. You are also free to specify your own concrete implementation of
IFileProvider, which you should do if you have specific needs, such as getting files from
inside a ZIP file. ConfigurationBuilder has an extension method, SetBasePath, that
sets a default PhysicalFileProvider pointing to a folder on your filesystem so that you
can pass relative file paths to the configuration source's Path property.

If you set ReloadOnChange to true, .NET Core will start an operating system-specific file
that monitors a watch on the source file; because these things come with a cost, try not to
have many watches.

[73]

Configuration Chapter 2

A typical example would be as follows:

builder
.SetBasePath (@"C:\Configuration™")
.AddJsonFile (path: "appsettings.json", optional: false,
reloadOnChange: true)
.AddJsonFile (path: $"appsettings.{env.EnvironmentName}.json",
optional: true, reloadOnChange: true);

This would result in the appsettings. json file being loaded from the
C:\Configuration folder (and throwing an exception if it is not present), and then
loading appsettings.Development . json (this time, ignoring it if the file doesn't exist).
Whenever there's a change in either file, they are reloaded and the configuration is
updated.

Very important: in operating systems or filesystems where the case
matters, such as Linux, make sure that the name of the file that takes the
environment name (for example, appsettings.Development. json)is
in the right case—otherwise, it won't be found!

If, however, we wanted to add an error handler, we need to add the configuration source
manually, as follows:

var jsonSource = new JsonConfigurationSource { Path = "filename.json" };
jsonSource.OnLoadException = (x) =>
{

if (x.Exception is FileNotFoundException ex)

{
Console.Out.WriteLine ($"File {ex.FileName} not found");
x.Ignore = true;

}i
builder.Add (jsonSource) ;

This way, we can prevent certain errors from crashing our application.

All file-based providers are added by an extension method with the name AddxxxFile,
where xxx is the actual type—Json, xml, or Ini—and always takes the same parameters
(path, optional, and reloadOnChange).

[74]

Configuration Chapter 2

JSON provider

We typically add a JSON configuration file using the AddJsonFile extension method. The
JSON provider will load a file containing JSON contents and make its structure available
for configuration, using dotted notation. A typical example is shown in the following code
snippet:

{
"ConnectionStrings": {
"DefaultConnection": "Server=(localdb)mssgllocaldb;
Database=aspnetcore"

}

Any valid JSON content will work. As of now, it is not possible to specify a schema.
Sections are just sub-elements of the JSON content.

An example of code used to load a configuration value would be as follows:

var defaultConnection = cfg["ConnectionStrings:DefaultConnection"];

XML provider

XML is becoming less and less common, with JSON, inversely, becoming increasingly
popular; however, there are still good reasons to use XML. So, we add an XML file using
the AddxmlFile extension method, and as far as configuration is concerned, we need to
wrap our XML contents in a settings node; the XML declaration is optional. Refer to the
following example:

<settings Flag="2">
<MySettings>
<Option>10</Option>
</MySettings>
</settings>

Again, as of now, it is not possible to specify a validating schema. With this provider,
sections are implemented as sub-elements.

Two examples of this are as follows:

var flag = cfg["Flag"];
var option = cfg["MySettings:0ption"];

[75]

Configuration Chapter 2

INI provider

INI files are a thing of the past, but, for historical reasons, Microsoft is still supporting them
(actually, Linux also makes use of INI files too). In case you're not familiar with its syntax,
this is what it looks like:

[SectionA]
Optionl=Valuel
Option2=Value?2

[SectionB]
Optionl=Value3

You add INI files to the configuration through the AddIniFile extension method.

One word of advice: both XML and JSON file formats support anything
that INI files do, so unless you have a very specific requirement, you're
better off with either JSON or XML.

Sections in INI files just map to the intrinsic sections provided by the INI file specification.

A single example is as follows:

var optionB2 = cfg["SectionB:0ptionl"];

Other providers

Besides file-based providers, there are other ways to store and retrieve configuration
information. Here, we list the currently available options in .NET Core.

User secrets

NET Core introduced user secrets as a means of storing sensitive information per user. The
benefit of this is that it is kept in a secure manner, out of configuration files, and is not
visible by other users. A user secrets store is identified (for a given user)

by usersecretsId, which the Visual Studio template initializes as a mix of a string and a
globally unique identifier (GUID), such as aspnet-Web-£f22b64ea-be5e-432d-
abc6-0275a9c00377.

[76]

Configuration Chapter 2

Secrets in a store can be listed, added, or removed through the dotnet executable, as
illustrated in the following code snippet:

dotnet user-secrets list —--lists all the values in the
store

dotnet user—-secrets set "key" "value" —-—set "key" to be "value"

dotnet user-secrets remove "key" —-—remove entry for "key"

dotnet user-secrets clear —--remove all entries

You will need the Microsoft.Extensions.SecretManager.Tools package.

The dotnet user-secrets command will only work when in the presence of a project
file that specifies the usersecretsId store ID. The AddUserSecrets extension method is
what we use to add user secrets to the configuration, and it will either pick up this
userSecretsId setting automatically, or you can provide your own at runtime, as follows:

builder.AddUserSecrets (userSecretdId: " [User Secrets Id]");

Another option is to get the user secrets ID from an assembly, in which case this needs to be
decorated with the UserSecretsIdAttribute attribute, as follows:

[assembly: UserSecretsId("aspnet-Web-f22b64ea-beb5e-432d-abc6-0275a9c00377")

In this case, the way to load it is demonstrated in the following code snippet:

builder.AddUserSecrets<Startup>();

Be warned: if you have more than one assembly with the same user secret
ID (by mistake), the application will throw an exception when loading
them.

Yet another way to specify user secrets (in ASP.NET Core 2.x) is through the . csproj file,
by using a UserSecretsId element, as illustrated in the following code snippet:

<PropertyGroup>
<TargetFramework>netcoreapp2.1</TargetFramework>
<UserSecretsId>9094c8e7-0000-0000-0000~-c26798dc18d2</UserSecretsId>
</PropertyGroup>

Regardless of how you specify the user secrets ID, as with all the other providers, the way
to load a value is as follows:

var value = cfg["key"];

In case you are interested, you can read more about .NET Core user secrets here: https://
docs.microsoft.com/en-us/aspnet/core/security/app-secrets

[77]

https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets

Configuration Chapter 2

Azure Key Vault

Azure Key Vault is an Azure service that you can leverage for enterprise-level secure key-
value storage. The full description is outside the scope of this book, but you can read about
ithere:https://azure.microsoft.com/en—us/services/key—vault.Sufﬁcetosaythatyou
add the Azure Key Vault provider through the AddAzureKeyVault extension method, as
depicted in this line of code:

builder.AddAzureKeyVault (vault: "https://[Vault].vault.azure.net/",
clientId: "[Client ID]", clientSecret: "[Client Secret]l");

After this, all are added to the configuration object, and you can retrieve them in the usual
way.

Command line

Another very popular way to get configuration settings is the command line. Executables
regularly expect information to be passed in the command line, so as to dictate what should
be done or to control how it should happen.

The extension method to use is AddCommandLine, and it expects a required and an optional
parameter, as follows:

builder.AddCommandLine (args:
Environment .GetCommandLineArgs () .Skip (1) .ToArray());

The args parameter will typically come from Environment .GetCommandLineArgs (),
and we take the first parameter out, as this is the entry assembly's name. If we are building
our configuration object in Program.Main, we can use its args parameter too.

Now, there are several ways to specify parameters. One way is illustrated in the following
code snippet:

Keyl=Valuel

—--Key2=Value?2
/Key3=Value3
—-—Key4 Value4
/Key5 Value5

Here is another example:

dotnet run MyProject Keyl=Valuel --Key2=Value2 /Key3=Value3 --Key4 Valued
/Key5 Valueb

[78]

https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault

Configuration Chapter 2

If the value has spaces in it, you need to wrap it in quotes ("). You can't use - (single dash),
as this would be interpreted as a parameter to dotnet instead.

The optional parameter to AddCommandLine, switchMappings, is a dictionary that can be
used to create new keys that will duplicate those from the command line, as follows:

var switchMappings = new Dictionary<string,
string> (StringComparer.OrdinalIgnoreCase)
{ { "--Keyl", "AnotherKey" } };

builder.AddCommandLine (
args: Environment.GetCommandLineArgs () .Skip (1) .ToArray(),
switchMappings: switchMappings) ;

These keys can even have special characters in them—for example, --a:key and
/some . key are valid keys.

Again, use the same syntax to retrieve their values.

Environment variables

Environment variables exist in all operating systems and can also be regarded as a source of
configuration. Many tools out there, such as Docker, rely on environment variables for
getting their operating context.

Adding environment variables to a .NET Core configuration is straightforward; you just
need to call AddEnvironmentVariables. By default, this will bring all the existing
environment variables into the configuration, but we can also specify a prefix, and filter out
all variables that do not start with it, as follows:

builder.AddEnvironmentVariables (prefix: "ASPNET_");

So, this will add both ASPNET_TargetHost and ASPNET_TargetPort, but not PATH or
COMPUTERNAME.

Sections are supported if you separate names with double underscores (for example, __).
For example, say you have this environment variable:

ASPNETCORE__ADMINGROUP__USERS=rjperes, pm

[79]

Configuration Chapter 2

You could access the ADMINGROUP section like this:

var group = cfg
.GetSection ("ASPNETCORE")
.GetSection ("ADMINGROUP") ;
var users = group["USERS"];

Memory

The memory provider is a convenient way of specifying values dynamically at runtime and
for using dictionary objects. We add the provider with the AddInMemoryCollection
extension method, as follows:

var properties = new Dictionary<string, string> { { "key", "value" } };
builder.AddInMemoryCollection (properties);

The advantage of this approach is that it is easy to populate a dictionary with whatever
values we want, particularly in unit tests.

Docker

The ability to have secrets coming from Docker-stored files is relatively new in .NET Core.
Basically, it will try to load text files in a specific directory inside a Docker instance as the
values where the key is the filename itself. This is an actual feature of Docker, about which
yOLlC&nreadInOre}ETe:https://docs.docker.com/engine/swarm/secrets

The AddDockerSecrets extension method takes two optional parameters—the user
secrets directory and whether or not this directory itself is optional; in other words, just
ignore it if it's not there. This is illustrated in the following code snippet:

builder.AddDockerSecrets (secretsPath: "/var/lib/secrets", optional: true);

It is possible to specify these two parameters plus an ignore prefix and a delegate for
filtering out files by their names if we use the overload that takes a configuration object, as
illustrated in the following code block:

builder.AddDockerSecrets (opt =>
{
opt.SecretsDirectory = "/var/lib/secrets";
opt.Optional = true;
opt.IgnorePrefix = "ignore.";
opt.IgnoreCondition = (filename) =>
!filename.Contains ($".{env.EnvironmentName}.");

i

[80]

https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets

Configuration Chapter 2

Here, we are filtering out both files starting with ignore., as well as those that do not
contain the current environment name (for example, .Development.). Pretty cool!

Default providers

The ASP.NET Core code included in the default application templates
(WebHostBuilder.CreateDefaultBuilder) registers the following providers:

JSON
e Environment
Command line

e User secrets

Of course, you can add new providers to the configuration builder to match your
needs. Next, we will see how we can create a custom provider for specific configuration
needs.

Creating a custom provider

Although we have several options for storing configuration values, you may have your
own specific needs. For example, if you are using Windows, you might want to store your
configuration settings in the Registry. For that, you need a custom provider. Let's see how
we can build one.

First, you need to add the Microsoft.wWin32.Registry NuGet package to your project.
Then, we start by implementing IConfigurationSource, as follows:

public sealed class RegistryConfigurationSource : IConfigurationSource
{

public RegistryHive Hive { get; set; } = RegistryHive.CurrentUser;

public IConfigurationProvider Build(IConfigurationBuilder builder)
{
return new RegistryConfigurationProvider (this);

}

[81]

Configuration Chapter 2

As you can see from the preceding code block, the only configurable property is Hive, by
means of which you can specify a specific Registry hive, with CurrentUser
(HKEY_CURRENT_USER) being the default.

Next, we need an IConfigurationProvider implementation. Let's inherit from the
ConfigurationProvider class, as this takes care of some of the basic implementations,

such as reloading (which we do not support as we go directly to the source). The code can
be seen here:

public sealed class RegistryConfigurationProvider : ConfigurationProvider

{

private readonly RegistryConfigurationSource _configurationSource;

public RegistryConfigurationProvider (
RegistryConfigurationSource configurationSource)

{

_configurationSource = configurationSource;
}
private RegistryKey GetRegistryKey (string key)
{

RegistryKey regKey;

switch (_configurationSource.Hive)

{

case RegistryHive.ClassesRoot:
regKey = Registry.ClassesRoot;
break;

case RegistryHive.CurrentConfig:
regKey = Registry.CurrentConfig;
break;

case RegistryHive.CurrentUser:
regKey = Registry.CurrentUser;
break;

case RegistryHive.LocalMachine:
regKey = Registry.LocalMachine;
break;

case RegistryHive.PerformanceData:
regKey = Registry.PerformanceData;
break;

case RegistryHive.Users:
regKey = Registry.Users;
break;

[82]

Configuration Chapter 2

default:
throw new InvalidOperationException ($"Supplied hive
{_configurationSource.Hive} is invalid.");

var parts = key.Split ('\\'");
var subKey = string.Join("", parts.Where
(x, 1) => 1 < parts.Length - 1));

return regKey.OpenSubKey (subKey) ;

public override bool TryGet (string key, out string value)
{

var regKey = this.GetRegistryKey (key);

var parts = key.Split ('\\'");

var name = parts.Last();

var regValue = regKey.GetValue (name);
value = regValue?.ToString();
return regValue != null;

public override void Set (string key, string value)

{
var regKey = this.GetRegistryKey (key);
var parts = key.Split('');
var name = parts.Last();

regKey.SetValue (name, value);

}

This provider class leverages the Registry API to retrieve values from the Windows
Registry, which, of course, will not work on non-Windows machines. The TryGet and Set
methods, defined in the ConfigurationProvider class, both delegate to the private
GetRegistryKey method, which retrieves a key-value pair from the Registry.

Finally, let's add a friendly extension method to make registration simpler, as follows:

public static class RegistryConfigurationExtensions
{
public static IConfigurationBuilder AddRegistry (
this IConfigurationBuilder builder,
RegistryHive hive = RegistryHive.CurrentUser)

[83]

Configuration Chapter 2

return builder.Add(new RegistryConfigurationSource { Hive = hive

1)
}

Now, you can use this provider, as follows:

builder
.AddJsonFile ("appsettings.json")
.AddRegistry (RegistryHive.LocalMachine);

Nice and easy, don't you think? Now, let's see how we can use the configuration files for
the providers that we registered.

Using configuration values

So, we've now seen how to set up configuration providers, but how exactly can we use
these configuration values? Let's see in the following sections.

Getting and setting values explicitly

Remember that the .NET configuration allows you to set both reading and writing, both
using the [] notation, as illustrated in the following code snippet:

var value = cfg["key"];
cfg["another.key"] = "another value";

Of course, setting a value in the configuration object does not mean that it will get persisted

into any provider; the configuration is kept in memory only.

It is also possible to try to have the value converted to a specific type, as follows:

cfg["count"] = "0";
var count = cfg.GetValue<int> ("count");

Don't forget that the value that you want to convert needs to be
convertible from a string; in particular, it needs to have TypeConverter
defined for that purpose, which all .NET Core primitive types do. The
conversion will take place using the current culture.

[84]

Configuration Chapter 2

Configuration sections

It is also possible to use configuration sections. A configuration section is specified
through a colon (:), as in section: subsection. An infinite nesting of sections can be
specified. But—I hear you ask—what is a configuration section, and how do we define one?
Well, that depends on the configuration source you're using.

In the case of JSON, a configuration section will basically map to a complex property. Have
a look at the following code snippet to view an example of this:

{

"section—-1": {
"section-2": {
"section-3": {
"a-key": "value"

}

Not all providers are capable of handling configuration sections or handle
them in the same way. In XML, each section corresponds to a node; for
INI files, there is a direct mapping; and for the Azure Key Vault, user
secrets, memory (dictionaries), and providers, sections are specified as
keys separated by colons (for example, ASPNET:Variable,
MyApp:Variable, Data:Blog:ConnectionString, and more). For
environment variables, they are separated by double underscores (__).
The example Registry provider I showed earlier does not, however,
support them.

We have a couple of sections here, as follows:

The root section

® section-1
® section-2

e section-3

So, if we wanted to access a value for the a-key key, we would do so using the following
syntax:

var aKey = cfg["section-l:section-2:section-3:a-key"];

[85]

Configuration Chapter 2

Alternatively, we could ask for the section-3 section and get the a-key value directly
from it, as illustrated in the following code snippet:

var section3 = cfg.GetSection("section-1:section-2:section-3");
var aKey = section3["a-key"];

var key = section3.Key; //section-3

var path = section3.Path; //section-l:section-2:section-3

A section will contain the path from where it was obtained. This is defined in the
IConfigurationSection interface, which inherits from IConfiguration, thus making
all of its extension methods available too.

By the way, you can ask for any configuration section and a value will always be returned,
but this doesn't mean that it exists. You can use the Exists extension method to check for
that possibility, as follows:

var fairyLandSection = cfg.GetSection("fairy:land");
var exists = fairyLandSection.Exists(); //false

A configuration section may have children, and we can list them using GetChildren, like
this:

var sectionl = cfg.GetSection("section-1");
var subSections = sectionl.GetChildren(); //section-2

.NET Core includes a shorthand for a typical configuration section and connection strings.
This is the GetConnectionString extension method, and it basically looks for a
connection string named ConnectionStrings and returns a named value from it. You can

use the JSON schema introduced when we discussed the JSON provider as a reference, as
follows:

var blogConnectionString = cfg.GetConnectionString ("DefaultConnection");

Getting all values

It may not be that useful, but it is possible to get a list of all configuration values (together
with their keys) present in a configuration object. We do this using the AsEnumerable
extension method, illustrated in the following code snippet:

var keysAndValues = cfg.AsEnumerable().ToDictionary (kv => kv.Key, kv =>
kv.Value);

[86]

Configuration Chapter 2

There's also a makePathsRelative parameter, which, by default, is false and can be
used in a configuration section to strip out the section's key from the returned entries' keys.
Say, for example, that you are working on the section-3 section. If you call
AsEnumerable with makePathsRelative set to true, then the entry for a-key will
appear as a-key instead of section-1:section-2:section-3:a-key

Binding to classes

Another interesting option is to bind the current configuration to a class. The binding
process will pick up any sections and their properties present in the configuration and try
to map them to a .NET class. Let's say we have the following JSON configuration:

{
"Logging": {
"IncludeScopes": false,
"LogLevel": {
"Default": "Debug",
"System": "Information",
"Microsoft": "Information"

}

We also have a couple of classes, such as these ones:

public class LoggingSettings

{
public bool IncludeScopes { get; set; }
public LogLevelSettings LoglLevel { get; set; }

public class LogLevelSettings

{
public LogLevel Default { get; set; }
public LogLevel System { get; set; }
public LogLevel Microsoft { get; set; }

LogLevel comes from the Microsoft .Extensions.Logging
namespace.

[871]

Configuration Chapter 2

You can bind the two together, like this:

var settings = new LoggingSettings { LogLevel = new LogLevelSettings() };
cfg.GetSection ("Logging") .Bind(settings) ;

The values of LoggingSettings will be automatically populated from the current
configuration, leaving untouched any properties of the target instance for which there are
no values in the configuration. Of course, this can be done for any configuration section, so
if your settings are not stored at the root level, it will still work.

Mind you, these won't be automatically refreshed whenever the underlying data changes.
We will see in a moment how we can do that.

Another option is to have the configuration build and return a self-instantiated instance, as
follows:

var settings = cfg.GetSection ("Logging") .Get<LoggingSettings>();

For this to work, the template class cannot be abstract and needs to have a public
parameterless constructor defined.

Don't forget that an error will occur if—and only if—a configuration value
cannot be bound, either directly as a string or through TypeConverter to
the target property in the Plain Old CLR Object (POCO) class. If no such
property exists, it will be silently ignored. The TypeConverter class
comes from the System.ComponentModel NuGet package and
namespace.

Since when using a file-based configuration, all properties are stored as strings, the
providers need to know how to convert these into the target types. Fortunately, the
included providers know how to do this for most types, such as the following:

e Strings
¢ Integers

e Floating points (provided the decimal character is the same as per the current
culture)

¢ Booleans (true or false in any casing)

¢ Dates (the format must match the current culture or be compliant Request for
Comments (RFC) 3339/International Organization for Standardization (ISO)
8601)

o Time (hh:mm:ss or REC 3339/ISO 8601)
e GUIDs
¢ Enumerations

[881]

Configuration Chapter 2

Injecting values

OK—so, we now know how to load configuration values from several sources, and we also
know a couple of ways to ask for them explicitly. However, .NET Core relies heavily on
dependency injection, so we might want to use that for configuration settings as well.

First, it should be fairly obvious that we can register the configuration object itself with the
dependency injection framework, as follows:

var cfg = builder.Build();
services.AddSingleton (cfqg);

Wherever we ask for an IConfigurationRoot object, we will get this one. We can also
register it as the base IConfiguration, which is safe as well, although we miss the ability
to reload the configuration (we will cover this in more detail later on). This is illustrated
here:

services.AddSingleton<IConfiguration> (cfq);

Since version 2.0, ASP.NET Core automatically registers the configuration
object (IConfiguration) with the dependency injection framework.

We might also be interested in injecting a POCO class with configuration settings. In that
case, we use Configure, as follows:

services.Configure<LoggingSettings> (settings =>
{
settings.IncludeScopes = true;
settings.Default = LogLevel.Debug;

)i

Here, we are using the Configure extension method, which allows us to specify values for
a POCO class to be created at runtime whenever it is requested. Rather than doing this
manually, we can ask the configuration object to do it, as follows:

services.Configure<LoggingSettings> (settings =>

{
cfg.GetSection ("Logging") .Bind(settings) ;

)i

[891]

Configuration Chapter 2

Even better, we can pass named configuration options, as follows:

services.Configure<LoggingSettings> ("Elasticsearch", settings =>
{

this.Configuration.GetSection ("Logging:Elasticsearch") .Bind(settings);

1)

services.Configure<LoggingSettings> ("Console", settings =>
{

this.Configuration.GetSection ("Logging:Console") .Bind(settings);

P
In a minute, we will see how we can use these named configuration options.

We can even pass in the configuration root itself, or a sub-section of it, which is way
simpler, as illustrated in the following code snippet:

services.Configure<LoggingSettings> (cfg.GetSection ("Logging"));

Of course, we might as well register our POCO class with the dependency injection
framework, as follows:

var cfg = builder.Build();
var settings = builder.GetSection ("Logging") .Get<LoggingSettings>();
services.AddSingleton (settings);

If we use the Configure method, the configuration instances will be available from the
dependency injection framework as instances of I10ptions<T>, where T is a template
parameter of the type passed to Configure— as per this example,
IOptions<LoggingSettings>.

The 10ptions<T> interface specifies a Value property by which we can access the
underlying instance that was passed or set in Configure. The good thing is that this is
dynamically executed at runtime if—and only if—it is actually requested, meaning no
binding from configuration to the POCO class will occur unless we explicitly want it.

A final note: before using Configure, we need to add support for it to the services
collection as follows:

services.AddOptions () ;

For this, the Microsoft.Extensions.Options NuGet package will need to be added
first, which will ensure that all required services are properly registered.

[90]

Configuration Chapter 2

Retrieving named configuration options

When we register a POCO configuration by means of the Configure family of methods,
essentially we are registering it to the dependency injection container as I0ption<T>. This
means that whenever we want to have it injected, we can just declare T0ption<T>, such

as I0ption<LoggingSettings>. But if we want to use named configuration values, we
need to use I0ptionsSnapshot<T> instead. This interface exposes a nice Get method that
takes as its sole parameter the named configuration setting, as follows:

public HomeController (IOptionsSnapshot<LoggingSettings> settings)
{

var elasticsearchSettings = settings.Get ("Elasticsearch");
var consoleSettings = settings.Get ("Console");

}

You must remember that we registered the LoggingSettings class through a call to the
Configure method, which takes a name parameter.

Reloading and handling change notifications

You may remember that when we talked about the file-based providers, we mentioned the
reloadOnChange parameter. This sets up a file-monitoring operation by which the
operating system notifies NET when the file's contents have changed. Even if we don't
enable that, it is possible to ask the providers to reload their configuration. The
IConfigurationRoot interface exposes a Reload method for just that purpose, as
illustrated in the following code snippet:

var cfg = builder.Build();
cfg.Reload();

So, if we reload explicitly the configuration, we're pretty confident that when we ask for a
configuration key, we will get the updated value in case the configuration has changed in
the meantime. If we don't, however, the APIs we've already seen don't ensure that we get
the updated version every time. For that, we can do either of the following;:

¢ Register a change notification callback, so as to be notified whenever the
underlying file content changes

¢ Inject a live snapshot of the data, whose value changes whenever the source
changes too

[91]

Configuration Chapter 2

For the first option, we need to get a handle to the reload token, and then register our
callback actions in it, as follows:

var token = cfg.GetReloadToken();
token.RegisterChangeCallback (callback: (state) =>
{

//state will be someData

//push the changes to whoever needs it
}, state: "SomeData");

For the latter option, instead of injecting I0ptions<T>, we need to use
IOptionsSnapshot<T>. Just by changing this, we can be sure that the injected value will
come from the current, up-to-date configuration source, and not the one that was there
when the configuration object was created. Have a look at the following code snippet for an
example of this:

public class HomeController : Controller
{
private readonly LoggingSettings _settings;

public HomeController (IOptionsSnapshot<LoggingSettings> settings)
{

_settings = settings.Value;
}

It is safe to always use IOptionsSnapshot<T> instead of I0ptions<T> as the overhead is
minimal.

Running pre- and post-configuration actions

There's a new feature since ASP.NET Core 2.0: running pre- and post-configuration actions
for configured types. What this means is, after all the configuration is done, and before a
configured type is retrieved from dependency injection, all instances of registered classes
are given a chance to execute and make modifications to the configuration. This is true for
both unnamed as well as named configuration options.

For unnamed configuration options (Configure with no name parameter), there is an
interface called IConfigureOptions<T>, illustrated in the following code snippet:

public class PreConfigureloggingSettings
IConfigureOptions<LoggingSettings>
{

public void Configure (LoggingSettings options)

[92]

Configuration Chapter 2

//act upon the configured instance

}

And, for named configuration options (Configure with the name parameter), we have
IConfigureNamedOptions<T>, as illustrated in the following code snippet:

public class PreConfigureNamedLoggingSettings
IConfigureNamedOptions<LoggingSettings>
{

public void Configure (string name, LoggingSettings options)
{

//act upon the configured instance

public void Configure (LoggingSettings options)
{
}

}

These classes, when registered, will be fired before the delegate passed to the Configure
method. The configuration is simple, as can be seen in the following code snippet:

services.ConfigureOptions<PreConfigureLoggingSettings> () ;
services.ConfigureOptions<PreConfigureNamedLoggingSettings> () ;

But there's more: besides running actions before the configuration delegate, we can also run
afterward. Enter IPostConfigureOptions<T>—this time, there are no different interfaces

for named versus unnamed configuration options' registrations, as illustrated in the
following code snippet:

public class PostConfigurelLoggingSettings
IPostConfigureOptions<LoggingSettings>
{

public void PostConfigure (string name, LoggingSettings options) { ... }

}

To finalize, each of these classes is instantiated by the dependency injection container,
which means that we can use constructor injection! This works like a charm, and can be
seen in the following code snippet:

public PreConfigurelLoggingSettings (IConfiguration configuration) { ... }

[93]

Configuration Chapter 2

This is true for IConfigureOptions<T>, IConfigureNamedOptions<T>, and
IPostConfigureOptions<T> as well.

And now, let's see some of the changes from previous versions.

Changes from version 2.x

The big change from version 2.0 was that, as of 2.1, the configuration is done by
convention—that is, the process of adding appsettings. json JSON files (generic and
optional per environment) and all that is hidden from the users.

This is defined in the WebHost .CreateDefaultBuilder method. You can, however, still

build your own ConfigurationBuilder and add whatever you like to it. To do this, you

call the ConfigureAppConfiguration method, as described in chapter 1, Getting Started
with ASP.NET Core, and illustrated in the following code block:

Host
.CreateDefaultBuilder (args)
.ConfigureAppConfiguration (builder =>
{
var jsonSource = new JsonConfigurationSource { Path =
"appsettings.json" };
builder.Add (jsonSource) ;

})
.ConfigureWebHostDefaults (builder =>

{
builder.UseStartup<Startup>();

)i

Or, if you just want to add a single entry to the configuration that is built by default (or, to
the one you're modifying), you call the UseSettings extension method, as follows:

Host
.CreateDefaultBuilder (args)
.ConfigureWebHostDefaults (builder =>

{
builder.UseSetting ("key", "value");
builder.UseStartup<Startup>();

)i

So, when the startup class is instantiated, it will get passed an IConfiguration object
that is built from the code that you put in here.

[94]

Configuration Chapter 2

Warning: when using UseSetting, the value will be written to all
registered configuration providers.

After seeing how the application configuration is done, let's see how we can do the same
for the host.

Configuring the runtime host

.NET Core 3 introduced a not-so-well-known configuration mechanism that still has some
use: a runtime host configuration. The idea here is that you provide configuration settings,
as key-value pairs, in the . csproj file. You can retrieve them programmatically from the
AppContext class. Here is an example project file:

<Project Sdk="Microsoft.NET.Sdk.Web">
<PropertyGroup>
<TargetFramework>netcoreapp3.0</TargetFramework>
</PropertyGroup>
<ItemGroup>
<RuntimeHostConfigurationOption Include="Foo" Value="Bar" />
</ItemGroup>
</Project>

The "Foo™" setting is retrievable through a call to the GetData method of the AppContext
class, as illustrated in the following code snippet:

var bar = AppContext.GetData ("Foo");

If the named entry does not exist, GetData just returns null. Mind you, GetData is
prototyped as returning an object, but in this case, it will return a st ring.

Normally, you wouldn't want to do that, but should you ever want to create or modify one
entry of a runtime host configuration setting, you can do that through the application
domain, as follows:

AppDomain.CurrentDomain.SetData ("Foo", "ReBar");

[95]

Configuration Chapter 2

Mind you, this is not a replacement for a well-structured and properly defined
configuration. What .NET Core does is, at run and deployment time, it copies the contents
of the Runt imeHostConfigurationOption sections (and some more) to a

generated ${project}.runtimeconfig. json file that is placed together with the
generated binary.

We'll now see a new feature of ASP.NET Core: feature toggles.

Understanding feature toggling

.NET Core 3 introduced the Microsoft .FeatureManagement .AspNetCore library,
which is very handy for doing feature toggling. In a nutshell, a feature is either enabled or
not, and this is configured through the configuration (any source) by a Boolean switch.

For more complex scenarios, you can define a configuration to be made available for a

particular feature; this can be taken into consideration to determine whether or not it is
enabled.

Feature toggling can be applied to an action method by applying the [FeatureGate]
attribute with any number of feature names, as follows:

[FeatureGate ("MyFeaturel", "MyFeature2")]
public IActionResult FeactureEnabledAction() { ... }

When the [FeatureGate] attribute is applied to an action method and the feature is
disabled, any attempts to access it will result in an HTTP 404 Not Found result. It can take
any number of feature names and as well as an optional requirement type, which can be
either A11 or Any, meaning that either all features need to be enabled or at least one has to
be enabled. This is illustrated in the following code snippet:

[FeatureGate (RequirementType.All, "MyFeaturel", "MyFeature2")]
public IActionResult FeactureEnabledAction() { ... }

Alternatively, this can be asked for explicitly, through an instance of an injected
IFeatureManager, as follows:

public HomeController (IFeatureManager featureManager)

{
_featureManager = featureManager;

}

public async Task<IActionResult> Index()

{

[961]

Configuration Chapter 2

var isEnabled = await _featureManager.IsEnabledAsync ("MyFeature");

}

Of course, you can inject IFeatureManager anywhere. An example of this can be seen in
the following code snippet:

@inject IFeatureManager FeatureManager

@if (await FeatureManager.IsEnabledAsync ("MyFeature")) {
<p>MyFeature is enabled!</p>

}
But another option, on a view, would be to use the <feature> tag helper, like this:

<feature name="MyFeature">
<p>MyFeature is enabled!</p>
</feature>

Similar to the [FeatureGate] attribute, you can specify multiple feature names in the
name attribute, and you can also specify one of Any or A11 in requirement. You can also
negate the value, as follows:

<feature name="MyFeature">
<p>MyFeature is enabled!</p>
</feature>
<feature name="MyFeature" negate="true">
<p>MyFeature is disabled!</p>
</feature>

This is useful—as you can see—because you can provide content for both when the feature
is enabled and when it is not.

Tag helpers need to be registered—this normally happens on the _ViewImports.cshtml
file, as follows:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

At the very least, we need to have the following configuration—for example—on an
appsettings.json file, for a feature named MyFeature:

{
"FeatureManagement": {
"MyFeature": true

[97]

Configuration Chapter 2

The default is always false, meaning that the feature is disabled. Any changes done at
runtime to the configuration file are detected by the feature management library.

Setup is pretty straightforward—in the ConfiguresServices method, just call the
AddFeatureManagement extension method. This is what registers the IFeatureManager
interface (plus a few others that we will see later), as follows:

services
.AddFeatureManagement ()
.AddFeatureFilter<MyFeatureFilter>();

And there is another overload of AddFeatureManagement that takes as a parameter an
IConfiguration object, should you wish to build your own. Next, you need to register as
many feature filters as you want to use, with consecutive calls to AddFeatureFilter.

Included feature filters

The feature filters package includes the following filters:

e PercentageFilter: This allows a certain defined percentage of items to pass.

e TimeWindowFilter: A feature is enabled only during the defined date-and-time
window.

Each of these filters has its own configuration schema—Iet's have a look at each.

Percentage filter

The percentage filter takes as its sole parameter—well, the percentage we're interested in.
Every time it is invoked, it will return enabled approximately that percentage of times. The
configuration in the appsettings. json file should look like this:

"FeatureManagement": {
"HalfTime": {
"EnabledFor": [
{
"Name": "Microsoft.Percentage",
"Parameters": {
"Value": 50

[981]

Configuration Chapter 2

You can see that you declare the name of the feature gate, "HalfTime", and the percentage
parameter—50, in this example.

You also declare the attribute, as follows:

[FeatureGate ("HalfTime")]
public IActionResult Action() { ... }

Time window filter

This one allows a feature to be made available automatically when a certain date and time
comes. A configuration for Christmas Day looks like this:

"FeatureManagement": {
"Christmas": {
"EnabledFor": [
{

"Name": "Microsoft.TimeWindow",

"Parameters": {
"Start": "25 Dec 2019 00:00:00 +00:00",
"End": "26 Dec 2019 00:00:00 +00:00"

Notice the format of the date and time—this is culture-agnostic. You need to declare both
the start and end time, together with the name of the feature gate: "Christmas".

The feature gate declaration is illustrated in the following code snippet:

[FeatureGate ("Christmas")]
public IActionResult Action() { ... }

Custom feature filters

Building a simple feature filter is straightforward—just implement IFeatureFilter,
which only has a single method, as follows:

[FilterAlias ("MyFeature")]
public class MyFeatureFilter : IFeatureFilter
{

public bool Evaluate (FeatureFilterEvaluationContext context)

[991]

Configuration Chapter 2

//return true or false

}
Then, register it on ConfigureServices, like this:

services
.AddFeatureManagement ()
.AddFeatureFilter<MyFeatureFilter>();

The FeatureFilterEvaluationContext class provides only two properties, as follows:

e FeatureName (string): The name of the current feature

e Parameters (IConfiguration): The configuration object that is used to feed
the feature filter

However, we can leverage the built-in dependency injection mechanism of .NET Core and
have it inject into our feature filter something such as IHttpContextAccessor, from
which we can gain access to the current HTTP context, and from it to pretty much anything
you need. This can be achieved as follows:

private readonly HttpContext _httpContext;

public MyFeatureFilter (IHttpContextAccessor httpContextAccessor)

{
this._httpContext = httpContextAccessor.HttpContext;
}

You are also not limited to a yes/no value from the configuration—you can have rich
configuration settings. For example, let's see how we can have our own model in the
configuration file— although, for the sake of simplicity, we will make this a simple one.
Imagine the following simple class:

public class MySettings

{
public string A { get; set; }
public int B { get; set; }

}

We want to persist this class in a configuration file, like this:

{
"FeatureManagement": {
"MyFeature": {
"EnabledFor": [
{

[100]

Configuration Chapter 2

"Name": "MyFeature",
"Parameters": {
Al A ”o. n AAAAA n
. r
"B": 10

}

This configuration can be read from a custom feature inside the Evaluate method, like
this:

var settings = context.Parameters.Get<MySettings>();

The Mysettings class is automatically deserialized from the configuration setting and
made available to a .NET class.

Consistency between checks

You may notice that for some features—such as the percentage feature—if you call it twice
during the same request, you may get different values, as illustrated in the following code
snippet:

var isEnabledl = await _featureManager.IsEnabledAsync ("HalfTime");
var isEnabled2 = await _featureManager.IsEnabledAsync ("Halftime");

In general, you want to avoid this whenever your feature either does complex calculations
or some random operations, and you want to get consistent results for the duration of a
request. In this case, you want to use IFeatureManagerSnapshot instead of
IFeatureManager. IFeatureManagerSnapshot inherits from IFeatureManager but its
implementations cache the results in the request, which means that you always get the
same result. And IFeatureManagerSnapshot is also registered on the dependency
injection framework, so you can use it whenever you would use IFeatureManager.

Disabled features handler

When you try to access an action method that is decorated with a feature gate that targets a
feature (or features) that is disabled, then the action method is not reachable and, by
default, we will get an HTTP 403 Forbidden error. However, this can be changed by
applying a custom disabled features handler.

[101]

Configuration Chapter 2

A disabled features handler is a concrete class that implements
IDisabledFeaturesHandler, such as this one:

public sealed class RedirectDisabledFeatureHandler
IDisabledFeaturesHandler

{
public RedirectDisabledFeatureHandler (string url)

{
this.Url = url;

public string Url { get; 1}

public Task HandleDisabledFeatures (IEnumerable<string> features,
ActionExecutingContext context)

{
context.Result = new RedirectResult (this.Url);
return Task.CompletedTask;

}

This class redirects to a Uniform Resource Locator (URL) that is passed as a parameter.
You register it through a call to UseDisabledFeaturesHandler, as follows:

services
.AddFeatureManagement ()
.AddFeatureFilter<MyFeatureFilter> ()
.UseDisabledFeaturesHandler (new
RedirectDisabledFeatureHandler ("/Home/FeatureDisabled")) ;

You can only register one handler, and that's all it takes. Whenever we try to access an
action method for which there is a feature gate defined that evaluates to false, it will be
called, and the most obvious response will be to redirect to some page, as we can see in the
example I gave.

In this section, we learned about a new feature of ASP.NET Core: feature toggling. This is a
streamlined version of configuration that is more suitable for on/off switches and has some
nice functionality associated. May you find it useful!

[102]

Configuration Chapter 2

Summary

Because JSON is the standard nowadays, we should stick with the JSON provider and
enable the reloading of the configuration upon changes. We should add the common file
first, and then optional overrides for each of the different environments (beware the order
in which you add each source). We learned how the default configuration of ASP.NET Core
already loads JSON files, including different ones for the different environments.

We then saw how to use configuration sections to better organize the settings, and we also
looked at using POCO wrappers for them.

So, this made us ponder whether we should use I10ptions<T> or our own POCO classes to
inject configuration values. Well, if you don't want to pollute your classes or assemblies
with references to .NET Core configuration packages, you should stick to your POCO
classes. We're not too worried about this, so we recommend keeping the interface
wrappers.

We will use T0ptionsSnapshot<T> instead of I0ptions<T> so that we always get the
latest version of the configuration settings.

After this, we looked at feature toggling, to quickly enable or disable features that are just
on or off.

In this chapter, we saw the many ways in which we can provide configuration to an
ASP.NET Core application. We learned how to build a simple provider that takes
configuration from the Windows Registry. We then discussed the many ways in which we
can inject configuration settings using the built-in dependency injection framework, and
how to be notified of changes in the configuration sources.

[103]

Configuration Chapter 2

Questions

After reading the chapter, you should now be able to answer the following questions:

Ll

What is the root interface for retrieving configuration values?
What are the built-in file-based configuration providers in .NET Core?
Is it possible to bind configurations to POCO classes out of the box?

What is the difference between the I0ptions<T> and IOptionsSnapshot<T>
interfaces?

Do we need to register the configuration object explicitly in the dependency
injection container?

How can we have optional configuration files?
Is it possible to get notifications whenever a configuration changes?

[104]

Routing

This chapter talks about routing, that is, the process by which ASP.NET Core translates a
user request into an MVC controller and action. This can be a complex process because
subtle changes in a request can lead to different endpoints (controller/action pairs) being
called. Several aspects need to be taken into account: the protocol (HTTP or HTTPS),
whether the user issuing the request is authenticated or not, the HTTP verbs, the path of the
request, the query string, and the actual types of the path and query string parameter
values.

Routing also defines what happens when a route is not matched, that is, the catch-all route,
and it can be used for complex situations where we need to define custom route constraints.

ASP.NET Core offers different ways by which we can configure routing, which can be
divided into convention-based and explicit configuration.

By the end of this chapter, you will be able to define routing tables and apply routing
configuration in all of the different ways made available by ASP.NET Core for MVC
applications.

The objectives of this chapter are listed here:

¢ Understanding endpoint routing

¢ Configuring routing

¢ Understanding routing tables

¢ Using route templates

e Matching route parameters

¢ Using dynamic routing

¢ Learning route selection through attributes
e Forcing host selection from attributes
e Setting route defaults

¢ Routing to inline handlers

e Applying route constraints

Routing Chapter 3

¢ Using route data tokens

Routing to areas

Using attributes for routing
¢ Using routes for error handling

Technical requirements

In order to implement the examples introduced in this chapter, you will need the NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all the
requirements, but you can also use Visual Studio Code, for example.

The source code can be retrieved from GitHub here: https://github.com/
PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Getting started

In the old days of web applications, things were simple—if you wanted a page, you had to
have a physical one. However, things have since evolved and ASP.NET Core is now an
MVC framework. What does that mean? Well, in MVC, there are no such thing as physical
pages (although this is not exactly true); instead, it uses routing to direct requests to

route handlers. The most common route handlers in MVC are controller actions. After this
chapter, you will learn how to use routing to access your controller actions.

A request is just some relative URL, such as this:

/Search/Mastering%$ASP.NET%Core
/Admin/Books
/Book/1

This results in more readable URLS, and is also advantageous for search engines such as
Google. The subject of optimizing a site—including its public URLs—for search engines is
called Search Engine Optimization (SEO).

When ASP.NET Core receives a request, one of the following two things can happen:

e There is a physical file that matches the request.
e There is a route that accepts the request.

[106]

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Routing Chapter 3

In order for ASP.NET Core to serve physical files, it needs to be configured—for that, we
use the UseStaticFiles extension method in Configure, which adds the static files,
processing middleware to the pipeline; the call to UseStaticFiles isincluded in the
Visual Studio template for ASP.NET Core web applications. If we don't enable static file
serving, or if no file exists, the requests need to be handled by a route handler. The most
common route handler in MVC is a controller action.

A controller is a class that exposes an action that knows how to process a request. An
action is a method that may take parameters and returns an action result. A routing table
is what we use to direct requests to controller actions.

There are two APIs that we can use to register routes:

¢ Fluent API (code)
o Attributes

In previous versions, we had to explicitly add support for routing attributes, but they are
now first-class citizens of .NET Core. Let's go through them, starting with the routing table
concept.

Endpoint routing

Endpoint routing was introduced in ASP.NET Core 2.2 and is now the default mechanism
as of 3.0. The main advantage is that it supports many different mechanisms that, although
leveraging routing and middleware, are very different—MVC, Razor Pages, gRPC, Blazor,
SignalR, and whatnot. You still register the services you want in ConfigureServices and
then add the middleware to the pipeline using extension methods in the Configure
method. Endpoint routing makes the framework more flexible because it decouples route
matching and resolution from endpoint dispatching, which used to be all part of the MVC
functionality.

There are three required method calls:

e AddRouting: Where we register the required services and optionally configure
some of its options (ConfigureServices)

¢ UseRouting: Where we actually add the routing middleware (Configure); this
matches requests to an endpoint

¢ UseEndpoints: Where we configure the endpoints to be made available
(Configure); this executes the matched endpoint

[107]

Routing Chapter 3

Now, on a Razor view (or page), if you want to generate a hyperlink on the fly that points
to an addressable resource, regardless of what it is (an action method, a Razor page, or
whatever else), you can just use the Url.RouteUrl overloaded method:

<!-- a Razor page ——>

Admin

<!-— an action method on a controller ——>

<a href="Q@Url.RouteUrl (new { action = "Contact", controller = "Home"

}) ">Contact

If, for any reason, you need to generate a link on a middleware component, you can inject a
LinkGenerator class. It exposes discrete methods that allow you to retrieve many
different types of URL information:

® Get{Path,Uri}ByAction: Returns the full path (URL) to a controller's action
method

e Get{Path,Uri}ByAddress: Returns the full path (URL) from a base path and
specified route values

® Get{Path, Uri}ByName: Returns the full path (URL) from an endpoint name
and specified route values

® Get{Path, Uri}ByPage: Returns the full path (URL) from a Razor page name

® Get{Path,Uri}ByRouteValues: Returns the full path (URL) from a named
endpoint route and route values

The difference between the *Path and *Uri versions is that the former returns absolute
paths (for example, /controller/action) and the latter returns protocol-qualified full
paths (for example, http://host:8080/controller/action).

If you need to get the current endpoint, there is a new extension method, GetEndpoint
over HttpContext, which you can use for just that:

var endpoint = this.HttpContext.GetEndpoint ();
var displayName = endpoint.DisplayName;
var metadata = endpoint.Metadata.ToArray();

The endpoint does not offer much, other than DisplayName and the Metadata collection.
DisplayName is the fully qualified name of the action method, including the class and the
assembly, unless a display name was set, and the Metadata collection contains all of the
metadata, including attributes and conventions, that was applied to the current action
method.

[108]

Routing Chapter 3

You can ask for a specific metadata interface using the Get <T> generic method; the
metadata-specific interfaces are as follows:

e IDataTokensMetadata: Thisis used to get access for the data tokens (see the
next section for more on this).

* IEndpointNameMetadata: This is used to get the optional endpoint name.

e IHostMetadata: This is used to get host restrictions for the endpoint.

e IHttpMethodMetadata: This is used to get method restrictions for the endpoint.

e IRouteNameMetadata: This is used to get the route name specified when the
route table was defined.

e ISuppressLinkGenerationMetadata: If this
interface's SuppressLinkGeneration property is set to t rue, then this
endpoint will not be considered when generating links, using
the LinkGenerator class.

e ISuppressMatchingMetadata: If this interface's SuppressMatching property
is t rue, then the URL for this endpoint will not be considered for URL matching.

For example, say we want to get the current route name:

var routeName =
HttpContext .GetEndpoint () .Metadata.Get<IRouteNameMetadata> () ;

Keep in mind that Get <> returns the first occurrence of any registered
metadata that implements the passed type.

We can add custom metadata and set the display name on an endpoint upon construction
like this:

app.UseEndpoints (endpoints =>
{
endpoints
.MapControllerRoute
(
name: "Default",
pattern: "{controller=Home}/{action=Index}/{id?}",
)
.WithDisplayName ("Foo")
.WithMetadata (new MyMetadatal (), new MyMetadata2());

[109]

Routing Chapter 3

This example shows a typical controller route with a display name set
(WithDisplayName) and also custom metadata (MyMetadatal and MyMetadata?2); these
classes are just for demo purposes.

Having seen how endpoint routing works, let's now see how we can configure the routing
table.

Route configuration

There are a few options we can configure for route generation, all of which are configured
through the AddRout ing extension method over the services definition:

services.AddRouting (options =>

{

options.LowercaseUrls = true;
options.AppendTrailingSlash = true;
options.ConstraintMap.Add ("evenint", typeof (EvenIntRouteConstraint));

P
The RouteOptions class supports the following properties:

e AppendTrailingSlash: Determines whether or not a trailing slash (/) should be
appended to all generated URLSs; the default is false (meaning it shouldn't)

e LowercaseUrls: Determines whether or not the generated URLs should be
lowercase; the defaultis false

e ConstraintMap: Determines where constraints are mapped; more on this when
we talk about route constraints

But route configuration does not end here—the next section is actually the most important
one: Creating routing tables.

Creating routing tables

In chapter 1, Getting Started with ASP.NET Core, we talked about the OWIN pipeline,
explaining that we use middleware to build this pipeline. It turns out that there is an MVC
middleware that is responsible for interpreting requests and translating them into
controller actions. To do this, we need a routing table.

[110]

Routing Chapter 3

There is only one routing table, as can be seen in this example from the default Visual
Studio template:

app.UseRouting () ;
app.UseEndpoints (endpoints =>
{
endpoints.MapControllerRoute (
name: "default",
pattern: "{controller=Home}/{action=Index}/{id?}");
P

What do we see here? The UseEndpoints extension method of IApplicationBuilder
has a parameter that is an instance of ITEndpointRouteBuilder, which lets us add routes
to it. A route essentially comprises the following components:

¢ A name (default)
¢ A template pattern ({controller=Home}/{action=Index}/{id?})
¢ Optional default values for each routing parameter (Home, Index)

Also, we have some defaults:

e If no controller is supplied for the URL, then Home is used as the default.
e If no action is supplied, for any controller, then Index is used as the default.

There are some optional parameters that weren't shown in this example:

e Optional routing parameter constraints
¢ Optional data tokens

¢ A route handler

¢ A route constraints resolver

We will go through all of these in this chapter. This is the default MVC template, and this
call is identical to having this:

endpoints.MapDefaultControllerRoute () ;

As for the actual route, the name is just something that has meaning for us, and it is not
used in any way. More interesting is the template, which we will see in a moment.

For the record, if you wish to map only controllers, you should include the following call:

endpoints.MapControllers();

[111]

Routing Chapter 3

This will not include support for Razor Pages; for that, you need this:

endpoints.MapRazorPages () ;

Having said this, we can have multiple routes defined:

app.UseEndpoints (endpoints =>
{
endpoints.MapControllerRoute (
name: "default",
pattern: "{controller=Home}/{action=Index}/{id?}");

endpoints.MapControllerRoute (
name: "admin",
pattern: "admin/{controller}/{action=Index}");
P

In this example, we have two routes: the second maps a request starting with admin, and it
requires an explicit controller name, as it does not have a default. The action does have one
(Index).

Routes are searched in order; the first one that matches the request is
used.

Here we've seen how to map requests to resources that do exist. The following section
explains what to do when the requested resource does not exist!

Fallback endpoints

To define a fallback route—a route that is matched if no other route matches—we can have
a fallback to a page (any relative URL), with or without an area:

endpoints.MapFallbackToPage ("/Admin") ;
endpoints.MapFallbackToAreaPage ("/", "Admin");

Alternatively, we can have a fallback page with a file:
endpoints.MapFallbackToFile ("index.html");

We can have a controller action, with or without an area:

endpoints.MapFallbackToController ("Index", "Home");
endpoints.MapFallbackToAreaController ("Index", "Home", "Admin");

[112]

Routing Chapter 3

Or, finally, we can have a delegate, which receives as its sole parameter the request context
(HttpContext), from which you can make a decision:

endpoints.MapFallback (ctx =>

{
ctx.Response.Redirect ("/Login");
return Task.CompletedTask;

)i

Each of these MapFallback* extension methods has an overload that has the first
parameter of type string that is called pattern. If this overload is used, the pattern
parameter can be used to restrict the fallback to requests that match this pattern. See this,
for example:

endpoints.MapFallbackToPage ("/spa/{**path:nonfile}", "/Missing");
A fallback route should be the last entry on the endpoints routing table.

Let's now see how we can enhance the route by using special tokens in the route templates.

Using route templates

A template is a relative URL, so it mustn't start with a slash (/). In it, you define the
structure of your site, or, more accurately, the structure that you intend to make available.
As ASP.NET Core is an MVC framework, the template should describe how to map the
request to an action method in a controller. The following is the template:

{controller=Home}/{action=Index}/{id?}

It consists of sections separated by slashes, where each section has some tokens (inside
curly braces).

Another example would be this:
sample/page

Here it is not clear what we want, as there are no mentions of controller or action.
However, this is a perfectly valid template, and the required information needs to come
from elsewhere.

[113]

Routing

Chapter 3

A template can have the following elements:

¢ Alphanumeric literals

e String fragments inside curly braces ({ }), which are named tokens and can be

mapped to action method parameters

¢ Named tokens with equal assignments (=) have default values, in case the token
is not supplied in the URL; it doesn't make sense to have a token with a default
value followed by a required token without

e Tokens that end with a question mark (?), which are optional, meaning they are

not required; optional tokens cannot be followed by required tokens

¢ Tokens that start with a star (*), which are entirely optional and match anything;
they need to be the last element in the template

Tokens are always alphanumeric character segments and can be separated by separator
symbols (/, ?, -, (,), and so on). However, you don't need to use separators; the following

is perfectly valid—notice the lack of a slash between the action and id tokens:

{controller=Admin}/{action=Process}{id}

Another slightly more complex example follows, which involves adding a catch-all token

querystring:

{controller=Admin}/{action=Process}/{?id}?{*querystring}

This template will match the following URLs:

URL

Parameters

controller: Admin
action: Process
id: N/A
querystring: N/A

/Account

controller: Account
action: Process

id: N/A
querystring: N/A

/Admin/Process

controller: Admin
action: Process
id: N/A
querystring: N/A

Routing Chapter 3

controller: Admin
/Admin/Process/1212 action: Process

id: 1212

controller: Admin

action: Process

id: 1212

querystring: force=true

/Admin/Process/1212?force=true

Yet another perfectly valid example would be this:

api/{controller=Search}/{action=Query}?term={term}

That would match the following:

api?term=.net+core
api/Search?term=java
api/Search/Query?term=php

Note that any literals must be present exactly the same way as shown, in the URL,
regardless of the casing.

Now, let's see how the route parameters specified in templates are matched.

Matching route parameters

Remember that a template needs to have a controller token and an action token; these
are the only required tokens and have special meaning. A controller will match a controller
class and an action will match one of its public methods. Any other template parameter will
match the parameter of the same name in the action method. For example, take a route with
the following template:

{controller=Search}/{action=Query}/{phrase}
That route will map to this Query method in a class called SearchController:
public IActionResult Query(string phrase) { ... }

By convention, the name of the controller in a template does not take the
Controller suffix.

[115]

Routing Chapter 3

If a route token is optional, then it must map to a parameter that has a default value:

{controller=Account}/{action=List}/{page?}

A matching method would have the following signature:

public IActionResult List (int page = 0)

Notice that the page parameter is an int instance that has a default value of 0. This might
be used, for example, for paging, where the default page is the first one (zero-based). This
would be the same as having a token with a default of 0 and mapping it to a parameter
without a default value.

So far, we've only seen how we can map simple values of strings or basic types; we will
soon see how we can use other types.

We've mentioned that the act ion parameter is required, but, although this is true in a way,
its value may be skipped. In this case, ASP.NET Core will use a value from the HTTP action
header, such as GET, POST, PUT, DELETE, and so on. This is particularly useful in the case of
web APlIs and is often very intuitive. So, for example, take a route with a template such as
this:

api/{controller}/{id}

Say it has a request of this:
GET /api/Values/12

It can be mapped to a method such as this, in a controller named ValuesController:
public IActionResult Get (int id) { ... }

So, we just learned how template parameters are matched from templates to controller
classes' methods. Now we will learn about dynamic routing, where the mapping is not pre-
defined.

Using dynamic routing

Up until now, we've seen routing tables that statically map route templates to controller
actions, but there is another kind: dynamic routes. In this case, we are still using route
templates, but the thing is, we can change them dynamically.

[116]

Routing Chapter 3

A dynamic route handler is registered through a call to MapDynamicControllerRoute. I
will provide an example that uses a translation service to translate the controller and action
names supplied by the user, in any language to plain English, as they exist in the project.

Let's start from the beginning. We define the interface for the translation service:

public interface ITranslator
{
Task<string> Translate (string sourcelanguage, string term);

}

As you can see, this has a single asynchronous method, Translate, that takes two

parameters: the source language and the term to translate. Let's not waste much time with
this.

The core dynamic routing functionality is implemented as a class inheriting
from DynamicRouteValueTransformer. Here is an example of one such class, followed
by its explanation:

public sealed class TranslateRouteValueTransformer
DynamicRouteValueTransformer

{

private const string _languageKey = "language";
private const string _actionKey = "action";
private const string _controllerKey = "controller";

private readonly ITranslator _translator;

public TranslateRouteValueTransformer (ITranslator translator)
{

this._translator = translator;

public override async ValueTask<RouteValueDictionary> TransformAsync (
HttpContext httpContext, RouteValueDictionary values)

var language = values|[_languageKey] as string;
var controller = values[_controllerKey] as string;
var action = values[_actionKey] as string;

controller = await this._translator.Translate(
language, controller) ?? controller;

action = await this._translator.Translate (language, action)
?? action;

values[_controllerKey] = controller;
values[_actionKey] = action;

[117]

Routing Chapter 3

return values;

}

The TranslateRouteValueTransformer class receives on its constructor an instance of
ITranslator, which it saves as a local field. On the TransformAsync method, it retrieves
the values for the route template values, language, controller, and action;

for controller and action, it has them translated by ITranslator. The resulting
values are then stored again in the route values dictionary, which is returned in the end.

To make this work, we need three things:
1. We need to register ITranslator as a service in ConfigureServices:

services.AddSingleton<ITranslator, MyTranslator>();
//MyTranslator is just for demo purposes, you need to roll out your
own dictionary implementation

2. We need to register TranslateRouteValueTransformer as a service too:

services.AddSingleton<TranslateRouteValueTransformer> () ;

3. And finally, we need to register a dynamic route:

app.UseEndpoints (endpoints =>
{

endpoints.MapDynamicControllerRoute<TranslateRouteValueTransformer>
(
pattern: "{language}/{controller}/{action}/{id?}");
//now adding the default route
endpoints.MapDefaultControllerRoute () ;

)i

As you can see, our dynamic route looks for a pattern of
language/controller/action/id, where the id part is optional. Any request that can
be mapped to this pattern will fall into this dynamic route.

Keep in mind that the purpose of dynamic routes is not to change the route pattern, but just
to change the route template tokens. This will not cause any redirect, but will actually
determine how the request is to be processed, the action method and the controller, and any
other route parameters.

[118]

Routing Chapter 3

To bring this section to a close, this example allows the resolution of these routes, provided
that the dictionary supports French (£r), German (de), and Portuguese (pt):

e /fr/Maison/Index to /Home/Index
e /pt/Casa/Indice to /Home/Index
e /de/Zuhause/Index to /Home/Index

You can have multiple dynamic routes with different patterns; this is
perfectly OK.

Having learned about dynamic routes, let's go back to static routes, this time using
attributes in classes and methods to define the routes.

Selecting routes from attributes

ASP.NET Core, or rather, the routing middleware, will take the request URL and check for
all the routes it knows about, to see whether any match the request. It will do so while
respecting the route insertion order, so be aware that your request may accidentally fall into
a route that isn't the one you were expecting. Always add the most specific ones first, and
then the generic ones.

After a template is found that matches the request, ASP.NET Core will check whether there
is an available action method on the target controller that does not have a
NonActionAttribute instance that forbids a method to be used as an action, or has an
attribute inheriting from Ht tpMethodAttribute that matches the current HTTP verb.
These are listed here:

e HttpGetAttribute

e HttpPostAttribute

e HttpPutAttribute

e HttpDeleteAttribute
e HttpOptionsAttribute
e HttpPatchAttribute

e HttpHeadAttribute

All of them inherit from Ht tpMethodAttribute: this is the root class to use for filtering
based on the HTTP verb.

[119]

Routing Chapter 3

If any of these is found, then the route will only be selected if the HTTP verb matches one of
the verbs specified. There can be many attributes, meaning the action method will be
callable using any of the HTTP verbs specified.

There are other HTTP verbs, but ASP.NET Core only supports these out of
the box. If you wish to support others, you need to subclass
HttpMethodAttribute and supply your list or use
ActionVerbsAttribute. Interestingly, ASP.NET Core—as before in the
ASP.NET web API—offers an alternative way of locating an action
method: if the action token is not supplied, it will look for an action
method whose name matches the current HTTP verb, regardless of the
casing.

You can use these attributes to supply different action names, which allows you to use
method overloading. For example, if you have two methods with the same name that take
different parameters, the only way to differentiate between them is by using different
action names:

public class CalculatorController
{
//Calculator/CalculateDirectly
[HttpGet (Name = "CalculateDirectly")]
public IActionResult Calculate(int a, int b) { ... }

//Calculator/CalculateByKey
[HttpGet (Name = "CalculateById")]
public IActionResult Calculate (Guid calculationId) { ... }

}

If that's not possible, then you can use different target HTTP verbs:

//GET Calculator/Calculate
[HttpGet]
public IActionResult Calculate(int a, int b) { ... }

//POST Calculator/Calculate
[HttpPost]
public IActionResult Calculate ([FromBody] Calculation calculation) { ... }

Of course, you can limit an action method—or the whole controller—so that it can only be
accessed if the request is authenticated by using AuthorizeAttribute. We won't go over
that here, as it will be discussed in Chapter 11, Security.

[120]

Routing Chapter 3

It is worth noting, however, that even if the whole controller is marked with
AuthorizeAttribute, individual actions can still be accessible if they bear
AllowAnonymousAttribute:

[Authorize]
public class PrivateController
{
[AllowAnonymous]
public IActionResult Backdoor () { ... }
}

Another option is to constrain an action based on the content type of the request. You use
ConsumesAttribute for that purpose, and you can apply it as follows:

[HttpPost]
[Consumes ("application/json")]
public IActionResult Process(string payload) { ... }

For an explanation of what content types are, please see https://www.w3.
org/Protocols/rfcl341/4_Content-Type.html.

Another attribute that contributes to the route selection is RequireHttpsAttribute. If it's

present in a method or controller class, a request is only accepted if it comes through
HTTPS.

Finally, there are route constraints. These are generally used to validate the tokens passed
in the request, but they can be used to validate the request as a whole. We will discuss them
shortly.

So, the sequence is as follows:

1. Find the first template that matches the request.
2. Check that a valid controller exists.

3. Check that a valid action method exists in the controller, either by action name or
by verb matching.

4. Check that any constraints present are valid.

5. Check that any attributes that contribute to the route selection
(AuthorizeAttribute, NonActionAttribute, ConsumesAttribute,
ActionVerbsAttribute, RequireHttpsAttribute, and
HttpMethodAttribute) all are valid.

We will see how constraints can affect route selection shortly.

[121]

https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html

Routing Chapter 3

Using special routes

The following routes are special because they have a particular meaning to ASP.NET Core:

e [HttpGet ("")]: This is the controller's default action; only one can be defined.
If applied on a method without required parameters, it will be the default action
for the whole app.

e [HttpGet ("~/")]: This is the application's default action for the default
controller: it maps to the root of the application (for example, /).

So, if you set [HttpGet ("")] on a controller's action method and do not define any other
route, then it will be the default action for that controller, and if you set

[HttpGet ("~/")] with no routing table, then it will be the default action and the default
controller.

The next section explains how to restrict a route based on the calling host and/or the
server's port.

Host selection from attributes

Starting in ASP.NET 3, it is also possible to restrict a route based on the host header and
port. You can either do that through attributes or by using fluent (code-based)
configuration.

Here's an example of using attributes:

[Host ("localhost", "127.0.0.1")]
public IActionResult Local() { ... }

[Host ("localhost:80")]
public IActionResult LocalPort80() { ... }

[Host (":8080")]
public IActionResult Port8080() { ... }

We have three examples of using the [Host] attribute here:

1. The first one makes the Local action method reachable only if the local header is
localhost or 127.0.0.1; any number of host headers can be provided.

2. The second example demands a combination of host header and port, in this
case, 80.

3. The final one just expects port 8080.

[122]

Routing Chapter 3

The [Host] attribute can, of course, be combined with any [Http*] or [Route] ones.

Here's how to do this through code:

endpoints.MapControllerRoute ("Local",
"Home/Local") .RequireHost ("localhost", "127.0.0.1");

This example only accepts requests from either "localhost™ or "127.0.0.1" (generally
these are synonyms) for the given route.

Now, the next topic will be how to specify defaults for route template parameters.

Setting route defaults

We've seen how we can specify default values for route parameters in the template, but
there's also another way: by overloading the MapControllerRoute extension method that
takes an object containing default values. Instead of supplying these defaults as strings, you
can have this:

app.UseEndpoints (endpoints =>

{
endpoints.MapControllerRoute (

name: "default",
pattern: "{controller}/{action}/{id?}",
defaults: new { controller = "Home", action = "Index" });

P
This is valid even if you don't have the tokens in the route, as follows:
app.UseEndpoints (endpoints =>

{

endpoints.MapControllerRoute (

name: "default",
pattern: "My/Route",
defaults: new { controller = "My", action = "Route" });

)i

Remember that you do have to supply controller and action; if they are not present in
the template, they need to be supplied as defaults.

The next section delves into the inner workings of routes and how we can work around
with requests.

[123]

Routing Chapter 3

Routing to inline handlers

It is possible in ASP.NET Core to handle a request directly, that is, to not route to a
controller action. We define inline handlers by using an extension method that specifies the
HTTP verb and the template to match, as follows:

e MapGet: HTTP Get

e MapPost: HTTP pPost

e MapPut: HTTP Put

e MapDelete: HTTP Delete

e MapVerb: Any named HTTP verb; for example, Get is the same as using MapGet

There are actually two extension methods, MapxXx and MapXxxMiddleware, the first
taking a delegate and the second a middleware class. An example follows.

These methods offer two possible signatures (except for Map<verb>, which takes the HTTP
verb) and take the following parameters:

e pattern: This is a route template.
e requestHandler: This is a handler that takes the current context
(HttpContext) and returns a task.

Here are two examples. In the first, we are merely setting the response content type and
writing some text to the output:

endpoints.MapGet (
pattern: "DirectRoute",
requestDelegate: async ctx =>
{
ctx.Response.ContentType = "text/plain";
await ctx.Response.WriteAsync ("Here's your response!");

i
Here, we are adding a middleware to the response:

var newAppBuilder = endpoints.CreateApplicationBuilder();
newAppBuilder.UseMiddleware<ResponseMiddleware> () ;

endpoints.MapGet (
pattern: "DirectMiddlewareRoute", newAppBuilder.Build());

[124]

Routing Chapter 3

ResponseMiddleware could be something like this:

public class ResponseMiddleware
{

private readonly RequestDelegate _next;

public ResponseMiddleware (RequestDelegate next)

{

this._next = next;

}

public async Task InvokeAsync (HttpContext ctx)
{

await ctx.Response.WriteAsync ("Hello, from a middleware!");

}

When using MapMiddlewareXXX, you can't return the next delegate, as it
is meant to be the only response.

The two approaches, using a handler or the application builder, are similar, as the former
gives us direct access to the request context, while the latter allows us to add steps to the
request pipeline for a particular route template. It all depends on what you want to do.

You cannot mix direct handlers with controllers: the first handler that is
picked up in the routing table will be processed, and no other. So, for
example, if you have MapGet followed by MapControllerRoute for the
same template, the handler or action specified in MapGet will be
processed, but not the controller in MapControllerRoute.

Now that we understand how to handle routing requests, next we'll learn how to constrain
the applicability of a route.

[125]

Routing Chapter 3

Applying route constraints

When we define a route template or pattern, we may also want to specify how that route
shall be matched, which is constraining it. We can constrain a route in a number of ways,
such as these:

e The request needs to match a given HTTP method.
¢ The request needs to match a given content type.
e Its parameters need to match certain rules.

A constraint can be expressed in the route template or as a discrete object, using the
MapControllerRoute method. If you choose to use the route template, you need to
specify its name next to the token to which it applies:

{controller=Home}/{action=Index}/{id:int}

Notice {id:int}: this constrains the id parameter to an integer, and is one of the provided
constraints that we will talk about in a moment. Another option is to make use of the
defaults parameter:

app.UseEndpoints (endpoints =>
{
endpoints.MapControllerRoute (

name: "default",

pattern: "{controller}/{action}/{id?}",

defaults: new { controller = "Home", action = "Index" },
constraints: new { id = new IntRouteConstraint () });

)i

You should be able to guess that the anonymous class that is passed in the constraints
parameter must have properties that match the route parameters.

Following on from this example, you can also pass constraints that are not bound to any
route parameter, but instead perform some kind of bespoke validation, as follows:

endpoints.MapControllerRoute (

name: "default",

pattern: "{controller}/{action}/{id?}",

defaults: new { controller = "Home", action = "Index" 1},
constraints: new { foo = new BarRouteConstraint () });

In this case, the BarRouteConstraint constraint class will still be called and can be used
to invalidate a route selection.

[126]

Routing Chapter 3

HTTP methods

As we said earlier, in order to make an action method available to only some HTTP verbs or
a specific content type, you can use one of the following:

e HttpGetAttribute

e HttpPostAttribute

e HttpPutAttribute

e HttpDeleteAttribute
e HttpOptionsAttribute
e HttpPatchAttribute

e HttpHeadAttribute

e ActionVerbsAttribute

e ConsumesAttribute

The names should be self-explanatory. You can add attributes for different verbs, and if any
of them is present, the route will only match if its verb matches one of these attributes.
ActionVerbsAttribute lets you pass a single method, or a list of methods, that you wish
to support. ConsumesAttribute takes a valid content type.

Default constraints

ASP.NET Core includes the following constraints:

Constraint Purpose Example

1ph imi i
alpha ' Limits the text tQ alphanu.menc {term:alpha}
(AlphaRouteConstraint) characters, that is, excluding symbols
bool (BoolRouteConstraint) [Isonly trueor false {force:bool}
datetime

. . i i lower:datetime
(DateTimeRouteConstraint) Gives a date or date and time pattern |{ }

decimal
. . Incl imal val lat:decimal

(DecimalRouteConstraint) ncludes decimal values { * }
double isi i

u . Inc'ludes double precision floating {precision:double}
(DoubleRouteConstraint) pomtvalues
exists F te token to b t {action:exists}
(KnownValueRouteConstraint) orees a route token to be presen :
float i isi i

oa ' Inc.ludes single precision floating {accuracy: float}
(FloatRouteConstraint) point values
guid (GuidRouteConstraint) |Includes GUIDs {id:guid}
int (IntRouteConstraint) Includes integer values {id:int}

[127]

Routing

Chapter 3

length
(LengthRouteConstraint)

Includes a constrained string

{term:

length (5,10)

(MaxLengthRouteConstraint)

to a maximum length

long (LongRouteConstraint) |[Includes along integer {id:long}
max (MaxRouteConstraint) TMSmthenmxmmnnvﬂuebran {page:max (100) }
integer
min (MinRouteConstraint) Thmlsﬁwlnumnun1vdueﬁnan {page:min (1)}
integer
1 th i i
maxleng Includes any alphanumeric string up {term:maxlength (10)}

minlength
(MinLengthRouteConstraint)

Includes any alphanumeric string
with a minimum length

{term

:minlength (10) }

range
(RangeRouteConstraint)

Includes an integer range

{page:

range (1, 100) }

regex
(RegexRouteConstraint)

A regular expression

{isbn:

regex ("d{9} [dIX]$)}

required
(RequiredRouteConstraint)

Includes a required value, that must
physically exist

{term:

required}

A route parameter can take many constraints at once, separated by :, as here:

Calculator/Calculate ({a:int:max (10)}, {b:int:max (10) })

In this example, the a and b parameters need to be integers and have a maximum value of
10, at the same time. Another example follows:

Book/Find ({isbn:regex ("d{9}[dIX]S$)])

This will match an ISBN string starting with nine digits and followed by either a trailing

digit or the x character.

It is also possible to provide your own custom constraints, which we will see next.

Creating custom constraints

A constraint is any class that implements IRouteConstraint. If it is meant to be used
inline in a route template, then it must be registered. Here's an example of a route
constraint for validating even numbers:

public class EvenIntRouteConstraint

{
public bool Match (

HttpContext httpContext,

IRouter route,

string routeKey,

IRouteConstraint

[128]

Routing Chapter 3

RouteValueDictionary values,
RouteDirection routeDirection)

if ((!'values.ContainsKey (routeKey)) || (values[routeKey] == null))
{

return false;

var value = values[routeKey].ToString();

if (!'int.TryParse(value, out var intValue))
{

return false;

return (intValue % 2) == 0;
t

You should be able to tell that all route parameters are provided in the values collection
and that the route parameter name is in routeKey. If no route parameter is actually
supplied, it will just return false, as it will if the parameter cannot be parsed into an
integer. Now, to register your constraint, you need to use the AddRout ing method shown
earlier this chapter:

services.AddRouting (options =>
{

options.ConstraintMap.Add ("evenint", typeof (EvenIntRouteConstraint));

)i

This is actually the same as retrieving RouteOptions from the registered configuration:

services.Configure<RouteOptions> (options =>
{

//do the same
1)

That's all there is to it.

If you wish to use a route constraint to validate a URL—or any of the request
parameters—you can use a route constraint not bound to a route key:

public class IsAuthenticatedRouteConstraint : IRouteConstraint
{
public bool Match (
HttpContext httpContext,
IRouter route,

[129]

Routing Chapter 3

string routeKey,
RouteValueDictionary wvalues,
RouteDirection routeDirection)

return httpContext.Request.Cookies.ContainsKey ("auth");

}

Granted, there are other (even better) ways to do this; this was only included as an
example.

Now we can use it like this, in a route:

Calculator/Calculate ({a:evenint}, {b:evenint})

If, on the other hand, you prefer to use the constraint classes directly in your
MapControllerRoute calls, you do not need to register them. Regardless, the route
constraint collection is available as the IInlineConstraintResolver service:

var inlineConstraintResolver = routes
.ServiceProvider
.GetRequiredService<IInlineConstraintResolver>();

If you wish to specify custom route constraints in routing attributes, you
will need to register them.

In this chapter, we've seen how to define constraints for route tokens, including creating
our own, which can be very useful for validating URLs upfront. The next section explains
what data tokens are.

Route data tokens

A route data token, as opposed to a route token or route parameter, is just some arbitrary
data that you supply in a routing table entry and is available for use in the route handling
pipeline, including the MVC action method. Unlike route tokens, route data tokens can be
any kind of object, not just strings. They have absolutely no meaning for MVC, and will just
be ignored, but they can be useful, because you can have multiple routes pointing to the
same action method, and you may want to use data tokens to find out which route
triggered the call.

[130]

Routing Chapter 3

You can pass a data token as follows:

app.UseEndpoints (endpoints =>
{
endpoints.MapControllerRoute (

name: "default",

pattern: "{controller}/{action}/{id?}",

defaults: new { controller = "Home", action = "Index" 1},
constraints: null,

dataTokens: new { foo = "bar" });

1)

You can also retrieve them from the IDataTokensMetatata metadata item, as from inside
a controller action:

public class HomeController : Controller

{
public IActionResult Index()

{
var metadata = this.HttpContext.GetEndpoint () .Metadata.
GetMetadata<IDataTokensMetadata> () ;
var foo = metadata?.DataTokens["foo"] as string;
return this.View () ;

}

Because the DataTokens values are prototyped as object, you need to know what you
will be retrieving. Also, be aware, the GetMetadata<IDataTokensMetadata> () method
may return null if no data tokens were set!

There is no way to change the values of data tokens. Plus, the old RouteData property of
the ControllerBase class and the GetRouteData extension method over Ht tpContext
are now obsolete and may be removed in a future version of ASP.NET Core.

Finally, let's move on and see how we can configure routing to areas.

Routing to areas

MVC has supported the concept of areas for a long time. Essentially, areas are for
segregating and organizing controllers and views, so that, for example, you can have
identically named controllers in different areas.

Visual Studio lets you create folders in a project and then add controllers and views to
them. You can mark these folders as areas.

[131]

Routing Chapter 3

Where routing is concerned, areas add another route token, appropriately named area, to
controller and action. If you are to use areas, you will likely have another segment in
your template, such as this:

Products/Phones/Index
Reporting/Sales/Index

Here, Products and Reporting are areas. You need to map them to routes so that they are
recognized by MVC. You can use the MapControllerRoute extension method, but you
will need to supply the area token as follows:

app.UseEndpoints (endpoints =>

{
endpoints.MapControllerRoute (

name: "default",
pattern: "{area:exists}/{controller}/{action}/{id?}",
defaults: new { controller = "Home", action = "Index" });

)i

You can also use the MapAreaControllerRoute extension method, which takes care of
adding the area parameter:

endpoints.MapAreaControllerRoute (
name: "default",
areaName: "Products",
pattern: "List/{controller}/{action}/{id?}",
defaults: new { controller = "Phones", action = "Index" });

This route will map a request of List /Phones/Index to an Index action method of a
PhonesController controller inside the Products area.

That's it for areas. Let's now have a look at routing attributes.

Using routing attributes

An alternative to adding routes to a routing table is using routing attributes. Routing
attributes existed before ASP.NET Core and were even around in ASP.NET MVC and Web
APIL. If we want to have routing attributes automatically recognized by ASP.NET Core, we
need to do this:

app.UseEndpoints (endpoints =>

{
endpoints.MapControllers () ;

)i

[132]

Routing Chapter 3

In the following sections, we will learn about a few routing attributes and see how to apply
them.

Let's see how we can define routes with attributes.

Defining routes

These attributes are used to define routes and can be composed together; if we add a
routing attribute to a class and another to one of its methods, the actual route will result
from both of them.

The most obvious use of routing attributes would be to decorate an action method, as
follows:

[Route ("Home/Index")]
public IActionResult Index () { ... }

If, for example, you have many actions in the same controller and you wish to map them all
using the same prefix (Home), you can do the following;:

[Route ("Home")]
public class HomeController

{
[Route ("Index")]
public IActionResult Index() { ... }

[Route ("About")]
public IActionResult About () { ... }

In previous (non-Core) versions of MVC and Web API, you could use
RoutePrefixAttribute for this purpose. Now, RouteAttribute takes
care of both cases.

Routes are additive, which means if you specify a route in a controller and then on an
action method, you will get both, as in Home /Index or Home/About.

As you can see, the route parameter in the HomeController class matches the
conventional name for the controller (Home). Because of this, we can also use the
[controller] special token:

[Route (" [controller]™)]
public class HomeController { ... }

[133]

Routing Chapter 3

For an API controller, we can use this:

[Route ("api/[controller]")]
public class ServicesController { ... }

In addition, each of the actions is mapped with a name that exactly matches the method's
name. Likewise, we can use [action]:

[Route (" [action]")]
public IActionResult Index() { ... }
[Route (" [action]")]
public IActionResult About() { ... }

Multiple route attributes can be passed, so that the action method will respond to different
requests:

[Route (" [action]")]

[Route ("")]

[Route ("Default")]

public IActionResult Index() { ... }

The Index method will be callable by any one of the following requests:

/Home
/Home/Index
/Home /Default

Notice that the Home part comes from the route attribute applied at the class level. If, on the
other hand, you specify a slash in the template, you make the template absolute; this
template will look as follows:

[Route ("Default/Index")]
public IActionResult Index() { ... }

This can only be accessed as follows:

/Default/Index

If you want to take the controller into consideration, you should either name it explicitly in
the template or use the [controller] special token:

[Route (" [controller]/Default/Index")]
public IActionResult Index() { ... }

This will be accessible as follows:

/Home/Default/Index

[134]

Routing Chapter 3

The [controller] and [action] tokens are for when we want to use
constants for routes. These constants have the potential to be used in lots
of places, as they are not stuck to specific actions and controllers. They
were not available in previous versions of ASP.NET MVC or Web APL

Default routes

With routing attributes, you can specify the default controller by applying
RouteAttribute with a blank template:

[Route ("")]
public class HomeController { ... }

The default action in a controller will also be the one with an empty template, as follows:

[Route ("")]
public IActionResult Index () { ... }

If there is no method with an empty route template, ASP.NET Core will try to find one with
a name matching the current HTTP method.

Constraining routes
You can also specify route constraints, and the syntax is identical to what we've seen before:

[Route ("Calculate ({a:int}, {b:int})")]
public IActionResult Calculate(int a, int b) { ... }

Defining areas

You can define routes that include areas too, by applying AreaAttribute to a controller:

[Area ("Products")]
[Route (" [controller]™)
public class ReportingController { ... }

Similar to [controller] and [action], there is also the special [area] token that you
can use in your templates to indicate the current area, as inferred from the filesystem:

[Route (" [area] /Default")]
public IActionResult Index () { ... }

[135]

Routing Chapter 3

Specifying action names
You can specify an action name for a controller method, through ActionNameAttribute,
as follows:

[ActionName ("Default")]
public IActionResult Index () { ... }

You can also do this through any one of the HTTP verb selection attributes
(HtthetAttribute,HttpPostAttribute,HttpPutAttribute,
HttpOptionsAttribute, HttpPatchAttribute, HttpDeleteAttribute or
HttpHeadAttribute):

[HttpGet (Name = "Default")]
public IActionResult Index() { ... }

Please do remember that you cannot specify a route template and an
action name at the same time, as this will result in an exception being
thrown at startup time when ASP.NET Core scans the routing attributes.
Also, do not specify ActionNameAttribute and a verb selection
attribute at the same time as specifying the action name.

Defining non-actions

If you want to prevent a public method in a controller class from being used as an action,
you can decorate it with NonActionAttribute:

[NonAction]
public IActionResult Process() { ... }

Restricting routes

When we talked about route constraints, we saw that we can restrict an action method so
that it is only callable if one or more the following conditions are met:

e It matches a given HTTP verb (ActionvVerbsAttribute, Http*Attribute).
e It is called using HTTPS (RequireHttpsAttribute).
e It is called with a given content type (ConsumesAttribute).

We won't go into this in any further detail, as this has been explained before.

[136]

Routing Chapter 3

Setting route values

It is possible to supply arbitrary route values in an action method. This is the purpose of
the RoutevValueAttribute abstract class. You need to inherit from it:

public class CustomRouteValueAttribute : RouteValueAttribute
{

public CustomRouteValueAttribute (string value) : base("custom", value)

{13

Then, apply and use it as follows:

[CustomRouteValue ("foo")]
public IActionResult Index()

{

var foo = this.ControllerContext.RouteData.Values["foo"];

return this.View();

AreaAttribute is an example of a class inheriting from
RouteValueAttribute. There is no way to pass arbitrary route data
tokens through attributes.

As you can see, quite a lot can be achieved through attributes. That also includes error
handling; let's see more about that now.

Error handling in routing

What do we do with errors—exceptions caught during the processing of a request, for
example, when a resource is not found? You can use routing for this. Here, we will present

a few strategies:

Routing

Adding a catch-all route

Showing developer error pages

Using the status code pages middleware

We will learn about these in the following sections.

[137]

Routing Chapter 3

Routing errors to controller routes

You can force a specific controller's action to be called when an error occurs by
calling UseExceptionHandler:

app.UseExceptionHandler ("/Home/Error") ;
What you put in this view (Error) is entirely up to you, mind you.

You can even do something more interesting, that is, register middleware to execute upon
the occurrence of an error, as follows:

app.UseExceptionHandler (errorApp =>
{

errorApp.Run (async context =>

{

var errorFeature = context.Features.Get<IException

HandlerPathFeature> () ;
var exception = errorFeature.Error; //you may want to check what
//the exception is

var path = errorFeature.Path;
await context.Response.WriteAsync ("Error: " + exception.Message);

P
P

You will need to add a using reference for
the Microsoft.AspNetCore.Http namespace in order to use the
WriteAsync method.

The IExceptionHandlerPathFeature feature allows you to retrieve the exception that
occurred and the request path. Using this approach, you have to generate the output
yourself; that is, you do not have the benefit of having an MVC view.

Next, we will how we can show user-friendly error pages.

Using developer exception pages

For running in development mode, you are likely to want a page that shows developer-
related information, in which case, you should call UseDeveloperExceptionPage instead:

app.UseDeveloperExceptionPage () ;

[138]

Routing Chapter 3

This will show the exception message, including all request properties and the stack trace,
based on a default template that also contains environment variables. It is normally only
used for the Development environment, as it may contain sensitive information that could
potentially be used by an attacker.

Since .NET Core 3, it is possible to tweak the output of this, by means of

an IDeveloperPageExceptionFilter implementation. We register one in the
Dependency Injection container and either provide our own output in the
HandleExceptionAsync method or just return the default implementation:

services.AddSingleton<IDeveloperPageExceptionFilter,
CustomDeveloperPageExceptionFilter> () ;

This method is very simple: it receives an error context and a delegate that points to the
next exception filter in the pipeline, which is normally the one that produces the default
error page:

class CustomDeveloperPageExceptionFilter : IDeveloperPageExceptionFilter
{
public async Task HandleExceptionAsync (ErrorContext
errorContext, Func<ErrorContext, Task> next)
{
if (errorContext.Exception is DbException)
{
await errorContext.HttpContext.Response.WriteAsync ("Error
connecting to the DB");

}

else

{
await next (errorContext);

}
}

This simple example has conditional logic that depends on the exception and either sends a
custom text or just delegates to the default handler.

Using a catch-all route

You can add a catch-all route by adding an action method with a route that will always
match if no other does (like the fallback page in the Fallback endpoints section). For example,
we can use routing attributes as follows:

[HttpGet ("{*url}", Order = int.MaxValue)]
public IActionResult CatchAll ()

[139]

Routing Chapter 3

this.Response.StatusCode = StatusCodes.Status404NotFound;
return this.View();

}

The same, of course, can be achieved with fluent configuration, in the Configure method:

app.UseEndpoints (endpoints =>

{
//default routes go here

endpoints.MapControllerRoute (
name: "Catchall",
pattern: "{*url}",
defaults: new { controller = "CatchAll", action = "CatchAll" }

)i
)i

Here, all you need to do is add a nice view with a friendly error message! Be aware that the
other actions in the same controller also need to have routes specified; otherwise, the
default route will become Catchall!

Fallback pages are a simpler alternative to catch-all routes.

Using status code pages middleware

Let's see now how we can respond to errors with HTTP status codes, the standard way of
returning high-level responses to the client.

Status code pages

A different option is to add code in response to a particular HTTP status code between
400 Bad Request and 599 Network Connect Time Out that does not have a body (has not
been handled), and we do that through UsestatusCodePages:

app.UseStatusCodePages (async context => {
context.HttpContext.Response.ContentType = "text/plain";

var statusCode = context.HttpContext.Response.StatusCode;

await context.HttpContext.Response.WriteAsync ("HTTP status code:

statusCode); });

LS

[140]

Routing Chapter 3

The method adds a middleware component to the pipeline that is responsible for, after an
exception occurs, doing two things:

e Filling the Error property on the IStatusCodePagesFeature feature
¢ Handling the execution from there
Here's a different overload, doing essentially the same as the last one:

app.UseStatusCodePages ("text/plain", "Error status code: {0}");

Here's something for automatically redirecting to a route (with an HTTP code
of 302 Found) with a particular status code as a route value:

app.UseStatusCodePagesWithRedirects ("/error/{0}");

This one, instead, re-executes the pipeline without issuing a redirect, thus making it faster:

app.UseStatusCodePagesWithReExecute ("/error/{0}");

All of the execution associated with specific status codes can be disabled through
the IStatusCodePagesFeature feature:

var statusCodePagesFeature =
HttpContext .Features.Get<IStatusCodePagesFeature> () ;
statusCodePagesFeature.Enabled = false;

Routing to specific status code pages

You can add an action such as this to a controller to have it respond to a request of
"error/404" (just replace the error code with whatever you want):

[Route ("error/404™)]

public IActionResult Error404 ()

{
this.Response.StatusCode = StatusCodes.Status404NotFound;
return this.View () ;

[141]

Routing Chapter 3

Now, either add an Error404 view or instead call a generic view, passing it the 404 status
code, perhaps through the view bag. Again, this route can be configured fluently, as
follows:

endpoints.MapControllerRoute (

name: "Error404",
pattern: "error/404",
defaults: new { controller = "CatchAll", action = "Error404" }

)i

This, of course, needs to be used either with UseStatusCodePagesWithRedirects
or UseStatusCodePagesWithReExecute

Any status code

To catch all errors in a single method, do the following:

[Route ("error/{statusCode:int}")]

public IActionResult Error (int statusCode)

{
this.Response.StatusCode = statusCode;
this.ViewBag.StatusCode = statusCode;
return this.View();

}

Here, we are calling a generic view called Error (inferred from the action name), so we
need to pass it the originating status code, which we do through the view bag, as follows:

endpoints.MapControllerRoute (

name: "Error",
pattern: "error/{statusCode:int}",
defaults: new { controller = "CatchAll", action = "Error" }

)

For a request of /error/<statusCode>, we are directed to the CatchAllController
controller and Error action. Again, this requires UseStatusCodePagesWithRedirects
or UseStatusCodePagesWithReExecute

Here we presented different ways to handle errors, either based on an exception or on a
status code. Pick the one that suits you best!

[142]

Routing Chapter 3

Summary

In real life, chances are you will mix code-based routing configuration and attributes. In our
example, we will be using localization features, which require a lot of configuration,
typically code-based configuration. Attribute routing also has its place, because we can
directly define accessible endpoints that do not need to be restricted by general routing
templates. Route constraints are very powerful and should be used.

It is always good to start with the included default route template and go from there. It
should be sufficient for around 80% of your needs. Others will either be defined through a
custom route or routing attributes.

We saw in this chapter that security is something that needs to be taken into account, and
using routing attributes for this purpose seems ideal, as we can immediately see what the
security restrictions are by looking at controller methods.

We've seen the different ways in which we can configure routing, in other words, turning
browser requests into actions. We looked at code-based and attribute-based routing and
learned about some of their strengths and limitations. We found out how we can restrict
URL parameters to be of certain types or match certain requirements, as well as how to
prevent an action method from being called unless it matches a specific verb, HTTPS
requirement, or request content type. Finally, we looked at how to use routes to direct to
status code or error specific actions so as to return friendly error pages.

Quite a few of the topics covered in this chapter will surface again in later chapters. In the
next chapter, we will be talking about probably the most important pieces of MVC, which
were also the main subject of this chapter: controllers and actions.

[143]

Routing Chapter 3

Questions

So, now that you're at the end of this chapter, you should be able to answer the following
questions:

1. What are the special route tokens?

2. How can we prevent a route from being selected depending on the request's
HTTP verb?

How can we prevent a route from being selected unless the request uses HTTPS?
How can we serve different views depending on the occurred HTTP error code?
How can we prevent methods in controllers from being called?

S

How can we force a route value to be of a particular type (for example, a
number)?

7. What is a route handler?

[144]

Controllers and Actions

This chapter talks about arguably the most important feature of MVC: where the logic is
stored. This is where you implement the stuff that your application does, where a
substantial part of your business logic is.

Controllers and actions are found by convention and are called as the result of routing
rules, which were introduced in the previous chapter. But things can get very
complex—there are many ways by which an action can retrieve data from the request; it
can be asynchronous or synchronous and it can return many different kinds of data. This
data can be cached so that essentially there is no performance penalty in repeating the
request.

As we know, HTTP is stateless, but that does not really play well with modern applications
like the ones we're interested in, so we need to maintain the state between requests. We
would also like to return data, numbers, and text according to the culture and language of
the person that is issuing the request. We will look at all of these topics in the course of this
chapter.

In this chapter, we will learn about the following topics:

¢ How to use controllers

e How controllers are found

e What is the controller life cycle?

e What are controller actions?

e How to do error handling

e How to cache responses

¢ How to maintain the state between requests
¢ Using dependency injection

¢ Applying globalization and localization

Controllers and Actions Chapter 4

Technical requirements

In order to implement the examples introduced in this chapter, you will need the NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all the
requirements, but you can also use Visual Studio Code, for example.

The source code can be retrieved from GitHub at nttps://github.com/PacktPublishing/
Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition.

Getting started

We will be working where the actual code is, where you get things done and where you
process the requests from the browser. We will talk about MVC controllers returning views,
but also about persisting data across requests, injecting dependencies into our controllers
and actions, and how to add localization support to the code. All in all, it's a very important
chapter, so I ask for your full attention.

In this chapter, we will be talking about the most important aspects of an MVC application:

e Controllers
e Actions

We will study each of these in the coming sections.

Using controllers

In MVC, a controller is responsible for handling requests. It is where the business logic is
located, where data is retrieved, request parameters validated, and so on. In object-oriented
languages, such as those that support .NET Framework, this is implemented in classes.
Keep in mind that the MVC pattern advocates a strong separation of responsibilities, which
makes all of its components particularly important; even given this fact, a controller is
really the only required part of ASP.NET Core, as you can live without views. Just think of
web services that do not return any user interface or models. This is a very important aspect
of ASP.NET Core.

[146]

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Controllers and Actions Chapter 4

Controller base classes

ASP.NET Core (as with its predecessors) offers a base class called ControllerBase that
you can inherit from, although it is not strictly necessary. We will discuss this in more
detail later on in this chapter. However, inheriting from ControllerBase has a few
advantages:

¢ Easy access to model validation
¢ Helper methods to return different results (redirect, JSON, views, text, and more)

e Direct access to the request and response infrastructure objects, including
headers, cookies, and more

e Ability to intercept/override action events

In reality, there is another class, Controller, that in turn inherits from ControllerBase,
which you should inherit from in case you want to work with views. A case where you
wouldn't need to work with views would be if you are writing a web service (web API).

The templates in Visual Studio always generate controllers that inherit from the
Controller class, but you can change them to POCOs if you like. The only real
requirement, unless you want to change the convention, is to add the Controller suffix to
all your controllers. The namespace or physical location is irrelevant—for example, you can
create controllers in different folders or namespaces.

The ControllerBase class, among others, makes the following properties available:

e ControllerContext (ControllerContext): The execution context for the
current controller and request, which includes the action descriptor (used to
guess which action should be called) and value provider factories, from which
the action parameters are obtained; it's an instance of the class.

e HttpContext (HttpContext): The HTTP context, which includes the request
and response objects, from which we can obtain and set all headers, cookies,
status codes, authentication information, certificates, and more; also provides
access to the dependency injection (DI) framework, framework features, the
session state (if it's enabled), and the underlying connection properties.

e MetadataProvider (IModelMetadataProvider): This is used to extract
metadata—validators, textual descriptors, and editing information—for the class

model.

[147]

Controllers and Actions Chapter 4

e ModelBinderFactory (IModelBinderFactory): This is an object that is used to
create the binders that, in turn, are used to bind submitted request properties to a
given class model.

e ModelState (ModelStateDictionary): This is the submitted model's values
and validation results.

e ObjectValidator (IObjectModelValidator): This is an instance that is used
to validate the submitted model.

® Request (HttpRequest): This handles the convenience pointer to the same
object inside the HttpContext.

¢ Response (HttpResponse): This handles the convenience pointer to the same
object inside the HttpContext.

e Url (IUrlHelper): This is an instance that enables convenience methods to
generate URL links to specific controller actions.

e User (ClaimsPrincipal): This holds a reference to the current ASP.NET Core
user; depending on the actual authentication mechanism in use, it will hold

different values and claims, and even if it is not authenticated, this will never be
null.

The Controller class offers all of the preceding properties plus view-specific properties:

® RouteData (RouteData): This contains the MVC route data parameters.

e ViewBag (dynamic): This is a dynamic collection of data to be made available in
a view.

e ViewData (ViewDataDictionary): This is identical to ViewBag, but is strongly
typed in the form of a key—value dictionary.

e TempData (ITempDataDictionary): This is a strongly typed dictionary for data
to maintain until the next form submission.

It's safe and convenient to inherit from Controller, even if you do not
use views; it won't cause any problems.

Of course, your controller needs to offer at least one action method that can be used to
perform an action and return something meaningful to the caller, be it an HTML view,
some JSON content, or just an HTTP status code.

[148]

Controllers and Actions Chapter 4

You also have a number of virtual methods that you can override so as to perform actions
before, after, or instead of an action method being called. These are defined in the interfaces
IActionFilter and IAsyncActionFilter, which are implemented by Controller:

e OnActionExecuted is called after an action is called.
® OnActionExecuting is called synchronously just before an action is called.
® OnActionExecutingAsync is called asynchronously before an action is called.

These interfaces are the bases of filters, which we will discuss in more detail later on.

I almost forgot: if a controller class has the [NonController] attribute
applied to it, then it is not considered and cannot be used as a controller.

POCO controllers

In ASP.NET Core, your controllers do not need to inherit from any base class or implement
a particular interface. As we mentioned earlier, all they need is the Controller suffix, by
convention, and to avoid the [NonController] attribute. The problem with this approach
is that you lose all helper methods and context properties (HttpContext,
ControllerContext, ViewBag, and Url), but you can have them injected. Let's see how
this works.

If you add the [Controller] attribute to any POCO class, you can turn it
into a controller, regardless of its name.

Adding context to POCO controllers

Say for example, that you have a POCO controller, HomeController. You don't have the
various context and view bag-related properties, but with a couple of attributes applied to
appropriately typed properties, you can have the infrastructure inject them, as shown in the
following example:

public class HomeController

{
private readonly IUrlHelperFactory _url;

public HomeController (IHttpContextAccessor ctx, IUrlHelperFactory url)

[149]

Controllers and Actions Chapter 4

this.HttpContext = ctx.HttpContext;
this._url = url;

[ControllerContext]
public ControllerContext { get; set; }

public HttpContext HttpContext { get; set; }

[ActionContext]
public ActionContext ActionContext { get; set; }

[ViewDataDictionary]
public ViewDataDictionary ViewBag { get; set; }

public IUrlHelper Url { get; set; }

public string Index()

{
this.Url = this.Url ?? this._url.GetUrlHelper (this.ActionContext);
return "Hello, World!";

}
You will notice a few interesting things here:

e ActionContext, ControllerContext, and ViewBag are automatically injected
just by adding the [ActionContext], [ControllerContext], and
[ViewDataDictionary] attributes to properties of any name, and with the
ActionContext,ControllerContextEuuiViewDataDictionarytype&
respectively.

¢ When the controller is instantiated by the ASP.NET Core infrastructure, the
dependency injection framework injects the IHttpContextAccessor and
IUrlHelperFactory objects.

e The HttpContext object needs to be obtained from the passed
IHttpContextAccessor instance.

e In order to build an IUr1Helper, the IUrlHelperFactory needs an instance of
ActionContext; because we don't have that at constructor time, we need to
build it later on, for example, in an action method (in this example, Index).

[150]

Controllers and Actions Chapter 4

However, to make this work, we need to tell ASP.NET Core to register the default
implementations of IHttpContextAccessor and IUrlHelperFactory. This is normally
done in the ConfigureServices method of the Startup class:

services.AddScoped<IHttpContextAccessor, HttpContextAccessor>();
//or, since version 2.1:

services.AddHttpContextAccessor () ;
services.AddScoped<IUrlHelperFactory, UrlHelperFactory>();

These properties will behave in exactly the same way as their non-POCO counterparts that
are inherited from ControllerBase and Controller.

Intercepting actions in POCO controllers

If you want, you can also implement one of the filter interfaces so that you can interact with
the request before or after an action is called, such as IActionFilter:

public class HomeController : IActionFilter

{
public void OnActionExecuting (ActionExecutingContext context)
{

//before the action is called

}

public void OnActionExecuted (ActionExecutedContext context)

{

//after the action is called
}
}

If you prefer to have an asynchronous handler, implement the asynchronous version
(IAsyncXxxXFilter) instead. We will talk more about filters in chapter 10,
Understanding Filters.

Let's now see how controllers are discovered by the framework.

[151]

Controllers and Actions Chapter 4

Finding controllers

Regardless of whether you go for POCO or non-POCO controllers, ASP.NET Core will
apply the same rules for discovering controllers, which are as follows:

¢ They need to have the Controller suffix (strictly speaking, this can be changed,
but we will leave this for now).

¢ They need to be instantiable classes (nonabstract, nongeneric, and nonstatic).

¢ They cannot have the [NonController] attribute applied to them.

e If they are POCO and do not have the Controller suffix, you can decorate them
with the [Controller] attribute.

By convention, the files that contain the controller classes are stored in a
folder called Controllers, and also in a Controllers namespace, but

this is just ignored.

Controller classes are looked up by the name in the route—the controller parameter—and
they are searched in the assemblies registered for that purpose. By default, the currently
executing assembly is included in the search, but all assemblies registered as application
parts are too. You can register additional application parts when you add the MVC features
to the dependency injection framework (ConfigureServices method) as follows:

services.AddMvc ()
.AddApplicationPart (typeof (MyCustomComponent) .GetTypeInfo () .Assembly);

Here, we are adding a reference to the assembly that contains a hypothetical class,
MyCustomComponent. After we do this, any controllers that are located in it are available
for use. In order to get the full list of found controllers, we can use ControllerFeature
and populate it through ApplicationPartManager:

services.AddMvc ()
.AddApplicationPart (typeof (MyCustomComponent) .GetTypeInfo () .Assembly)

.ConfigureApplicationPartManager (parts =>
{

var controllerFeature = new ControllerFeature();
parts.PopulateFeature (controllerFeature);
//controllerFeature.Controllers contains the list of discovered

//controllers' types
1)

Controllers are only discovered once, at startup time, which is a good thing performance-
wise.

[152]

Controllers and Actions Chapter 4

If there are two controllers with the same name but that are in different namespaces, and
they both expose an action method that matches the current request, then ASP.NET won't
know which one to pick and will throw an exception. If this happens, we need to give one
of the classes a new controller name by applying a [ControllerName] attribute, as shown
in the following code:

namespace Controllers

{
public class HomeController
{
}

namespace Admin
{
[ControllerName ("AdminHome")]
public class HomeController
{
}

}

We could also change the action name, as we will see in a moment. Now, let's see what
happens once the controller type has been found.

Controller life cycle

After a controller's type is located, ASP.NET Core starts a process to instantiate it. The
process is as follows:

1. The default controller factory (IControllerFactory) is obtained from the
dependency injection (DI) framework and its CreateController method is
called.

2. The controller factory uses the registered controller activator
(IControllerActivator), also obtained from the DI, to obtain an instance to
the controller (IControllerActivator.Create).

3. The action method is located using the IActionSelector from the DL

4. If the controller implements any filter interfaces (IActionFilter,
IResourceFilter, and more), or if the action has any filter attributes, then the
appropriate methods are called upon it and on global filters.

5. The action method is called by the IActionInvoker from the
IActionInvokerProvider, also obtained from the DI.

[153]

Controllers and Actions Chapter 4

6. Any filter methods are called upon the controller, the action method's filter
attributes, and the global filters.

7. The controller factory releases the controller
(IControllerFactory.ReleaseController).

8. The controller activator releases the controller
(IControllerActivator.Release).

9. If the controller implements IDisposable, then the Dispose method is called
upon it.

Most of these components can be registered through the built-in DI framework—for
example, if you want to replace the default IControllerFactory implementation, then
you could do this in the ConfigureServices method:

services.AddSingleton<IControllerFactory, CustomControllerFactory>();

Now, imagine that you wanted to write an action selector that would redirect all calls to a
specific method of a class. You could write a redirect action selector as follows:

public class RedirectActionSelector : IActionSelector
{
public ActionDescriptor SelectBestCandidate (
RouteContext context,
IReadOnlyList<ActionDescriptor> candidates)

var descriptor = new ControllerActionDescriptor();
descriptor.ControllerName = typeof (MyController) .Name;
descriptor.MethodInfo = typeof (MyController).
GetMethod ("MyAction");

descriptor.ActionName = descriptor.MethodInfo.Name;
return descriptor;

public IReadOnlyList<ActionDescriptor> SelectCandidates (
RouteContext context)

{
return new List<ActionDescriptor>();

}

This will redirect any request to the MyAct ion method of the MyController class. Hey, it's
just for fun, remember?

Now let's have a look at actions.

[154]

Controllers and Actions Chapter 4

Actions

The action method is where all the action happens (pun intended). It is the entry point to
the code that handles your request. The found action method is called from the
IActionInvoker implementation; it must be a physical, nongeneric, public instance
method of a controller class. The action selection mechanism is quite complex and relies on
the route action parameter.

The name of the action method should be the same as this parameter, but that doesn't mean
that it is the physical method name; you can also apply the [ActionName] attribute to set it
to something different, and this is of particular use if we have overloaded methods:

[ActionName ("BinaryOperation")]
public IActionResult Operation(int a, int b) { ... }

[ActionName ("UnaryOperation")]
public IActionResult Operation(int a) { ... }

In the following sections, we will see how actions work and how they work in the context
of the controller.

Finding actions

After discovering a set of candidate controllers for handling the request, ASP.NET Core
will check them all to see if they offer a method that matches the current route (see chapter
3, Routing):

¢ It must be public, nonstatic, and nongeneric.

e Its name must match the route's action (the physical name may be different as
long as it has an [ActionName] attribute).

e Its parameters must match the nonoptional parameters specified in the route
(those not marked as optional and without default values); if the route specifies
an id value, then there must be an id parameter and type, and if the id has a
route constraint of int, like in {id:int}, then it must be of the int type.

¢ The action method can have a parameter of the IFormCollection, IFormFile,
or IFormFileCollection type, as these are always accepted.

e It cannot have a [NonAction] attribute applied to it.

[155]

Controllers and Actions Chapter 4

The actual rules for getting the applicable action are as follows:

e If the action name was supplied in the URL, then it is tentatively used.
e If there is a default action specified in a route—based on fluent configuration or
attributes—then it is tentatively used.

When I mean tentatively, I mean to say that there may be constraint attributes (more on this
in a minute) or mandatory attributes that need to be checked—for example, if an action
method requires a mandatory parameter and it cannot be found in the request or in any of
the sources, then the action cannot be used to serve the current request.

Synchronous and asynchronous actions

An action method can be synchronous or asynchronous. For the asynchronous version, it
should be prototyped as follows:

public async Task<IActionResult> Index() { ... }

Of course, you can add any number of parameters you like, as with a synchronous action
method. The key here, however, is to mark the method as async and to return
Task<IActionResult> instead of just IActionResult (or another inherited type).

Why should you use asynchronous actions? Well, you need to understand the following
facts:

e Web servers have a number of threads that they use to handle incoming requests.

e When a request is accepted, one of these threads is blocked while it is waiting to
process it.

o If the request takes too long, then this thread is unavailable to answer other
requests.

Enter asynchronous actions. With asynchronous actions, as soon as a thread accepts an
incoming request, it immediately passes it along to a background thread that will take care
of it, releasing the main thread. This is very handy, because it will be available to accept
other requests. This is not related to performance, but scalability; using asynchronous
actions allows your application to always be responsive, even if it is still processing
requests in the background.

[156]

Controllers and Actions Chapter 4

Getting the context

We've seen how you can access the context in both POCO and controller-based controllers.
By context, we're talking about three things concerning action methods:

e The HTTP context, represented by the Ht tpContext class, from which you can
gain access to the current user, the low-level request and response properties,
such as cookies, headers, and so on.

¢ The controller context, an instance of ControllerContext, which gives you
access to the current model state, route data, action descriptor, and so on.

¢ The action context, of the ActionContext type, which gives you pretty much
the same information that you get from ControllerContext, but used in
different places; so if, in the future, a new feature is added to only one, it will not
show up on the other.

Having access to the context is important because you may need to make decisions based
on the information you can obtain from it, or, for example, set response headers or cookies
directly. You can see that ASP.NET Core has dropped the HttpContext.Current
property that had been around since the beginning of ASP.NET, so you don't have
immediate access to it; however, you can get it from either ControllerContext or
ActionContext, or have it injected into your dependency-injection-build component by
having your constructor take an instance of IHttpContextAccessor.

Action constraints

The following attributes and interfaces, when implemented in an attribute applied to the
action method, will possibly prevent it from being called:

e [NonAction]: The action is never called.

¢ [Consumes]:If there are many candidate methods—for example, in the case of
method overloading—then this attribute is used to check whether any of the
methods accept the currently requested content type.

® [RequireHttps]:If present, the action method will only be called if the request
protocol is HTTPS.

e IActionConstraint:If an attribute applied to an action method implements
this interface, then its Accept method is called to see whether the action should
be called.

[157]

Controllers and Actions Chapter 4

e IActionHttpMethodProvider: Thisis implemented by [AcceptVerbs],
[HttpGet], [HttpPost], and other HTTP method selector attributes; if present,
the action method will only be called if the current request's HTTP verb matches
one of the values returned by the Ht tpMethods property.

e IAuthorizeData: Any attribute that implements this interface, the most
notorious of all being [Authorize], will be checked to see whether the current
identity (as specified by ClaimsPrincipal assigned to the HttpContext's
User property) has the right policy and roles.

e rilters: If a filter attribute, such as IactionFilter, is applied to the action or
if TAuthorizationFilter, for example, is invoked and possibly either throws
an exception or returns an IActionResult, which prevents the action from
being called (NotFoundObjectResult, UnauthorizedResult, and more).

This implementation of IActionConstraint will apply custom logic to decide whether a
method can be called in its Accept method:

public class CustomAuthorizationAttribute: Attribute, IActionConstraint

{
public int Order { get; } = int.MaxValue;

public bool Accept (ActionConstraintContext context)

{
return
context.CurrentCandidate.Action.DisplayName
.Contains ("Authorized");

}

The context parameter grants access to the route context, and from there, to the HTTP
context and the current candidate method. These should be more than enough to make a
decision.

The order by which a constraint is applied might be relevant, as the 0Order property of the
IActionConstraint interface, when used in an attribute, will determine the relative order
of execution of all the attributes applied to the same method.

[158]

Controllers and Actions Chapter 4

Action parameters

An action method can take parameters. These parameters can be, for example, submitted
form values or query string parameters. There are essentially three ways by which we can
get all submitted values:

e IFormCollection, IFormFile, and IFormFileCollection: A parameter of
any of these types will contain the list of values submitted by an HTML form;
they won't be used in a GET request as it is not possible to upload files with GET.

e HttpContext: Directly accessing the context and retrieving values from either
the Request .Form or Request .QueryString collections.

¢ Adding named parameters that match values in the request that we want to
access individually.

The latter can either be of basic types, such as string, int, and more, or they can be of a
complex type. The way their values are injected is configurable and based on a provider
model. IValueProviderFactory and IValueProvider are used to obtain the values for
these attributes. ASP.NET Core offers developers a chance to inspect the collection of value
provider factories through the AddMvc method:

services.AddMvc (options =>

{

options.ValueProviderFactories.Add(new CustomValueProviderFactory());
P

Out of the box, the following value provider factories are available and registered in the
following order:

e FormValueProviderFactory: Injects values from a submitted form, such
as <input type="text" name="myParam"/>.

® RouteValueProviderFactory: Route parameters—for example,
[controller]/[action]/{id?}.

® QueryStringValueProviderFactory: Query string values—for example,
?2id=100.

e JQueryFormValueProviderFactory: jQuery form values.

The order, however, is important, because it determines the order in which the value
providers are added to the collection that ASP.NET Core uses to actually get the values.
Each value provider factory will have its CreatevValueProviderAsync method called and
will typically populate a collection of value providers (for example,
QueryStringValueProviderFactory will add an instance of
QueryStringValueProvider, and so on).

[159]

Controllers and Actions Chapter 4

This means that, for example, if you submitted a form value with the name myField and
you are passing another value for myField via a query string, then the first one is going to
be used; however, many providers can be used at once—for example, if you have a route
that expects an id parameter but can also accept query string parameters:

[Route (" [controller]/[action]/{id}?{*querystring}")]
public IActionResult ProcessOrder (int id, bool processed) { ... }

This will happily access a request of /Home /Process/120?processed=true, where the
id comes from the route and is processed from the query string provider.

Some methods of sending values allow them to be optional—for example, route
parameters. With that being the case, you need to make sure that the parameters in the
action method also permit the following:

e Reference types, including those that can have a null value
e Value types, which should have a default value, such as int a = 0

For example, if you want to have a value from a route injected into an action method
parameter, you could do it like this, if the value is mandatory:

[Route (" [controller]/[action]/{id}")]
public IActionResult Process (int id) { ... }

If it is optional, you could do it like this :

[Route (" [controller]/[action]/{id?}")]
public IActionResult Process (int? id = null) { ... }

Value providers are more interesting because they are the ones that actually return the
values for the action method parameters. They try to find a value from its name—the action
method parameter name. ASP.NET will iterate the list of supplied value providers, call its
ContainsPrefix method for each parameter, and if the result is t rue, it will then call the
GetValue method.

Even if the supplied value providers are convenient, you might want to obtain values from
other sources—for example, I can think of the following:

e Cookies
e Headers
e Session values

[160]

Controllers and Actions Chapter 4

Say that you would like to have cookie values injected automatically into an action

method's parameters. For this, you would write a CookieValueProviderFactory, which
might well look like this:

public class CookieValueProviderFactory : IValueProviderFactory

{

public Task CreateValueProviderAsync (
ValueProviderFactoryContext context)

{
context.ValueProviders.Add (new
CookieValueProvider (context.ActionContext));
return Task.CompletedTask;
}

}

Then you could write a CookieValueProvider to go along with it:
public class CookieValueProvider : IValueProvider
{

private readonly ActionContext _actionContext;

public CookieValueProvider (ActionContext actionContext)

{
this._actionContext = actionContext;

}

public bool ContainsPrefix (string prefix)

{
return this._actionContext.HttpContext.Request.Cookies
.ContainsKey (prefix);

}

public ValueProviderResult GetValue (string key)

{
return new ValueProviderResult (this._actionContext.HttpContext
.Request.Cookies[key]);

}

}

After which, you would register it in the AddMvc method, in the ValueProviders
collection of MvcOptions:

services.AddMvc (options =>
{

options.ValueProviderFactories.Add (new CookieValueProviderFactory());

}) e

[161]

Controllers and Actions Chapter 4

Now you can have cookie values injected transparently into your actions without any
additional effort.

Don't forget that, because of C# limitations, you cannot have variables or
parameters that contain - or other special characters, so you cannot inject
values for parameters that have these in their names out of the box. In this
cookie example, you won't be able to have a parameter for a cookie with a
name like AUTH-COOKIE.

You can, however, in the same action method, have parameters that come from different
sources, as follows:

[HttpGet ("{1d}")]
public IActionResult Process(string id, Model model) { ... }

But what if the target action method parameter is not of the string type? The answer lies in
model binding.

Model binding

Model binding is the process by which ASP.NET Core translates parts of the request,
including route values, query strings, submitted forms, and more into strongly typed
parameters. As is the case in most APIs of ASP.NET Core, this is an extensible mechanism.
Do not get confused with model value providers; the responsibility of model binders is not
to supply the values, but merely to make them fit into whatever class we tell them to!

Out of the box, ASP.NET can translate to the following;:

e IFormCollection, IFormFile, and IFormFileCollection parameters

Primitive/base types (which handle conversion to and from strings)
e Enumerations

POCO classes

Dictionaries

Collections

Cancelation tokens (more on this later on)

[162]

Controllers and Actions Chapter 4

The model binder providers are configured in the MvcOptions class, which is normally
accessible through the AddMvc call:

services.AddMvc (options =>

{

options.ModelBinderProviders.Add (new CustomModelBinderProvider());
)i

Most scenarios that you will be interested in should already be supported. What you can
also do is specify the source from which a parameter is to be obtained. So, let's see how we
can use this ability.

Body

In the case where you are calling an action using an HTTP verb that lets you pass a payload
(POST, PUT, and PATCH), you can ask for your parameter to receive a value from this
payload by applying a [FromBody] attribute:

[HttpPost]
public IActionResult Submit ([FromBody] string payload) { ... }

Besides using a string value, you can provide your own POCO class, which will be
populated from the payload, if the format is supported by one of the input formatters
configured (more on this in a second).

Form

Another option is to have a parameter coming from a specific named field in a submitted
form, and for that, we use the [FromForm] attribute:

[HttpPost]
public IActionResult Submit ([FromForm] string email) { ... }

There is a Name property that, if supplied, will get the value from the specified named form
field (for example, [FromForm (Name = "UserEmail")]).

Header

A header is also a good candidate for retrieving values, hence the [FromHeader] attribute:

public IActionResult Get ([FromHeader] string accept) { ... }

[163]

Controllers and Actions Chapter 4

The [FromHeader] attribute allows us to specify the actual header name (for example,
[FromHeader (Name = "Content-Type")]), and if this is not specified, it will look for the
name of the parameter that it is applied to.

By default, it can only bind to strings or collections of strings, but you can force it to accept
other target types (provided the input is valid for that type). Just set
theAllowBindingHeaderValuesToNonStringModelTypesFmopeﬁytotrue‘Nhen
configuring MVC:

services.AddMvc (options =>
{
options.AllowBindingHeaderValuesToNonStringModelTypes = true;

1)

Query string

We can also retrieve values via the query string, using the [FromQuery] attribute:

public IActionResult Get ([FromQuery] string id) { ... }

You can also specify the query string parameter name using the Name

property, [FromQuery (Name = "Id")].Mind you, by convention, if you don't specify
this attribute, you can still pass values from the query string and they will be passed along
to the action method parameters.

Route

The route parameters can also be a source of data—enter [FromRoute]:

[HttpGet ("{1id}")]
public IActionResult Get ([FromRoute] string id) { ... }

Similar to most other binding attributes, you can specify a name to indicate the route
parameter that the value should come from (for example, [FromRoute (Name = "Id")]).

Dependency injection
You can also use a dependency injection, such as ([FromServices]):

public IActionResult Get ([FromServices] IHttpContextAccessor accessor) {

}

[164]

Controllers and Actions Chapter 4

Of course, the service you are injecting needs to be registered in the DI framework in
advance.

Custom binders

It is also possible to specify your own binder. To do this, you can use the [ModelBinder]
attribute, which takes an optional Type as its parameter. What's funny about this is that it
can be used in different scenarios, such as the following;:

e If you apply it to a property or field on your controller class, then it will be
bound to a request parameter coming from any of the supported value providers
(query string, route, form, and more):

[ModelBinder]
public string Id { get; set; }

e If you pass a type of a class that implements IMode1Binder, then you can use

this class for the actual binding process, but only for the parameter, property, or
field you are applying it to:

public IActionResult Process ([ModelBinder (typeof (CustomModelBinder))]
Model model) { ... }

A simple model binder that does HTML formatting could be written as follows:

public class HtmlEncodeModelBinder : IModelBinder

{

private readonly IModelBinder _fallbackBinder;

public HtmlEncodeModelBinder (IModelBinder fallbackBinder)
{
if (fallbackBinder == null)
throw new ArgumentNullException (nameof (fallbackBinder));

_fallbackBinder = fallbackBinder;
}
public Task BindModelAsync (ModelBindingContext bindingContext)
{
if (bindingContext == null)
throw new ArgumentNullException (nameof (bindingContext));

var valueProviderResult = bindingContext.ValueProvider.
GetValue (bindingContext .ModelName) ;
if (valueProviderResult == ValueProviderResult.None)
{
return _fallbackBinder.BindModelAsync (bindingContext) ;

[165]

Controllers and Actions Chapter 4

var valueAsString = valueProviderResult.FirstValue;

if (string.IsNullOrEmpty (valueAsString))

{
return _fallbackBinder.BindModelAsync (bindingContext);

var result = HtmlEncoder.Default.Encode (valueAsString);

bindingContext.Result = ModelBindingResult.Success (result);
return Task.CompletedTask;

The code for this was written by Steve Gordon and is available at https:/
/www.stevejgordon.co.uk/html-encode-string-aspnet—-core-model—-

binding.

The code doesn't do much: it takes a fallback binder in its constructor and uses it if there is
no value to bind or if the value is a null or empty string; otherwise, it HTML-encodes it.

You can also add a model-binding provider to the global list. The first one that handles the
target type will be picked up. The interface for a model-binding provider is defined by the
IModelBinderProvider (wWho knew?), and it only specifies a single method, GetBinder.
If it returns non-null, then the binder will be used.

Let's look at a model binder provider that would apply this model binder to string
parameters that have a custom attribute:

public class HtmlEncodeAttribute : Attribute { }

public class HtmlEncodeModelBinderProvider : IModelBinderProvider
{
public IModelBinder GetBinder (ModelBinderProviderContext context)
{
if (context == null) throw new
ArgumentNullException (nameof (context));

if ((context.Metadata.ModelType == typeof (string)) &&
(context .Metadata.ModelType.GetTypeInfo () .
IsDefined (typeof (HtmlEncodeAttribute))))

return new HtmlEncodeModelBinder (new SimpleTypeModelBinder (
context .Metadata.ModelType));

[166]

https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding

Controllers and Actions Chapter 4

}

return null;

}

After this, we register it in AddMvc to the ValueProviderFactories collection; this
collection is iterated until a proper model binder is returned from GetBinder, in which
case, it is used as follows:

services.AddMvc (options =>

{
options.ValueProviderFactories.Add (new
HtmlEncodeModelBinderProvider ());

P

We have created a simple marker attribute, HtmlEncodeAttribute (as well as a model-
binder provider), that checks whether the target model is of the string type and has the
[HtmlEncode] attribute applied to it. If so, it applies the Htm1EncodeModelBinder. It's as
simple as that:

public IActionResult Process ([HtmlEncode] string html) { ... }

We will be revisiting model binding later on in this chapter when we talk about HTML
forms.

Property binding

Any properties in your controller that are decorated with the [BindProperty] attribute
are also bound from the request data. You can also apply the same binding source
attributes ([FromQuery], [FromBody], and so on), but to have them populated on GET
requests, you need to tell the framework to do this explicitly:

[BindProperty (SupportsGet = true)]
public string Id { get; set; }

You can also apply this to controller-level property-validation attributes (for example,
[Required], [MaxLength], and so on), and they will be used to validate the value of each
property. [BindRequired] also works, meaning that if a value for a property is not
provided, it results in an error.

[167]

Controllers and Actions Chapter 4

Input formatters

When you are binding a POCO class from the payload by applying the [FromBody]
attribute, ASP.NET Core will try to deserialize the POCO type from the payload as a string.
For this, it uses an input formatter. Similar to output formatters, these are used to convert
to and from common formats, such as JSON or XML. Support for JSON comes out of the
box, but you will need to explicitly add support for XML. You can do so by including the
NuGet package Microsoft .AspNetCore.Mvc.Formatters.Xml and explicitly add
support to the pipeline:

services
.AddMvc ()
.AddXmlSerializerFormatters();

If you are curious, what this does is add an instance of XmlSerializerInputFormatter
to the MvcOptions' InputFormatters collection. The list is iterated until one formatter is
capable of processing the data. The included formatters are as follows:

e JsonInputFormatter, which can import from any JSON content
(application/json)

e JsonPatchInputFormatter, which can import from JSON patch contents
(application/json-patch+json)

Explicit binding

You can also fine-tune which parts of your model class are bound, and how they are bound,
by applying attributes—for example, if you want to exclude a property from being bound,
you can apply the [BindNever] attribute:

public class Model
{
[BindNever]
public int Id { get; set; }

[168]

Controllers and Actions Chapter 4

Alternatively, if you want to explicitly define which properties should be bound, you can
apply [Bind] to aModel class:

[Bind ("Name, Email")]

public class Model

{
public int Id { get; set; }
public string Name { get; set; }
public string Email { get; set; }

}

If you pass a value to the Prefix property, you can instruct ASP.NET Core to retrieve the
value to bind from a property with that prefix—for example, if you have several form
values with the same name (for example, option), then you can bind them all to a
collection:

[Bind (Prefix = "Option")]
public string[] Option { get; set; }

Normally, if a value for a property is not supplied in the source medium, such as the POST
payload or the query string, the property doesn't get a value. However, you can force this,
as follows:

[BindRequired]
public string Email { get; set; }

If the Email parameter is not passed, then ModelState.IsValid will be false and an
exception will be thrown.

You can also specify the default binding behavior at class level and then override it on a
property-by-property basis with a [BindingBehavior]:

[BindingBehavior (BindingBehavior.Required)]
public class Model
{
[BindNever]
public int Id { get; set; }
public string Name { get; set; }
public string Email { get; set; }
}

So, we have three situations:

e If a value is present in the request, bind it to the model ([Bind]).
e Ignore any value passed in the model ([BindNever]).
¢ Demand that a value is passed in the request ([BindRequired]).

[169]

Controllers and Actions Chapter 4

We should also mention that these attributes can be applied to action method parameters as
follows:

public IActionResult Process(string id, [BindRequired] int state) { ... }

Canceling requests

Sometimes, a request is canceled by the client, such as when someone closes the browser,
navigates to another page, or refreshes the page. The problem is, you don't know that it
happened, and you continue to execute your action method not knowing that the answer
will be discarded. To help in these scenarios, ASP.NET Core lets you add a parameter of the
CancelationToken type. This is the standard way to allow the cancelation of
asynchronous tasks in .NET and .NET Core. It works as follows:

public async Task<IActionResult> Index (CancelationToken cancel) { ... }

If, for whatever reason, the ASP.NET Core host (Kestrel, WebListener) detects that the
client has disconnected, it fires the cancelation token (its IsCancelationRequested is set
to true, the same for HttpContext .RequestAborted). A benefit is that you can pass this
CancelationToken instance to any asynchronous methods you may be using (for
example, HttpClient.SendAsync (), DbSet<T>.ToListAsync (), and more) and they
will also be canceled along with the client request!

Model validation

Once your model (the parameters that are passed to the action method) are properly built
and their properties have had their values set, they can be validated. Validation itself is
configurable.

All values obtained from all value providers are available in the Modelstate property,
defined in the ControllerBase class. For any given type, the Isvalid property will say
whether ASP.NET considers the model valid as per its configured validators.

By default, the registered implementation relies on the registered model metadata and
model validator providers, which include the
DataAnnotationsModelValidatorProvider. This performs validation against the
System.ComponentModel.DataAnnotations AP namely, all classes derived

from validationAttribute (RequiredAttribute, RegularExpressionAttribute,
MaxLengthAttribute, and more), but also IValidatableObject implementations. This
is the de facto validation standard in .NET, and it is capable of handling most cases.

[170]

Controllers and Actions Chapter 4

When the model is populated, it is also automatically validated, but you can also explicitly
ask for model validation by calling the TryvalidateModel method in your action—for
example, if you change anything in it:

public IActionResult Process (Model model)

{
if (this.TryValidateModel (model))

{
return this.Ok();

}

else

{

return this.Error();
}
}

Since ASP.NET Core 2.1, you can apply validation attributes to action parameters
themselves, and you get validation for them too:

public IActionResult Process([Required, EmailAddress] string email) { ... }

As we have mentioned, ModelState will have the Isvalid property set according to the
validation result, but we can also force revalidation. If you want to check a specific
property, you can use the overload of TryvalidateModel that takes an additional string
parameter:

if (this.TryValidateModel (model, "Email")) { ... }

Behind the scenes, all registered validators are called and the method will return a Boolean
flag with the result of all validations.

We will revisit model validation in an upcoming chapter. For now, let's see how we can
plug in a custom model validator. We do this in ConfigureServices using the AddMvc
method:

services.AddMvc (options =>

{
options.ModelValidatorProviders.Add (new
CustomModelValidatorProvider ()) ;

)i
The CustomModelvValidatorProvider looks as follows:

public class CustomModelValidatorProvider : IModelValidatorProvider

{

public void CreateValidators (ModelValidatorProviderContext context)

{

[171]

Controllers and Actions Chapter 4

context.Results.Add (new ValidatorItem { Validator =
new CustomModelValidator () 1});

}

The main logic simply goes in CustomModelValidator:

public class CustomObjectModelValidator : IModelValidator
{
public IEnumerable<ModelValidationResult>
Validate (ModelValidationContext context)
{
if (context.Model is ICustomValidatable)
{
//supply custom validation logic here and return a collection
//of ModelValidationResult

return Enumerable.Empty<ModelValidationResult>();
}

The ICustomvalidatable interface (and implementation) is left to you, dear reader, as an
exercise. Hopefully, it won't be too difficult to understand.

This ICustomvalidatable implementation should look at the state of its class and return
one or more ModelValidationResults for any problems it finds.

Since ASP.NET Core 2.1, the [ApiController] attribute adds a convention to
controllers—typically API controllers—which triggers model validation automatically
when an action method is called. You can use it, but what it does is return a 400 HTTP
status code (https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400) and a
description of the validation errors in JSON format, which is probably not what you want
when working with views. You can use an action filter for the same purpose; let's look at
one example:

[Serializable]
[AttributeUsage (AttributeTargets.Class | AttributeTargets.Method,
AllowMultiple = false,
Inherited = true)]
public sealed class ValidateModelStateAttribute : ActionFilterAttribute
{
public ValidateModelStateAttribute (string redirectUrl)
{
this.RedirectUrl = redirectUrl;

[172]

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400

Controllers and Actions Chapter 4

public ValidateModelStateAttribute (
string actionName,
string controllerName = null,
object routeValues = null)

this.ControllerName = controllerName;
this.ActionName = actionName;
this.RouteValues = routeValues;

public
public
public
public

public

string RedirectUrl { get; }
string ActionName { get; }
string ControllerName { get; }
object RouteValues { get; }

override Task OnResultExecutionAsync (ResultExecutingContext

context, ResultExecutionDelegate next)

{
if
{

(!context .ModelState.IsValid)

if (!string.IsNullOrWhiteSpace (this.RedirectUrl))
{

context.Result = new RedirectResult (this.RedirectUrl);
}
else if (!string.IsNullOrWhiteSpace (this.ActionName))

{

context.Result = new RedirectToActionResult

(this.ActionName, this.ControllerName,
this.RouteValues);

}
else
{
context.Result = new BadRequestObjectResult
(context .ModelState) ;
}

return base.OnResultExecutionAsync (context, next);

}

This is an action filter and it is also an attribute, which means that it can be registered

globally:

services.AddMvc (options =>

{

options.AllowValidatingTopLevelNodes = true;

[173]

Controllers and Actions Chapter 4

options.Filters.Add(new ValidateModelStateAttribute ("/Home/Error"));
b

It can also be registered by adding the attribute to a controller class or action method. This
class offers two controllers:

¢ One for specifying the redirection as a full URL

¢ Another for using a controller name, action method, and possibly route
parameters

It inherits from ActionFilterAttribute, which in turn implements IActionFilter and
IAsyncActionFilter. Here, we are interested in the asynchronous version—a good
practice—which means that we override OnResultExecutionAsync. This method is called
before the control is passed to the action method, and here we check whether the model is
valid. If it is not, then redirect it to the proper location, depending on how the class was
instantiated.

By the way, controller properties are only validated if the
AllowValidatingTopLevelNodes property is set to true, as in this example; otherwise,
any errors will be ignored.

Action results

Actions process requests and typically either return content or an HTTP status code to the
calling client. In ASP.NET Core, broadly speaking, there are two possible return types:

¢ Animplementation of TActionResult
e Any .NET POCO class

Implementations of IActionResult wrap the actual response, plus a content type header
and HTTP status code, and are generally useful. This interface defines only a single
method, ExecuteResultAsync, which takes a single parameter of the
ActionContexttype that wraps all properties that describe the current request:

e ActionDescriptor: Describes the action method to call

e HttpContext: Describes the request context

¢ ModelState: Describes the submitted model properties and its validation state
® RouteData: Describes the route parameters

[174]

Controllers and Actions Chapter 4

So you can see that IActionResult is actually an implementation of the command design
paﬁern(https://sourcemaking.com/design_patterns/command)inthesensethatﬂ
actually executes, and doesn't just store data. A very simple implementation of
IActionResult that returns a string and the HTTP status code 200 might be as follows:

public class HelloWorldResult : IActionResult

{

public async Task ExecuteResultAsync (ActionContext actionContext)

{

}

actionContext.HttpContext.Response.StatusCode = StatusCodes
.Status2000K;

await actionContext.HttpContext.Response.WriteAsync ("Hello,
World!"™);

As we will see shortly, IActionResult is now the interface that describes HTML results as
well as API-style results. The ControllerBase and Controller classes offer the
following convenient methods for returning IActionResult implementations:

BadRequest (BadRequestResult, HTTP code 400): The request was not valid.
Challenge (ChallengeResult, HTTP code 401): A challenge for
authentication.

Content (ContentResult, HTTP code 200): Any content.

Created (CreatedResult, HTTP code 201): A result that indicates that a
resource was created.

CreatedAtAction (CreatedAtActionResult, HTTP code 201): A result that
indicates that a resource was created by an action.

CreatedAtRoute (CreatedAtRouteResult, HTTP code 201): A result that
indicates that a resource was created in a named route.

File (VirtualFileResult,FileStreamResult, FileContentResult, HTTP
code 200).

Forbid (ForbidResult, HTTP code 403).

LocalRedirect (LocalRedirectResult, HTTP code 302): Redirects to a local
resource.

LocalRedirectPermanent (LocalRedirectResult, HTTP code 301): A
permanent redirect to a local resource.

NoContent (NoContentResult, HTTP code 204): No content to deploy.
NotFound (NotFoundObjectResult, HTTP code 404): Resource not found.

Ok (OkResult, HTTP code 200): OK.

[175]

https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command

Controllers and Actions Chapter 4

e No method (PartialviewResult, HTTP code 200): Requested HTTP method
not supported.

e PhysicalFile (PhysicalFileResult, HTTP code 200): A physical file's
content.

e Redirect (RedirectResult, HTTP code 302): Redirect to an absolute URL.

e RedirectPermanent (RedirectResult, HTTP code 301): Permanent redirect
to an absolute URL.

e RedirectToAction (RedirectToActionResult, HTTP code 302): A redirect
to an action of a local controller.

e RedirectToActionPermanent (RedirectToActionResult, HTTP code 301):
A permanent redirect to an action of a local controller.

e RedirectToPage (RedirectToPageResult, HTTP code 302, from ASP.NET
Core 2): A redirect to a local Razor page.

e RedirectToPagePermanent (RedirectToPageResult, HTTP code 301): A
permanent redirect to a local Razor page.

e RedirectToPagePermanentPreserveMethod (RedirectToPageResult,
HTTP code 301): A permanent redirect to a local page preserving the original
requested HTTP method.

e RedirectToPagePreserveMethod (RedirectToPageResult, HTTP code 302):
A redirect to a local page.

e RedirectToRoute (RedirectToRouteResult, HTTP code 302): A redirect to a
named route.

e RedirectToRoutePermanent (RedirectToRouteResult, HTTP code 301): A
permanent redirect to a named route.

e SignIn (SignInResult): Signsin.

® SignOut (SignOutResult): Signs out.

e StatusCode (StatusCodeResult, ObjectResult, any HTTP code).

e No method (UnsupportedMediaTypeResult, HTTP code 415): Accepted
content type does not match what can be returned.

e Unauthorized (UnauthorizedResult, HTTP code 401): Not allowed to
request the resource.

e View (ViewResult, HTTP code 200, declared in Controller class): A view.

e ViewComponent (ViewComponentResult, HTTP code 200): The result of
invoking a view component.

[176]

Controllers and Actions Chapter 4

Some of these results also assign a content type—for example, ContentResult will return
text/plain by default (this can be changed), JsonResult will return
application/json, and so on. Some of the names are self-explanatory; others may
require some clarification:

e There are always four versions of the Redirect methods—the regular one for
temporary redirects, one for permanent redirects, and two additional versions
that also preserve the original request HTTP method. It is possible to redirect to
an arbitrary URL, the URL for a specific controller action, a Razor page URL, and
a local (relative) URL.

¢ The preserve method in a redirect means that the new request to be issued by the
browser will keep the original HTTP verb.

e The File and Physical file methods offer several ways to return file contents,
either through a URL, a Stream, a byte array, or a physical file location. The
Physical method allows you to directly send a file from a filesystem location,
which may result in better performance. You also have the option to set an ETag
or a LastModified date on the content you wish to transmit.

e ViewResult and PartialViewResult differ in that the latter only looks for
partial views.

e Some methods may return different results, depending on the overload used
(and its parameters, of course).

® SignIn, SignOut, and Challenge are related to authentication and are pointless
if not configured. signIn will redirect to the configured login URL and Signout
will clear the authentication cookie.

e Not all of these results return contents; some of them only return a status code
and some headers (for example, SignInResult, SignOutResult,
StatusCodeResult, UnauthorizedResult, NoContentResult,
NotFoundObjectResult, ChallengeResult, BadRequestResult,
ForbidResult, OkResult, CreatedResult, CreatedAtActionResult,
CreatedAtRouteResult, and all the Redirect* results). On the other hand,
JsonResult, ContentResult, VirtualFileResult, FileStreamResult,
FileContentResult, and ViewResult all return contents.

All the action result classes that return views (ViewResult) or parts of views
(PartialviewResult) take a Model property, which is prototyped as an object. You can
use it to pass any arbitrary data to the view, but remember that the view must declare a
model of a compatible type. Alas, you cannot pass anonymous types, as the view will have
no way to locate its properties. In Chapter 6, Using Forms and Models, I will present a
solution for this.

[177]

Controllers and Actions Chapter 4

Returning an action result is probably the most typical use of a controller, but you can also
certainly return any .NET object. To do this, you must declare your method to return
whatever type you want:

public string SayHello()
{

return "Hello, World!";

}

This is a perfectly valid action method; however, there are a few things you need to know:

¢ The returned object is wrapped in an ObjectResult before any filters are called
(IActionFilter, IResultFilter, for example).

¢ The object is formatted (serialized) by one of the configured output formatters, the
first that says it can handle it.

e If you want to change either the status code or the content type of the response,
you will need to resort to the Ht tpContext . Response object.

Why return a POCO class or an ObjectResult? Well, ObjectResult gives you a couple
of extra advantages:

¢ You can supply a collection of output formatters (Formatters collection).
* You can tell it to use a selection of content types (Content Types).
* You can specify the status code to return (StatusCode).

Let's look at output formatters in more detail with regard to API actions. For now, let's look
at an example action result, one that returns contents as an XML:

public class XmlResult : ActionResult

{
public XmlResult (object value)

{

this.Value = value;
}

public object Value { get; }

public override Task ExecuteResultAsync (ActionContext context)

{

if (this.Value != null)

{
var serializer = new XmlSerializer (this.Value.GetType());
using (var stream = new MemoryStream())

{

serializer.Serialize(stream, this.Value);

[178]

Controllers and Actions Chapter 4

var data = stream.ToArray();

context.HttpContext.Response.ContentType =
"application/xml";

context.HttpContext.Response.ContentLength = data.Length;

context.HttpContext.Response.Body.Write (data, O,
data.Length);

}

return base.ExecuteResultAsync (context);

}

In this code, we instantiate an Xm1Serializer instance bound to the type of the value that
we want to return and use it to serialize this value into a string, which we then write to the
response. You will need to add a reference to the System.Xml.XmlSerializer NuGet
package for the xmlSerializer class. This further results in the redirecting and streaming
of the actions. Let's see what these are.

Redirecting

A redirect occurs when the server instructs the client (the browser) to go to another location
after receiving a request from it:

Client Server

Pt
-

Initial request

| GET /doc HTTP/1.1

! Resource moved.
HTTPfl."_ 301 Moved Permanentl}? New location returned.

Location: /doc_new

H
-
=

Reguest to the new location |

{ GET /doc _new HTTP/1.1

. Resource returned.

E HTTP/1.1 200 OK

'y

[179]

Controllers and Actions Chapter 4

There are at least 10 methods for implementing redirects. What changes here is the HTTP
status code that is returned to the client and how the redirection URL is generated. We have
redirects for the following;:

A specific URL, either full or local: Redirect
A local URL: LocalRedirect
A named route: RedirectToRoute

A specific controller and action: RedirectToAction

A Razor page (more on this in chapter 7, Implementing Razor Pages):
RedirectToPage

All of these methods return HTTP status code 302 (see https://developer.mozilla.org/
en-US/docs/Web/HTTP/Status/302), which is a temporary redirection. Then we have
alternative versions that send HTTP 301 (https://developer.mozilla.org/en-US/docs/
Web/HTTP/Status/301), a permanent redirect, which means that browsers are instructed to
cache responses and learn that when asked to go to the original URL, they should instead
access the new one. These methods are similar to the previous ones, but end in Permanent:

A specific URL: RedirectPermanent
A local URL: LocalRedirectPermanent

A named route: RedirectToRoutePermanent

A specific controller and action: RedirectToActionPermanent

A Razor page (more on this in chapter 7, Implementing Razor
Pages): RedirectToPagePermanent

Then there's still another variation, one that keeps the original HTTP verb and is based on
the HTTP 308 (https ://developer.mozilla. org/en—US/docs/Web/HTTP/Status/BOB). For
example, it may be the case that the browser was trying to access a resource using HTTP
POST, the server returns an HTTP status 308, and redirects to another URL; the client must
then request this URL again using POST instead of GET, which is what happens with the
other codes. For this situation, we have other variations:

A specific URL: RedirectPermanentPreserveMethod
A local URL: LocalRedirectPreserveMethod

A named route: RedirectToRoutePermanentPreserveMethod

A specific controller and
action: RedirectToActionPermanentPreserveMethod

A Razor page (more on this in chapter 7, Implementing Razor
pages): RedirectToPagePermanentPreserveMethod

[180]

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308

Controllers and Actions Chapter 4

Streaming

If you ever need to stream content to the client, you should use the FileStreamResult
class. In the following example code, we are streaming an MP4 file:

[HttpGet (" [action] /{name}")]

public async Task<FileStreamResult> Stream(string name)

{

var stream = await System.IO.File.OpenRead ($"{name}.mp4d");
return new FileStreamResult (stream, "video/mp4");

}

Note that there is no method in the ControllerBase or Controller class for returning a
FileStreamResult, so you need to build it yourself, passing it a stream and the desired
content type. This will keep the client connected until the transmission ends or the browser
navigates to another URL.

Now let's see what we can do to handle errors.

Error handling

In the previous chapter, we saw how to redirect to specific actions when an
error occurs. Another option could be to leverage

the IExceptionFilter and IAsyncExceptionFilter interfaces, one of the filter
classes, to have the controller itself—or some other class—implement error
handling directly.

In our controller, it's just a matter of implementing the IExceptionFilter class, which
only has one method, OnException:

public void OnException (ExceptionContext context)
{

var ex = context.Exception;

//do something with the exception

//mark it as handled, so that it does not propagate
context .ExceptionHandled = true;

}

In the asynchronous version, IAsyncExceptionFilter, the OnExceptionAsync method
takes the same parameter but must return a Task.

[181]

Controllers and Actions Chapter 4

In chapter 10, Understanding Filters, we will learn more about the concept of filters. For
now, it is enough to say that should any exception be thrown from an action in a controller
implementing IExceptionFilter, its OnException method will be called.

Don't forget to set ExceptionHandled to true if you don't want the
exception to propagate!

The next topic is related to performance: response caching.

Response caching

An action response of any type (HTML or JSON, for example) may be cached in the client
in order to improve performance. Needless to say, this should only happen if the result that
it is returning rarely changes. This is specified in RFC 7234, HTTP/1.1 Caching (https://
tools.ietf.org/html/rfc7234). Essentially, response caching is a mechanism by which the
server notifies the client (the browser or a client API) to keep the response returned
(including headers) for a URL for a certain amount of time and to use it, during that time,
for all subsequent invocations of the URL. Only the GET HTTP verb can be cached, as it is
designed to be idempotent: PUT, POST, PATCH, or DELETE cannot be cached.

We add support for resource caching in ConfigureServices as follows:

services.AddResponseCaching () ;

We use it in Configure, which basically adds the response caching middleware to the
ASP.NET Core pipeline:

app.UseResponseCaching () ;

We can also set a couple of options in the call to AddResponseCaching, such as the
following;:

e MaximumBodySize (int): This is the maximum size of the response that can be
stored in the client response cache; the default is 64 KB.

® UseCaseSensitivePaths (bool): This enables you to configure the request
URL for the caching key as case-sensitive or not; the default is false.

[182]

https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2

Controllers and Actions Chapter 4

These can be used using an overload of the AddResponseCaching method:

services.AddResponseCaching (options =>

{
options.MaximumBodySize *= 2;
options.UseCaseSensitivePaths = true;

)i

We can also have an action result cached by applying the [ResponseCache] attribute to
either the action or the whole controller class. Following this, we have a couple of
options—we can either specify each of the cache parameters directly in the attribute or we
can tell it to use a cache profile.

The options are as follows:

e Duration (int): The number of seconds to cache; the default is 0

e Location (ResponseCacheDuration): The location of the cache (Client, None,
Any); the default is Any

® NoStore (bool): Whether to prevent the storing of the result; the default is
false

e VaryByHeader (string): The comma-separated list of headers for which an
instance of the result is cached; the defaultis null

e VaryByQueryKeys (string []): A list of query string parameters for which an
instance of the result is cached; the defaultis null

e CacheProfileName (string): The cache profile name, which is incompatible
with the other options; the default is null

As we have mentioned, you either specify all of the individual options (or at least those that
you need) or you specify a cache profile name. Cache profiles are defined at Startup in the
ConfigureServices method through the AddMvc extension method, as follows:

services.AddMvc (options =>

{

options.CacheProfiles.Add ("5minutes", new CacheProfile

{

Duration = 5 * 60,
Location = ResponseCachelocation.Any,
VaryByHeader = "Accept-Language"

)i
)i

[183]

Controllers and Actions Chapter 4

This cache profile specifies that results are kept for five minutes, with different instances for
different values of the Accept-Language header. After this, you only need to specify the
name Sminutes:

[ResponseCache (CacheProfileName = "Sminutes")]
public IActionResult Cache() { ... }

The varyByHeader and VaryByQueryKeys properties, if they have values, will keep
different instances of the same cached response for each value of either the request header
or the query string parameter (or both). For example, if your application supports multiple
languages and you use the Accept-Language HTTP header to indicate which language
should be served, the results are kept in cache for each of the requested languages—one for
pt—PT, one for en-GB, and so on.

It's generally preferable to use cache profiles, rather than providing all parameters in the
attribute.

Let's now see how we can maintain the state between subsequent requests.

Maintaining the state

What if you need to maintain a state, either from one component to the other in the same
request, or across requests? Web applications have traditionally offered solutions for this.
Let's explore the options we have.

Using the request

Any object that you store in the request (in memory) will be available throughout its
duration. Items are a strongly typed dictionary in the Ht tpContext class:

this.HttpContext.Items["timestamp"] = DateTime.UtcNow;

You can check for the existence of the item before accessing it; it is worth noting that the
following is case sensitive:

if (this.HttpContext.Items.ContainsKey ("timestamp")) { ... }

Of course, you can also remove an item:

this.HttpContext.Items.Remove ("timestamp") ;

[184]

Controllers and Actions Chapter 4

Using form data

The Form collection keeps track of all values submitted by an HTML FORM, normally after a
POST request. To access it, you use the Form property of the Request object of
HttpContext:

var isChecked = this.HttpContext.Request.Form["isChecked"].Equals ("on");

You can program defensively by first checking for the existence of the value (case
insensitive):

if (this.HttpContext.Request.Form.ContainsKey ("isChecked")) { ... }

It is possible to obtain multiple values, and in this case, you can count them and get all their
values:

var count = this.HttpContext.Request.Form["isChecked"].Count;
var values = this.HttpContext.Request.Form["isChecked"].ToArray();

Using the query string

Usually, you won't store data in the query string, but will instead get data from it—for
example, http://servername.com?isChecked=true. The Query collection keeps track
of all parameters that are sent in the URL as strings:

var isChecked = this.HttpContext.Request.Query|["isChecked"].Equals ("true");

To check for the presence of a value, we use the following:

if (this.HttpContext.Request.Query.ContainsKey ("isChecked")) { ... }

This also supports multiple values:

var count = this.HttpContext.Request.Query["isChecked"].Count;
var values = this.HttpContext.Request.Query["isChecked"].ToArray();

Using the route

As with the query string approach, you typically only get values from the route and do not
write to them; however, you do have methods in the 1Ur1Helper interface—which is
normally accessible through the Ur1 property of the ControllerBase class—that generate
action URLs, from which you can pack arbitrary values.

[185]

Controllers and Actions Chapter 4

Route parameters look like http://servername.com/admin/user/121, and use a route
template of [controller]/[action]/{id}.

To get a route parameter (a string), you do the following:

var id = this.RouteData.Values["id"];

To check that it's there, use the following:

if (this.RouteData.ContainsKey ("id")) { ... }

Using cookies

Cookies have been around for a long time and are the basis of a lot of functionality on the
web, such as authentication and sessions. They are specified in RFC 6265 (https://tools.
ietf.org/html/rfc6265). Essentially, they are a way of storing small amounts of text in the
client.

You can both read and write cookies. To read a cookie value, you only need to know its
name; its value will come as a string:

var username = this.HttpContext.Request.Cookies["username"];

Of course, you can also check that the cookie exists with the following:

if (this.HttpContext.Request.Cookies.ContainsKey ("username")) { ... }

To send a cookie to the client as part of the response, you need a bit more information,
namely the following:

® Name (string): A name (what else?)

e Value (string): A string value

e Expires (DateTime): An optional expiration timestamp (the default is for the
cookie to be session-based, meaning that it will vanish once the browser closes)

e Path (string): An optional path from which the cookie is to be made available
(the default is /)

e Domain (string): An optional domain (the default is the current fully qualified
hostname)

[186]

https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265

Controllers and Actions Chapter 4

e Secure (bool): An optional secure flag that, if present, will cause the cookie to
only be available if the request is being served using HTTPS (the default is
false)

e HttpOnly (bool): Another optional flag that indicates whether the cookie will be
readable by JavaScript on the client browser (the default is also false)

We add a cookie to the request object as follows:

this.HttpContext.Response.Cookies.Append ("username", "rjperes", new
CookieOptions
{
Domain = "packtpub.com",

Expires = DateTimeOffset.Now.AddDays (1),
HttpOnly = true,
Secure = true,
Path = "/"
}) i

The third parameter, of the CookieOptions type is optional, in which case the cookie
assumes the default values.

The only way you can revoke a cookie is by adding one with the same name and an
expiration date in the past.

You mustn't forget that there is a limit to the number of cookies you can
store per domain, as well as a limit to the actual size of an individual
cookie value; these shouldn't be used for large amounts of data. For more
information, please consult RFC 6265.

Using sessions

Sessions are a way to persist data per client. Typically, sessions rely on cookies, but it's
possible (yet error prone) to use query string parameters, and ASP.NET Core does not
support this out of the box. In ASP.NET Core, sessions are opt-in; in other words, they need
to be explicitly added. We need to add the NuGet package
Microsoft.AspNetCore.Session and explicitly add support in the Configure and
ConfigureServices methods of the Startup class:

public void ConfigureServices (IServiceCollection services)

{

services.AddSession() ;
//rest goes here

[187]

Controllers and Actions Chapter 4

public void Configure (IApplicationBuilder app, IWebHostEnvironment env)
{

app.UseSession () ;

//rest goes here

}
After that, the Session object is made available in the Ht t pContext instance:

var value = this.HttpContext.Session.Get ("key"); //bytel]

A better approach is to use the Get St ring extension method and serialize/deserialize to
JSON:

var json = this.HttpContext.Session.GetString ("key");
var model = JsonSerializer.Deserialize<Model> (json);

Here, Model is just a POCO class and JsonSerializer isa class from
System. Text.Json that has static methods for serializing and deserializing to and from

JSON strings.

To store a value in the session, we use the Set or SetString methods:

this.HttpContext.Session.Set ("key", value); //value is bytel]

The JSON approach is as follows:

var json = JsonSerializer.Serialize (model);
this.HttpContext.Session.SetString("key", json);

Removal is achieved by either setting the value to null or calling Remove. Similar to
GetString and SetString, there are also the GetInt32 and SetInt32 extension
methods. Use what best suits your needs, but never forget that the data is always stored as
a byte array.

If you want to check for the existence of a value in the session, you should use the
TryGetValue method:

byte[] data;
if (this.HttpContext.Session.TryGetValue ("key", out data)) { ... }

That's pretty much it for using the session as a general-purpose dictionary. Now it's,
configuration time! You can set some values, mostly around the cookie that is used to store
the session, plus the idle interval, in a SessionOptions object:

services.AddSession (options =>

{

options.CookieDomain = "packtpub.com";

[188]

Controllers and Actions Chapter 4

options.CookieHttpOnly = true;

options.CookieName = ".SeSsIoN";
options.CookiePath = "/";

options.CookieSecure = true;
options.IdleTimeout = TimeSpan.FromMinutes (30);

P
These can also be configured in the UseSession method in Configure:

app.UseSession (new SessionOptions { ... });

One final thing to note is that a session, by default, will use in-memory storage, which
won't make it overly resilient or useful in real-life apps; however, if a distributed cache
provider is registered before the call to Addsession, the session will use that instead! So,
let's take a look at the next topic to see how we can configure it.

Before moving on, we need to keep in mind the following:

e There's a bit of a performance penalty in storing objects in the session.

¢ An object may be evicted from the session if the idle timeout is reached.

e Accessing an object in the session prolongs its lifetime—that is, its idle timeout is
reset.

Using the cache

Unlike previous versions of ASP.NET, there is no longer built-in support for the cache; like
most things in .NET Core, it is still available but as a pluggable service. There are
essentially two kinds of cache in .NET Core:

¢ In-memory cache, which is represented by the IMemoryCache interface
¢ Distributed cache, which uses the IDistributedCache interface

ASP NET Core includes a default implementation of IMemoryCache as well as one for
IDistributedCache. The caveat for the distributed implementation is that it is also in-
memory—it is only meant to be used in testing, but the good thing is that there are several
implementations available, such as Redis (https://redis.io/) or SQL Server.

In-memory and distributed caches can be used simultaneously, as they are
unaware of each other.

[189]

https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/

Controllers and Actions Chapter 4

Both the distributed and in-memory cache store instances as byte arrays (byte []) but a
good workaround is to first convert your objects to JSON and then use the method
extensions that work with strings as follows:

var json = JsonSerializer.Serialize (model);
var model = JsonSerializer.Deserialize<Model> (json);

In-memory cache

In order to use the in-memory cache, you need to register its service in
ConfigureServices using the following default options:

services.AddMemoryCache () ;

If you prefer, you can also fine-tune them by using the overloaded extension method that
takes a MemoryCacheOptions instance:

services.AddMemoryCache (options =>

{
options.Clock = new SystemClock();
options.CompactOnMemoryPressure = true;
options.ExpirationScanFrequency = TimeSpan.FromSeconds (5 * 60);

P
The purposes of these properties are as follows:

e Clock (ISystemClock): This is an implementation of ISystemClock that will
be used for the expiration calculation. It is useful for unit testing and mocking;
there is no default.

e CompactOnMemoryPressure (bool): This is used to remove the oldest objects
from the cache when the available memory gets too low; the default is t rue.

e ExpirationScanFrequency (TimeSpan): This sets the interval that .NET Core
uses to determine whether to remove objects from the cache; the default is one
minute.

In order to use the in-memory cache, we need to retrieve an instance of IMemoryCache
from the dependency injection:

public IActionResult StoreInCache (Model model, [FromServices] IMemoryCache
cache)
{

cache.Set ("model", model);

return this.Ok();

[190]

Controllers and Actions Chapter 4

We will look at [FromServices] in more detail in the Dependency injection section.
IMemoryCachesupports all the operations that you might expect, plus a few others:

e CreateEntry: Creates an entry in the cache and gives you access to expiration

® Get/GetAsync: Retrieves an item from the cache, synchronously or
asynchronously

® GetOrCreate/GetOrCreateAsync: Returns an item from the cache if it exists, or
creates one, synchronously or asynchronously

¢ set/SetAsync: Adds or modifies an item in the cache, synchronously or
asynchronously

e Remove: Removes an item from the cache

e TryGetValue: Tentatively tries to get an item from the cache, synchronously

That's pretty much it! The memory cache will be available for all requests in the same
application and will go away once the application is restarted or stopped.

Distributed cache

The default out-of-the-box implementation of the distributed cache is pretty much useless
in real-life scenarios, but it might be a good starting point. Here's how to add support for it
in ConfigureServices:

services.AddDistributedMemoryCache () ;

There are no other options—it's just that. In order to use it, ask the Dependency Injection
container for an instance of IDistributedCache:

private readonly IDistributedCache _cache;

public CacheController (IDistributedCache cache)
{
this._cache = cache;

}

public IActionResult Get (int id)
{

return this.Content (this._cache.GetString(id.ToString()));
}

[191]

Controllers and Actions Chapter 4

The included implementation will behave in exactly the same ways as the in-memory
cache, but there are also some good alternatives for a more serious use case. The API it
offers does the following:

Get/GetAsync: Returns an item from the cache

Refresh/RefreshAsync: Refreshes an item in the cache, prolonging its lifetime
e Remove/RemoveAsync: Removes an item from the cache

Set/SetAsync: Adds an item to the cache or modifies its current value

Be warned that because the cache is now distributed and may take some time to
synchronize, an item that you store in it may not be immediately available to all clients.

Redis

Redis is an open source distributed cache system. Its description is beyond the scope of this
book, but it's sufficient to say that Microsoft has made a client implementation available for
it in the form of the Microsoft.Extensions.Caching.Redis NuGet package. After you
add this package, you get a couple of extension methods that you need to use to register a
couple of services in ConfigureServices, which replaces the Configuration and
InstanceName properties with the proper values:

services.AddDistributedRedisCache (options =>

{
options.Configuration = "servername";
options.InstanceName = "Shopping";

P i

And that's it! Now, whenever you ask for an instance of IDistributedCache, you will get
one that uses Redis underneath.

There is a good introduction to Redis available at https://redis.io/

topics/quickstart.

SQL Server

Another option is to use the SQL Server as a distributed cache.
Microsoft.Extensions.Caching.SqglServer is the NuGet package that adds support
for it. You can add support for it in ConfigureServices as follows:

services.AddDistributedSglServerCache (options =>

{

[192]

https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart

Controllers and Actions Chapter 4

options.ConnectionString = @"Server=.; Database=DistCache;
Integrated Security=SSPI;";

options.SchemaName = "dbo";

options.TableName = "Cache";

P
The rest is identical, so just get hold of IDistributedCache from the DI and off you go.

ASP.NET Core no longer includes the Ht tpApplication and
HttpApplicationState classes, which is where you could keep state
applications. This mechanism had its problems, and it's better if you rely
on either an in-memory or distributed cache instead.

Using temporary data

The Controller class offers a TempData property of the ITempDataDictionary type.
Temporary data is a way of storing an item in a request so that it is still available in the next
request. It's provider based, and there are currently two providers available:

¢ Cookie (CookieTempDataProvider)
e Session (SessionStateTempDataProvider)

For the latter, you need to enable session state support. To do this, you pick one of the
providers and register it using the dependency injection framework, normally in the
ConfigureServices method:

//only pick one of these

//for cookies

services.AddSingleton<ITempDataProvider, CookieTempDataProvider>();

//for session

services.AddSingleton<ITempDataProvider, SessionStateTempDataProvider>();

Since ASP.NET Core 2, the CookieTempDataProvider is already registered. If you use
SessionStateTempDataProvider, you also need to enable sessions.

After you have selected one of the providers, you can add data to the TempData collection:

this.TempData["key"] = "value";

[193]

Controllers and Actions Chapter 4

Retrieving and checking the existence is trivial, as you can see in the following code:

if (this.TempData.ContainsKey ("key"))
{

var value = this.TempDatal["key"];

}

After you have enabled temporary data by registering one of the providers, you can use the
[SaveTempData] attribute. When applied to a class that is returned by an action result, it
will automatically be kept in temporary data.

The [TempData] attribute, if applied to a property in the model class, will automatically
persist the value for that property in temporary data:

[TempDatal
public OrderModel Order { get; set; }

Comparing state maintenance techniques

The following table provides a simple comparison of all the different techniques that can be
used to maintain the state among requests:

Technique Storable objects|Is secure Is shared|In process|Expiration
Request object Yes No Yes No
Form string Yes (if using HTTPS) No Yes No
Query string [string No Yes Yes No
Route string No Yes Yes No
Cookies string Yes (if set to HTTPS only) No No Yes
Session byte[] Yes No Maybe |Yes
Cache object Yes Yes Maybe Yes
Temporary data|string Yes No No Yes

Needless to say, not all of these techniques serve the same purpose; instead, they are used
in different scenarios.

In the next section, we will learn how to use dependency injection inside controllers.

[194]

Controllers and Actions Chapter 4

Dependency injection
ASP.NET Core instantiates the controllers through its built-in DI framework. Since it fully

supports constructor injection, you can have any registered services injected as parameters
to your constructor:

//ConfigureServices
services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>();

//HomeController
public HomeController (IHttpContextAccessor accessor) { ... }

However, you can also request a service from the DI in a service locator way by leveraging
the HttpContext .RequestServices property as follows:

var accessor =
this.HttpContext.RequestServices.GetService<IHttpContextAccessor>();

For the strongly typed Get Service<T> extension method, you need to
add a reference to the Microsoft .Extensions.DependencyInjection
namespace.

In action methods, you can also inject a service by decorating its typed parameter with the
[FromServices] attribute, as follows:

public IActionResult Index([FromServices] IHttpContextAccessor accessor) {

}

The next topic covers a very important topic, especially for those that wish to implement
multilingual sites.

Globalization and localization

If you need to build an application that will be used by people in different countries, you
may want to have all of it, or at least parts of it, translated. It's not just that, though: you
may also want to have decimal numbers and currency symbols presented in a way that
users would expect. The process by which an application is made to support different
cultures is called globalization, and localization is the process of adapting it to a specific
culture—for example, by presenting it with text in a specific language.

[195]

Controllers and Actions Chapter 4

ASP.NET Core, like previous versions, fully supports these two entwined concepts by
applying a specific culture to a request and letting it flow, and by having the ability to serve
string resources according to the language of the requester.

We first need to add support for globalization and localization, and we do this by adding
the Microsoft.AspNetCore.Localization.Routing package to the project. As far as
this chapter is concerned, we want to be able to do the following:

e Set the culture for the current request
¢ Hand resource strings that match the current culture

Let's configure localization in the ConfigureServices method with a call to
AddLocalization. We'll pick the Resources folder as the source for resource files, as
we'll see in a minute:

services.AddLocalization (options =>

{

options.ResourcesPath = "Resources";
1)

We create this Resources folder and inside it, we create a Controllers folder. Using
Visual Studio, let's also create two resource files, one called HomeController.en.resx
and the other called HomeController.pt.resx. The resx extension is a standard
extension for resource files that are basically XML files containing key—value pairs. On each
of these files, add an entry with the key Hello and the following value:

Portuguese English
Ola! Hello!

It should look like the following screenshot. Note that each file has the name of the
controller class plus a two-letter culture identifier:

HomeController.en.resx + X

Strings ~ %3 Add Resource ~

MName Value Comment
[4 Hello Hello!

[196]

Controllers and Actions Chapter 4

Now, let's define a range of cultures and languages to support. To make it simple, let's say
that we will support Portuguese (pt) and English (en):

var supportedCultures = new List<CultureInfo>
{

new CultureInfo("pt"),

new CultureInfo ("en")
}i

We are using pt and en, generic culture descriptors, but we could have
also used pt-pt and en-gb for specific cultures. Feel free to add these if
you want.

We then configure RequestLocalizationOptions in order to have a default language:

services.Configure<RequestLocalizationOptions> (options =>
{
options.DefaultRequestCulture =
new RequestCulture (supportedCultures.First () .Name,
supportedCultures.First () .Name) ;
options.SupportedCultures = supportedCultures;
options.SupportedUICultures = supportedCultures;
options.RequestCultureProviders = new[] {
new AcceptlanguageHeaderRequestCultureProvider { Options =
options } };
P

The process by which a culture is obtained from the browser is based upon a provider
model. The following providers are available:

e AcceptLanguageHeaderRequestCultureProvider gets the culture from the
Accept-Language header.

e CookieRequestCultureProvider gets the culture from a cookie.

® QueryStringRequestCultureProvider gets the culture from a query string
parameter.

® RouteDataRequestCultureProvider gets the culture from a route parameter.

[197]

Controllers and Actions Chapter 4

Just replace the RequestCultureProviders assignments in the previous code with the
ones you want. As you can see, there are many options available, each featuring the
different features that you need to set, such as the cookie name, the query string parameter,
the route parameter name, and so on:

new CookieRequestCultureProvider { CookieName = "culture" }
new QueryStringRequestCultureProvider { QueryStringKey = "culture" }
new RouteDataRequestCultureProvider { RouteDataStringKey = "culture" }

In the second chapter, we looked at route constraints, so here we will introduce the culture
route constraint:

public sealed class CultureRouteConstraint : IRouteConstraint

{

public const string CultureKey = "culture";

public bool Match (
HttpContext httpContext,
IRouter route,
string routeKey,
RouteValueDictionary wvalues,
RouteDirection routeDirection)

{

if ((!'values.ContainsKey (CultureKey)) || (values

[CultureKey] == null))

{
return false;

}

var lang = values|[CultureKey].ToString();

var requestLocalizationOptions = httpContext
.RequestServices
.GetRequiredService<IOptions<RequestLocalization
Options>>();

if ((requestLocalizationOptions.Value.SupportedCultures

== null)
|| (requestLocalizationOptions.Value.SupportedCultures.

Count == 0))

{

try

{
new System.Globalization.CultureInfo(lang);
//if invalid, throws an exception
return true;

[198]

Controllers and Actions Chapter 4

catch

{
//an invalid culture was supplied
return false;

//checks if any of the configured supported cultures matches the
//one requested
return requestLocalizationOptions.Value.SupportedCultures
.Any (culture => culture.Name.Equals(lang, StringComparison
.CurrentCultureIgnoreCase));

}

The Mat ch method only operates if there is a value specified for the culture key; if so, it
extracts its value and checks the RequestLocalizationOptions to see if it is a supported
culture or if it is a valid one. Essentially, what this does is allow the verification of route
values, such as { language:culture}, and if the value is not a valid culture, you will get
an exception. This route constraint needs to be registered before it can be used, as follows:

services.Configure<RouteOptions> (options =>

{
options.ConstraintMap.Add (CultureRouteConstraint.CultureKey, typeof
(CultureRouteConstraint));

1)

Now, we want our controller to respond to the browser's language settings. For example, in
Chrome, we will configure this in Settings | Languages | Language and input settings:

Languages

Add languages and drag to order them based on your preference. Learn more

Languages English (United States)
English (United States) Google Chrome is displayed in this language
English [@ Use this language for spell checking
Portuguese (Portugal) [[] Offer to translate pages in this language
Portuguese

Add

W Enable spell checking Custom spelling dictionary

[199]

Controllers and Actions Chapter 4

What this setting does is configure the Accept-Language HTTP header that the browser

will send upon each request. We are going to take advantage of this to decide what
language we will present.

Each controller that we wish to make localization-aware needs to be changed as follows:

¢ Add a middleware filter attribute in order to inject a middleware component.

¢ Inject a string localizer that we can use to fetch appropriately translated
resources.

Here is what that should look like:

[MiddlewareFilter (typeof (LocalizationPipeline))]
public class HomeController

{

private readonly IStringLocalizer<HomeController> _localizer;

public HomeController (IStringLocalizer<HomeController> localizer)
{

this._localizer = localizer;
}

The LocalizationPipeline is actually an OWIN middleware component, and should
look as follows:

public class LocalizationPipeline
{
public static void Configure(
IApplicationBuilder app,
IOptions<RequestLocalizationOptions> options)

app.UseRequestLocalization (options.Value);
}

Now, if we want to access a specific resource in a culture-specific way, all we need to do is
the following:

var hello = this._localizer["Hello"];

The returned string will come from the right resource file, based on the current culture, as
originated from the browser. You can check this by looking at the
CulturelInfo.CurrentCulture and CultureInfo.CurrentUICulture properties.

[200]

Controllers and Actions Chapter 4

There are a couple of final things to note:

* You can have several resource files per language, or more accurately, per specific
(for example, en, pt) and generic language (for example, en—-gb, en-us); if the
browser requests a specific language (for example, en-gb, en-us), then the
localizer will try to find a resource file with that as a suffix, and if it cannot find
one, it will try the generic language (for example, en). If this also fails, it will
return the resource key provided (for example, He11o)

¢ The localizer never returns an error or a null value, but you can check whether
the value exists for the current language with the following;:

var exists = this._localizer["Hello"].ResourceNotFound;

The topics discussed here are very important if you are going to implement sites that need
to support multiple cultures or languages, but you should also consider using it if you
would like to have the text in your site in files, such as resources, so that they can be easily
edited and replaced.

Summary

In this chapter, we saw that using POCO controllers is not really needed, and it requires
more work than whatever benefit we can take out of it, so we should have our controllers
inherit from Controller.

Then we saw that using asynchronous actions is good for improved scalability as it won't
affect performance much, but your app will be more responsive.

You can forget about XML formatting, as JSON works perfectly, and is the standard way to
send and process data on the web.

We learned that we should use POCO classes as the model for our actions. The built-in
model binders work well, as we'll see in upcoming chapters, but you can add the cookie
value provider as it may come in handy.

As far as model validation is concerned, we saw that it is better to stick to the good old data
annotations API. If necessary, you should implement IvalidatableObject in your
model.

The Redis distributed cache system is very popular and is supported by both Azure and
AWS. Redis should be your choice for a distributed cache to keep reference data; in other
words, stuff that isn't changed often.

[201]

Controllers and Actions Chapter 4

Performance-wise, response caching is also useful. The products page shouldn't change that
much, so at least we can keep it in the cache for a few hours.

This was a long chapter where we covered controllers and actions, arguably the most
important aspects of ASP.NET Core. We also covered parts of the model concept, such as
binding, injection, and validation. We saw how we can maintain the state and the possible
values that we can return from an action. We also learned how to use resources for
translation purposes. Some of these concepts will be revisited in future chapters; in the next
one, we will be talking about views.

Questions

You should now be able to answer the following questions:

What is the default validation provider for the model state?
What is an action?

What is globalization and how does it differ from localization?
What is temporary data used for?

What is a cache good for?

What is a session?

Nk N =

What are the benefits of a controller inheriting from the Controller base class?

[202]

Views

After we've talked about how the application works from the server side, it's time to look at
the client side. In this chapter, we will cover the visual side of a Model-View-Controller
(MVC) app: the views.

A view in this context is a combination of HyperText Markup Language (HTML) and code
that executes on the server side and whose output is combined and sent to the client at the
end of the request.

To help achieve consistency and reusability, ASP.NET Core offers a couple of mechanisms,
page layouts, and partial views that can be very handy. Also, because we may want to
support different languages and cultures, we have built-in localization support, which
helps provide a better user experience.

In this chapter, we will learn the following:

e What are Razor views

e What are partial views

e What are view layouts

e What are the base Razor view classes

¢ How Razor finds view files

¢ How to inject services into a view

e What is a location expander

e How to perform view localization

¢ How to mix code and markup on a view

e How to enable view compilation upon publishing

Views Chapter 5

Technical requirements

In order to implement the examples introduced in this chapter, you will need the NET
Core 3 software development kit (SDK) and some form of text editor. Of course, Visual
Studio 2019 (any edition) meets all the requirements, but you can also use Visual Studio
Code, for example, or Visual Studio for Mac.

The source code can be retrieved from GitHub at https://github.com/PacktPublishing/
Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition.

Getting started

Views are the V in MVC. They are the visual part of the application. Typically, a web app
renders HTML pages, meaning HTML views. A view is a template that consists of a mix of
HTML and possibly some server-side content.

ASP.NET Core uses view engines to actually render the views, an extensible mechanism.
Before the time of Core, there were several view engines available; although their purpose
was always to generate HTML, they offered subtle differences in terms of syntax and the
features they supported. Currently, ASP.NET Core only includes one view engine, called
Razor, as the other one that used to be available, Web Forms, was dropped. Razor has been
around for quite some time and has been improved in the process of adding it to ASP.NET
Core.

Razor files have the cshtml extension (for C# HTML) and, by convention, are kept in a
folder called views underneath the application, and under a folder with the name of the
controller to which they apply, such as Home. There may be global and local views, and we
will learn the distinction in a moment.

The typical way to have a controller action returning a view is by returning the result of
executing the View method of the Controller class. This creates ViewResult, and it can
take a number of options, as follows:

® ContentType (string): An optional content type to return to the client;
text/html is the default

e Model (object): Just any object that we want to make available to the view

e StatusCode (int): An optional status code to return; if none is provided, it will
be 200

e TempData (ITempDataDictionary): Strongly typed temporary data to make
available until the next request

[204]

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Views Chapter 5

e ViewData (ViewDataDictionary): A key-value collection of arbitrary data to
pass to the view
e ViewName (string): The name of the view to render

The only required parameter is ViewName, and, if it's not supplied, the current action name
will be used; that is to say, if we are executing in an action method named Index, and we
want to return a view but don't supply its name, Index will be used, as illustrated in the
following code snippet:

public IActionResult Index ()
{

return this.View(); //ViewName = Index

}

There are some overloads to the View method that basically take either the viewName, the
model, or both, as illustrated in the following code snippet:

return this.View (
viewName: "SomeView",
model: new Model ()

)i

Beware—if your model is of the st ring type, .NET may mistakenly
choose the view overload that takes a view name!

Now, imagine you want to return a view with a specific content type or status code. You
can get the ViewResult object from the View method call and then change it, like this:

var view = this.View (new Model ());
view.ContentType = "text/plain";

view.StatusCode = StatusCodes.Status201Created;
return view;

Or, if we want to set some view data, we can run the following code:
view.ViewData["result"] = "success";

One thing that you must not forget upfront is, if you have not registered your MVC services
with AddMvc, you will need to do so with AddControllersWithViews, like this:

services.AddControllersWithViews () ;

[205]

Views Chapter 5

This will result in slightly less memory pressure than AddMvc because it will not, for
example, register the services that are needed for Razor pages (do not confuse them with
Razor views, the scope of this chapter!).

Razor Pages and Razor views are not the same thing: Razor Pages are
callable on their own, whereas Razor views are returned by controller
action methods. Razor Pages will be discussed in their own chapter.

Let's carry on by exploring the view class.

Understanding views

A Razor view is actually a template that is transformed into a class that inherits from
RazorPage<T>. The generic parameter is actually the type of model, as we will see in a
moment. This class inherits from RazorPage, which exposes a few useful properties, as
follows:

e IsLayoutBeingRendered (bool): Whether a layout page is currently being
rendered or not

® BodyContent (IHtmlContent): The resulting page's body contents; will only be
available at a later time

e TempData (ITempDataDictionary): The temporary data dictionary

e ViewBag (dynamic): Access to the view bag, which holds arbitrary data
prototyped as dynamic

e User (ClaimsPrincipal): The current user, as in HttpContext .User

e Output (TextWriter): The output writer, to which the HTML results are sent
once the page is processed

® DiagnosticSource (DiagnosticSource): Allows the logging of diagnostic
messages, covered here

e HtmlEncoder (HtmlEncoder): The HTML encoder used for encoding the results
as they are sent in the response

e Layout (string): The current layout file

e ViewContext (ViewContext): The view context
e Path (string): The current view file path

e Context (HttpContext): The HTTP context

All of these properties can be used in a view.

[206]

Views Chapter 5

We can, of course, define our own class that derives from RazorPage<T> and have our
view use it, by using @inherits, like this:

public class MyPage : RazorPage<dynamic>

{

public override Task ExecuteAsync()

{
return Task.CompletedTask;

}
}

The only required method is ExecuteAsync, but you don't need to worry about that. If we
now inherit from this class, we will see the following:

@inherits MyPage

Or, if we want the generated class to implement some interface, we can use the
@implements keyword instead—like, for example, for IDisposable, as illustrated in the
following code snippet:

@implements IDisposable

@public void Dispose()
{
//do something

}

In this case, we must, of course, implement all interface members ourselves.

Understanding the view life cycle

When an action signals that a view should be rendered, the following occurs (in a
simplified way):

e The action returns a ViewResult object because ViewResult implements
IActionResult, and its ExecuteResultAsync method is called
asynchronously.

¢ The default implementation attempts to find ViewResultExecutor from the
dependency injection (DI) framework.

e The Findview method is called on ViewResultExecutor, which uses an
injected ICompositeViewEngine, also obtained from the DI framework, to
obtain IView from the list of registered view engines.

[207]

Views Chapter 5

¢ The view engine chosen will be an implementation of IRazorViewEngine
(which, in turn, extends IViewEngine).

e The Iview implementation uses the registered IFileProviders to load the
view file.

e ViewResultExecutor is then asked to invoke the view, through its
ExecuteAsync method, which ends up invoking the ExecuteAsync methods of
the base ViewExecutor.

e ViewExecutor builds and initializes some infrastructure objects such as
ViewContext and ends up invoking IView RenderAsync method.

e Another service (ICompilationService) is used to compile the C# code.

¢ The registered IRazorPageFactoryProvider creates a factory method for
creating a .NET class that inherits from IRazorPage.

e TRazorPageActivator is passed an instance of the new IRazorPage.
e The ExecuteAsync method of IRazorPage is called.

Here, I didn't mention the filters, but they are here as well, except action filters, as I said.

Why is this important? Well, you may need to implement your own version
of—say—IRazorPageActivator so that you can perform some custom initialization or DI
in the Razor view, as illustrated in the following code block:

public class CustomRazorPageActivator : IRazorPageActivator

{

private readonly IRazorPageActivator _activator;

public CustomRazorPageActivator (
IModelMetadataProvider metadataProvider,
IUrlHelperFactory urlHelperFactory,
IJsonHelper jsonHelper,
DiagnosticSource diagnosticSource,
HtmlEncoder htmlEncoder,
IModelExpressionProvider modelExpressionProvider)

this._activator = new RazorPageActivator (
metadataProvider,
urlHelperFactory,
jsonHelper,
diagnosticSource, htmlEncoder,
modelExpressionProvider) ;

public void Activate (IRazorPage page, ViewContext context)

{

[208]

Views

Chapter 5

}

if (page is ICustomInitializable)
{
(page as ICustomInitializable) .Init (context);

}

this._activator.Activate (page, context);

All you need to do is register this implementation in ConfigureServices, for the
IRazorPageActivator service, like this:

services.AddSingleton<IRazorPageActivator, CustomRazorPageActivator>();

Now, how are views located?

Locating views

When asked to return a view (ViewResult), the framework needs first to locate the view
file (. cshtml).

The built-in conventions around locating view files are as follows:

View files end with the cshtml extension.

View filenames should be identical to the view names, minus the extension (for
example, a view of Index will be stored in a file named Index.cshtml).

View files are stored in a Views folder and inside a folder named after the
controller they are returned from—for example, Views\Home.

Global or shared views are stored in either the Views folder directly or inside a
Shared folder inside of it—for example, Views\Shared.

Actually, this is controlled by the ViewLocationFormats collection of the
RazorViewEngineOptions class (Razor is the only included view engine). This has the
following entries, by default:

/Views/{1}/{0}.cshtml
/Views/Shared/{0}.cshtml

The {1} token is replaced by the current controller name and {0} is
replaced by the view name. The / location is relative to the ASP.NET Core
application folder, not wwwroot.

[209]

Views Chapter 5

If you want the Razor engine to look in different locations, all you need to do is tell it; so,
through the AddRazorOptions method, that is usually called in sequence to AddMvc, in the
ConfigureServices method, like this:

services
.AddMvc ()
.AddRazorOptions (options =>

{
options.ViewLocationFormats.Add ("/AdditionalViews/{0}.cshtml");

)i

The view locations are searched sequentially in the ViewLocationFormats collection until
one file is found.

The actual view file contents are loaded through IFileProviders. By default, only one
file provider is registered (PhysicalFileProvider), but more can be added through the
configuration. The code can be seen in the following snippet:

services
.AddMvc ()
.AddRazorOptions (options =>

{

options.FileProviders.Add (new CustomFileProvider());
)i

Adding custom file providers may prove useful—for example, if you want to load contents
from non-orthodox locations, such as databases, ZIP files, assembly resources, and so on.
There are multiple ways to do this. Let's try them in the following subsections.

Using view location expanders

There is an advanced feature by which we can control, per request, the locations to search
the view files: it's called view location expanders. View location expanders are a Razor
thing, and thus are also configured through AddRazorOptions, as illustrated in the
following code snippet:

services
.AddMvc ()
.AddRazorOptions (options =>
{
options.ViewLocationExpanders.Add (new ThemesViewLocationExpander
("Mastering"));
1)

[210]

Views Chapter 5

A view location expander is just some class that implements the IViewExpander contract.

For example, imagine you want to have a theme framework that would add a couple of
folders to the views search path. You could write it like this:

public class ThemesViewLocationExpander : IViewLocationExpander
{
public ThemesViewLocationExpander (string theme)

{

this.Theme = theme;

public string Theme { get; }

public IEnumerable<string> ExpandViewLocations (
ViewLocationExpanderContext context,
IEnumerable<string> viewLocations)

var theme = context.Values["theme"];

return viewLocations
.Select (x => x.Replace("/Views/", "/Views/" + theme + "/"))
.Concat (viewLocations) ;

public void PopulateValues (ViewLocationExpanderContext context)
{

context.Values["theme"] = this.Theme;
}
The default search locations, as we've seen, are the following:

o /Views/{1}/{0}.cshtml
e /Views/Shared/{0}.cshtml

By adding this view location expander, for a theme called Mastering, these will become
the following:

o /Views/{1}/{0}.cshtml

e /Views/Mastering/{1}/{0}.cshtml

e /Views/Shared/Mastering/{0}.cshtml
e /Views/Shared/{0}.cshtml

[211]

Views Chapter 5

The IvViewLocationExpander interface defines only two methods, as follows:

e PopulateValues: Used to initialize the view location expander; in this example,
I used it to pass some value in the context.

e ExpandViewLocations: This will be called to retrieve the desired view
locations.

View location expanders are queued, so they will be called in sequence, from the
registration order; each ExpandviewLocations method will be called with all the
locations returned from the previous one.

Both methods, through the context parameter, have access to all the request parameters
(HttpContext, RouteData, and so on), so you can be as creative as you like, and define the
search locations for the views according to whatever rationale you can think of.

Using view engines

It was mentioned at the start of the chapter that ASP.NET Core only includes one view
engine, Razor, but nothing prevents us from adding more. This can be achieved through
the ViewEngines collection of MvcViewOptions, as illustrated in the following code
snippet:

services
.AddMvc ()
.AddViewOptions (options =>
{

options.ViewEngines.Add (new CustomViewEngine ());
)i

A view engine is an implementation of IViewEngine, and the only included
implementation is RazorViewEngine.

Again, view engines are searched sequentially when ASP.NET Core is asked to render a
view and the first one that returns one is the one that is used. The only two methods
defined by IViewEngine are as follows:

e FindView (ViewEngineResult): Tries to find a view from ActionContext
® GetView (ViewEngineResult): Tries to find a view from a path

Both methods return null if no view is found.

[212]

Views Chapter 5

A view is an implementation of I1View, and the ones returned by RazorviewEngine are all
RazorView. The only notable method in the IView contract is RenderAsync, which is the
one responsible for actually rendering a view from ViewContext.

A view engine is not an easy task. You can find a sample implementation
written by Dave Paquette in a blog post at: http://www.davepaquette.
com/archive/2016/11/22/creating-a-new-view—engine-in-asp-net-

core.aspx.

A Razor view is a template composed essentially of HTML, but it also accepts
fragments—which can be quite large, actually—of server-side C# code. Consider the
requirements for it, as follows:

e First, you may need to define the type of model that your view receives from the
controller. By default, it is dynamic, but you can change it with a @model
directive, like this:

@model MyNamespace.MyCustomModel

¢ Doing this is exactly the same as specifying the base class of your view. This is
accomplished by using @inherits, like this:

@inherits RazorPage<MyNamespace.MyCustomModel>

Remember: the default is RazorPage<dynamic>. Don't forget: you cannot
have @inherits and @model at the same time with different types!

e If you don't want to write the full type name, you can add as many Gusing
declarations as you want, as illustrated in the following code snippet:

@using My.Namespace
@using My.Other.Namespace

* You can intermix HTML with Razor expressions, which are processed on the
server side. Razor expressions always start with the @ character. For example, if
you want to output the currently logged-in user, you could write this:

User: (@User.Identity.Name

[213]

http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx

Views Chapter 5

¢ You can output any method that returns either a string or an IHtmlContent
directly, like this:

@Html.Raw (ViewBag.Message)

e If you need to evaluate some simple code, you will need to include it inside
parentheses, like this:

Last week: @ (DateTime.Today - TimeSpan.FromDays (7))

Remember—if your expression has a space, you need to include it inside

parentheses, the only exception being the await keyword, as illustrated in the
following code snippet:

@await Component.InvokeAsync ("Process");

¢ You can encode HTML (implicitly using the Htm1Encoder instance supplied in
the Htm1Encoder property), like this:

@ ("Hello, World")
This will output an HTML-encoded string, as illustrated in the following code snippet:
&1t; span>Hello, Worlds

More complex expressions, such as the definition of variables, setting values to properties,
or calling of methods that do not return a stringy result (st ring, IHtmlContent) need to

go in a special block, in which you can put pretty much anything you would like in a .NET
method, as illustrated in the following code snippet:

(CRY
var user = @User.Identity.Name;
OutputUser (user) ;
Layout = "Master";

Sentences inside @{ } blocks need to be separated by semicolons.

A variable defined in this way can be used in any other place in the view—after the
declaration, of course.

[214]

Views Chapter 5

Let's look at conditionals (if, else if, else and switch)now, which are nothing special.
Have a look at the following code snippet:

//check if the user issuing the current request is authenticated somehow
@if (this.User.Identity.IsAuthenticated)
{
<p>Logged in</p>
}
else

{
<p>Not logged in</p>
}

//check the authentication type for the current user
@switch (this.User.Identity.AuthenticationType)
{
case "Claims":
<p>Logged in</p>
break;

case null:
<p>Not logged in</p>
break;

}

The first condition checks whether the current user is authenticated, and displays an HTML
block accordingly. On the second, we have a switch instruction, on which we can specify
multiple possible values; in this case, we are only looking at two, "Claims" and null,
which essentially yields the same result as the first condition.

Loops use a special syntax, where you can mix together HTML (any valid Extensible
Markup Language (XML) element) and code, as illustrated in the following code snippet:

@for (var 1 = 0; 1 < 10; i++)
{
<p>Number: @i</p>

}

Note that this will not work because Number is not included inside an XML element, as
illustrated in the following code snippet:

@Qfor (var 1 = 0; 1 < 10; i++)
{

Number: @i

}

[215]

Views Chapter 5

But the following syntax (@ :) would work:

@:Number: @i
This makes the rest of the line be treated as an HTML chunk.
The same syntax can be used in foreach and while.

Now, let's have a look at t ry/catch blocks, shown in the following code snippet:

Qtry
{
SomeMethodCall () ;

t
catch (Exception ex)
{

<p class="error">An error occurred: @ex.Message</p>
Log (ex);
}

Consider the @using and @lock blocks shown in the following code snippet:

@using (Html.BeginForm())

{
//the result is disposed at the end of the block
}

@lock (SyncRoot)
{

//synchronized block
}

Now, what if you want to output the @ character? You need to escape it with another @, like
this:

<p>Please enter your username @Q@domain.com</p>

But Razor views recognize emails and do not force them to be encoded, as illustrated in the
following code snippet:

<input type="email" name="email" value="nobody@domain.com"/>

Finally, comments—single or multiline—are also supported, as illustrated in the following
code snippet:

@*this is a single—-line Razor comment*@
@*
this

[216]

Views Chapter 5

is a multi-line
Razor comment
*@Q

Inside a @{ } block, you can add C# comments too, as illustrated in the following code
snippet:

@
//this is a single-line C# comment
/*
this
is a multi-line
C# comment
*/

}

Of course, because a view is essentially HTML, you can also use HTML comments, as
illustrated in the following code snippet:

<!-— this is an HTML comment —-->

The difference between C#, Razor, and HTML comments is that only
HTML comments are left by the Razor compilation process; the others are
discarded.

We can add functions (which are actually, in object-oriented terminology, methods) to our
Razor views; these are just NET methods that are only visible in the scope of a view. To
create them, we need to group them inside a @ functions directive, like this:

@functions

{

int Count (int a, int b) { return a + b; }

public T GetValueOrDefault<T>(T item) where T : class, new()
{

return item ?? new T();
}
}

It is possible to specify visibility. By default, this happens inside a class, which is called a
private class. It is probably pointless to specify visibility since the generated class is only
known at runtime, and there is no easy way to access it.

[217]

Views Chapter 5

The @ functions name is actually slightly misleading, as you can declare fields and
properties inside of it, as can be seen in the following code block:

@functions
{
int? _state;
int State
{
get
{
if (_state == null)
{
_state = 10;
}

return _state;

}

This example shows a simple private field that is encapsulated behind a property that has
some logic behind it: the first time it is accessed, it sets the field to a default value;
otherwise, it just returns what the current value is.

Logging and diagnostics

As usual, you can obtain a reference to ILogger<T> from the DI framework and use it in
your views, like this:

@inject ILogger<MyView> Logger

But there is also another built-in mechanism, the DiagnosticSource class, and property,
which is declared in the RazorPage base class. By calling its Write method, you can write
custom messages to a diagnostics framework. These messages can be any .NET object, even
an anonymous one, and there is no need to worry about its serialization. Have a look at the
following code snippet:

@{
DiagnosticSource.Write ("MyDiagnostic", new { data = "A diagnostic" });

}

[218]

Views Chapter 5

What happens with this diagnostic message is actually somewhat configurable. First, let's
add the Microsoft .Extensions.DiagnosticAdapter NuGet package, and then create a
custom listener for the events generated for this diagnostic source, like this:

public class DiagnosticListener
{
[DiagnosticName ("MyDiagnostic")]
public virtual void OnDiagnostic (string data)

{
//do something with data

}

We can add as many listeners as we want, targeting different event names. The actual
method name does not matter, as long as it has a [DiagnosticName] attribute applied to it
that matches an event name. We need to register and hook it to the .NET Core framework,
in the Configure method, by adding a reference to the DiagnosticListener service so
that we can interact with it, like this:

public void Configure (IApplicationBuilder app,
diagnosticListener)

{

DiagnosticListener

var listener new DiagnosticListener();
diagnosticListener.SubscribeWithAdapter (listener);

//rest goes here

}

Notice that the name in the [DiagnosticName] attribute and DiagnosticSource.Write
call match, and also, the name, data, of the anonymous type in the write call matches the
parameter name (and type) of the OnDiagnostic method.

Built-in .NET Core classes produce diagnostics for the following:

e Microsoft.AspNetCore.Diagnostics.HandledException

Microsoft.AspNetCore.Diagnostics.UnhandledException

Microsoft
Microsoft
Microsoft
Microsoft
Microsoft
Microsoft

Microsoft

.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.

Hosting.BeginRequest
Hosting.EndRequest
Hosting.UnhandledException
Mvc.AfterAction
Mvc.AfterActionMethod
Mvc.AfterActionResult

Mvc.AfterView

[219]

Views

Chapter 5

e Microsoft
e Microsoft
e Microsoft
e Microsoft
e Microsoft
e Microsoft
e Microsoft
e Microsoft
e Microsoft
e Microsoft
e Microsoft
e Microsoft
e Microsoft

e Microsoft

.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.
.AspNetCore.

Mvc.
Mvc.
Mvc.
Mvc.

Mvc.

Mvc

Mvc

Mvc.
Mvc.
Mvc.
Mvc.
Mvc.
Mvc.

Mvc.

AfterViewComponent
BeforeAction

BeforeActionMethod
BeforeActionResult

BeforeView

.BeforeViewComponent

.Razor.AfterViewPage

Razor.BeforeViewPage
Razor.BeginInstrumentationContext
Razor.EndInstrumentationContext
ViewComponentAfterViewExecute
ViewComponentBeforeViewExecute
ViewFound

ViewNotFound

Hopefully, the names should be self-explanatory. Why would you use this mechanism over
the ILogger-based one? This one makes it very easy to add listeners to a diagnostic source,
with strongly typed methods. I will talk more about the differences between the two in
Chapter 12, Logging, Tracing, and Diagnostics.

View compilation

Normally, a view is only compiled when it is first used—that is, a controller action returns
vViewResult. What this means is that any eventual syntax errors will only be caught at
runtime when the framework is rendering the page; plus, even if there are no errors,
ASP.NET Core takes some time (in the order of milliseconds, mind you) to compile the
view. This does not need to be the case, however.

Unlike previous versions, ASP.NET Core 3 does not recompile a view when the Razor file
changes, by default. For that, you have to restart your server. If you want to have this
behavior back, you need to add a reference to the
Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation NuGet package and add
the following line to the services configuration:

services
.AddMvc ()
.AddRazorRuntimeCompilation () ;

[220]

Views Chapter 5

Or, you may prefer to enable this only for the debug version of your app, which excludes it
from production builds. In that case, you can do it like this:

var mvc = services.AddMvc () ;

#1if DEBUG
mvc.AddRazorRuntimeCompilation () ;
#endif

Or, for a specific environment, you can inject ItebHostEnvironment into your Startup
class, store it, and check the current environment before making the call to
AddRazorRuntimeCompilation, as follows:

public IConfiguration Configuration { get; }
public IWebHostEnvironment Environment { get; }

public Startup (IConfiguration configuration, IWebHostEnvironment
environment)
{

this.Configuration = configuration;

this.Environment = environment;

var mvc = services.AddMvc () ;

if (this.Environment.IsDevelopment ())
{
mvc.AddRazorRuntimeCompilation () ;

}

Microsoft makes available a NuGet package, which is
Microsoft.AspNetCore.Mvc.Razor.ViewCompilation, that you can add as a reference
to your project. After this, you can enable view compilation at publishing time, and
currently, the only way to do this is by manually editing the . csproj file. Look for the first
<PropertyGroup> instance declared in it, the one that contains the <TargetFramework>
element, and add a <MvcRazorCompileOnPublish> and a
<PreserveCompilationContext> element. The result should look like this:

<PropertyGroup>
<TargetFramework>netcoreapp3</TargetFramework>
<MvcRazorCompileOnPublish>true</MvcRazorCompileOnPublish>
<PreserveCompilationContext>true</PreserveCompilationContext>
</PropertyGroup>

Now, whenever you publish your project, either using Visual Studio or the dotnet
publish command, you will get errors.

[221]

Views Chapter 5

Do not forget that the precompilation only occurs at publish, not build,
time!

The class that is generated for each view exposes a property called Html that is of type
IHtmlHelper<T>, T being the type of your model. This property has some interesting
methods that can be used for rendering HTML, as follows:

¢ Generating links (ActionLink, RouteLink)

¢ Generating forms for a given model or model property (BeginForm,
BeginRouteForm, CheckBox, CheckBoxFor, Display, DisplayFor,
DisplayForModel, DisplayName, DisplayNameFor,
DisplayNameForInnerType, DisplayNameForModel, DisplayText,
DisplayTextFor, DropDownList, DropDownListFor, Editor, EditorFor,
EditorForModel, EndForm, Hidden, HiddenFor, Id, IdFor, IdForModel,
Label, LabelFor, LabelForModel, ListBox, ListBoxFor, Name, NameFor,
NameForModel, Password, PasswordFor, RadioButton, RadioButtonFor,
TextArea, TextAreaFor, TextBox, TextBoxFor, Value, ValueFor,
ValueForModel)

e Displaying validation messages (ValidationMessage,
ValidationMessageFor, ValidationSummary)

¢ Rendering anti-forgery tokens (AntiForgeryToken)
e Outputting raw HTML (Raw)

e Including partial views (Partial, PartialAsync, RenderPartial,
RenderPartialAsync)

¢ Getting access to the context properties (ViewContext, ViewBag, ViewData,
TempData) and also the base classes' (RazorPage, RazorPage<T>) properties
(UrlEncoder, MetadataProvider)

¢ A couple of configuration properties (Html5DateRenderingMode,
IdAttributeDotReplacement)

We will look into these methods in more detail in chapter 13, Understanding How Testing
Works. For now, let's see how we can add our own extension (helper) methods. The easiest
way is to add an extension method over ITHtmlHelper<T>, as illustrated in the following
code snippet:

public static HtmlString CurrentUser (this IHtmlHelper<T> html)

{
return new HtmlString (html.ViewContext.HttpContext.

[222]

Views Chapter 5

User.Identity.Name) ;
t

Now, you can use it in every view, like this:

@Html.CurrentUser ()

Make sure that you either return st ring or IHtmlContent from it; otherwise, you won't
be able to use this syntax.

We've seen that the ViewResult class offers the following three properties that can be used
to pass data from an action into a view:

e The model (Model): In the early days of ASP.NET MVC, this was the only
mechanism that could be used; we needed to define a possibly quite complex
class with all the data that we would like to make available.

e The view data (ViewData): Now that we have a strongly typed collection of
random values, this has gained in popularity against the model.

e The temporary data (TempData): Data that will only be available until the next
request.

These properties are eventually passed along to identically named ones in the
RazorPage<T> class.

It is even possible, but not too common, to specify the view engine (an instance of
IViewEngine) that should be used by the view rendering process, by setting a value to the
ViewEngine property. Normally, this is looked after automatically.

Passing data to views

Next we will be talking about different ways to pass data to a view.

Using the model

By default, a Razor view inherits from RazorPage<dynamic>, which means that the model
is prototyped as dynamic.

This will be the type for the Model property. This is a flexible solution because you can pass
whatever you want in the model, but you won't get IntelliSense—Visual Studio support in
completion—for it.

[223]

Views Chapter 5

You could, however, specify a strongly typed model through inherits, like this:
@inherits RazorPage<ProcessModel>

This could also be achieved by using the model directive, like this:
@model ProcessModel

These are essentially the same. Visual Studio helps you find its properties and methods, as
illustrated in the following screenshot:

St =lRazorPage<ProcessModel >

Web.Controllers
Microsoft.AspNetCore.Mvc.Razor

EModel.
Equals
GetHashCode
GetType
K 1d
& State
ToString

»

One thing to keep in mind is that you cannot pass an anonymous type on
your controller, as the view won't be able to access its properties. See the
next chapter for a solution to this.

Using the ViewBag property

The view bag (ViewBag property) came as a complement for the model, but, in my
perspective, has long taken over it. Why is that? Well, I guess the problem is that you need
to change the model class whenever you need more properties, and it's much easier to just
stick new items in the view bag.

There are two options for using the view bag, as follows:
e Through the viewBag dynamic property, which is not runtime-safe, like this:
<script>alert ('@ViewBag.Message') ;</script>
e Through the ViewData strongly typed dictionary, like this:

<script>alert ('@ViewData["Message"]');</script>

[224]

Views Chapter 5

ViewBag is just a wrapper around ViewData—anything that is added to one can be
retrieved from the other, and vice versa. A good reason for picking ViewData is if the
stored data's name contains a space or other special character such as -, /, @, and so on.

Using temporary data

Temporary data, explained in chapter 4, Controllers and Actions, can be retrieved in a
similar way to ViewData, should we need to, as follows:

<script>alert ('@TempData["Message"]');</script>

Remember that temporary data only exists in the scope of the next request, as its name
implies.

Next, we will explore the mechanism for defining a common structure for our views.

Understanding view layouts

View layouts are similar to master pages in good old ASP.NET Web Forms. They define a
base layout and, possibly, default contents that several views can use, so as to maximize,
reuse, and offer a consistent structure. An example view layout can be seen in the following
screenshot:

Left Navigation Content

Image taken from https://docs.microsoft.com/en-us/aspnet/core/mvc/views/layout

[225]

Views Chapter 5

View layouts themselves are also Razor views, and they can be controlled by setting the
Layout property in a view, which is defined in the RazorPage base class, as follows:

@{ Layout = "_Layout"; }

The Layout property is just the name of a view, one that can be discovered in the usual
way.

The only thing that is required in a layout view is a call to the RenderBody method; this
causes the actual view that is using it to be rendered. It is also possible to define section
placeholders, which may be used by actual views to provide content. A section is defined
by a RendersSection call, as illustrated in the following code block:

<!DOCTYPE html>
<html>
<head><title></title>
@RenderSection ("Head", required: false)

</head>
<body>
@RenderSection ("Header", required: false)
<div style="float:left">
@RenderSection ("LeftNavigation", required: false)
</div>
@RenderBody

<div style="float:right">
@RenderSection ("Content", required: true)
</div>
@RenderSection ("Footer", required: false)
</body>
</html>

As you can see, RenderSection takes the following two parameters:

¢ A name, which must be unique among the layout

¢ Depending on whether the section is required, the required parameter (the
default is t rue)

There are also asynchronous versions of RenderSection, appropriately named
RenderSectionAsync.

Unlike ASP.NET Web Forms content placeholders, it is not possible to
supply default content on a view layout.

[226]

Views Chapter 5

If a section is defined as required, a view page that uses the layout view must declare a
section for it, as follows:

@section Content

{
<h1>Hello, World!</hi>

}

If no sections are defined, the Razor compilation system just takes the compiled view and
inserts its contents in the location where RenderBody is called.

You can check whether a section is defined or not by executing the following code:

@if (IsSectionDefined("Content™)) { ... }

The IsLayoutBeingRendered property tells us whether a layout view is defined, found,
and is currently being rendered.

If you know that a section is defined as required in the view layout but you still do not wish
to render it, you can call Ignoresection, like this:

@IgnoreSection (sectionName: "Content")

And if for whatever reason you decide not to include any contents of your actual view in a
view layout, you can call IgnoreBody.

Layouts can be nested—that is, a top-level view can define one layout that
also has its own layout, and so on.

Next, let's explore the view types and how they are used.

Understanding partial views

A partial view is similar to a regular view, but it is intended to be included in the middle of
one. The syntax and feature set are exactly the same. The concept is similar to that of user
controls in ASP.NET Web Forms, and the idea is basically DRY (short for Don't Repeat
Yourself). By wrapping common content in a partial view, we can reference it in different
places.

[227]

Views Chapter 5

There are three ways in which you can include a partial view in the middle of a view, both
in a synchronous and an asynchronous manner. The first way involves the Partial and
PartialAsync methods, as illustrated in the following code snippet:

@Html.Partial ("LoginStatus")
@await Html.PartialAsync ("LoginStatus")

You would use the asynchronous version if the view has any code that needs to run
asynchronously.

Another way to include partial contents is through RenderPartial and
RenderPartialAsync, as illustrated in the following code snippet:

@{ Html.RenderPartial ("LoginStatus"); }
@{ await Html.RenderPartialAsync ("LoginStatus"); }

What is the difference between the two?, I hear you ask. Well, Partial/PartialAsync returns
IHtmlContent, which is essentially an encoded string, and
RenderPartial/RenderPartialAsync directly writes to the underlying output writer,
possibly resulting in a (slightly) better performance.

The third one is to use the <partial> tag helper that came out in ASP.NET Core 2.1, as
illustrated in the following code snippet:

<partial name="Shared/_ProductPartial.cshtml" />

Partial views and view layouts are two different, complementary,
mechanisms to allow reuse. They should be used together, not one instead
of the other.

Let's see how partial views work.

Passing data to partial views

Both Partial and RenderPartial offer overloads that allow us to pass a model object, as
illustrated in the following code snippet:

@Html.Partial ("OrderStatus", new { Id = 100 })
@{ Html.RenderPartial ("OrderStatus", new { Id = 100 }); }

[228]

Views Chapter 5

Of course, the model declared in the 0OrderStatus view must be compatible with the
passed model, which will always happen if it is declared as dynamic (the default); if it's not,
then it will throw an exception, so beware!

For Partial/PartialAsync, we can also pass values for its ViewBag, like this:

@Html.Partial ("OrderStatus", new { Id = 100 }, ViewData)
@await Html.PartialAsync ("OrderStatus", new { Id = 100 }, ViewData)

Here, we are just passing along the current view bag, but it need not be the case.

Partial views can be nested, meaning that a partial view can include other
partial views.

Finding partial views

The discovery of partial views is slightly different, for the following reasons:

e If only a name is supplied (for example, LoginStatus), view files are discovered
using the same rules as with global views.

e If the view name ends with . cshtml (for example, LoginStatus.cshtml), then
the view file is only looked up in the same folder as the containing view.

e If the view name starts with either ~/ or / (for example,
~/Views/Status/LoginStatus.cshtml), then the view file is looked up in a
folder relative to the web application root (not the wwwroot folder, mind you).

e If the view name starts with . ./ (for example,
../Status/LoginStatus.cshtml), then the view engine tries to find it in a
folder relative to one of the calling views.

Multiple partial views with the same name can exist if located in different folders.

[229]

Views Chapter 5

Understanding the special view files

ASP.NET Core recognizes two special view files, which, if present, are treated specially, as
follows:

e ViewImports.cshtml: Used to specify Razor directives that should apply to
all views (@QaddTagHelper, @removeTagHelper, @tagHelperPrefix, Qusing,
@model, @inherits, and @inject), as illustrated in the following code snippet:

@using Microsoft.AspNetCore.Mvc.Razor
@using My.Custom.Namespace
@inject IMyService Service

e _ViewStart.cshtml: Any code that is placed here will be executed for all
views; for this reason, it is a good place for setting the global common layout
(which, of course, can be overridden by each view), a common model, or base
view page, as follows:

@{ Layout = "_Layout"; 1}
But there are other uses too, such as the following:

¢ Adding Qusing directives so that all views have access to the same namespaces
e Adding @inject directives

¢ Registering tag helpers through @addTagHelper

e Defining static methods (most useful for Razor Pages)

The Visual Studio template adds these files to the Views folder of the application. This
means that they cannot be normally referenced, as this folder is outside the default search
locations for views.

Special files are aware of areas, meaning that if you are using areas and
you add one of these files to an area, it will be executed after the global
one.

Let's see some of the options we can configure for views.

[230]

Views Chapter 5

Understanding the view options

As developers, we get to influence some of the ways views—and, in particular, Razor
views—work. Normally, this is done through configuration, through AddviewOptions
and AddRazorOptions extension methods, which are commonly called in sequence to
AddMvc, in the ConfigureServices method, as illustrated in the following code snippet:

services
.AddMvc ()
.AddViewOptions (options =>
{

//global view options

})
.AddRazorOptions (options =>

{

//razor-specific options

P i

Through AddviewOptions, we can configure the following properties of the
MvcViewOptions class:

e ClientModelValidatorProviders
(IList<IClientModelValidatorProvider>): A collection of client-model
validator providers, to be used when the model is to be validated on the client
side; this will be discussed in chapter 11, Security, but by default, it
includes DefaultClientModelValidatorProvider,
DataAnnotationsClientModelValidatorProvider,
and NumericClientModelValidatorProvider

e HtmlHelperOptions (HtmlHelperOptions): Several options related to the
generation of HTML; this is discussed next.

® ViewEngines (IList<IViewEngine>): The registered view engines; by default,
this only contains an instance of RazorViewEngine.

HtmlHelperOptions features the following properties:

e ClientValidationEnabled (bool): Whether client validation should be
enabled or not; the default is t rue.

e Html5DateRenderingMode (Html5DateRenderingMode): The format for
rendering DateTime values as strings in HTML5 form fields; the default is
Rfc3339, which renders DateTime as 2017-08-19T12:00:00-01:00.

e IdAttributeDotReplacement (string): The string to be used instead of dots
(.) when MVC renders input fields for a model; the default is _.

[231]

Views Chapter 5

e ValidationMessageElement (string): The HTML element that will be used to
render its specific validation message; the default is span.

e ValidationSummaryMessageElement (string): The HTML element for
rendering the global validation summary; the default is span.

The AddRazorOptions method provides features that are more specific to Razor views, as
follows:

e AdditionalCompilationReferences (IList<MetadataReference>): A
collection of assembly references from where ASP.NET Core elements
(controllers, view components, tag helpers, and more) can be loaded; empty by
default

e AreaViewLocationFormats (IList<string>): The list of folders to be
searched, inside an area folder, for views; similar to ViewLocationFormats, but
applies to areas

e CompilationCallback (Action<RoslynCompilationContext>): A callback
method that is called after each element is compiled; safe to ignore, as it should
only be used by advanced developers

e CompilationOptions (CSharpCompilationOptions): A set of C# compilation
options

e FileProviders (IList<IFileProvider>): The collection of file providers; by
default, only contains an instance of PhysicalFileProvider

e ParseOptions (CSharpParseOptions): A set of C# parsing options

e ViewLocationExpanders (IList<IViewLocationExpander>): The collection
of view location expanders

e ViewLocationFormats (IList<string>): The locations to be searched for
view files, discussed earlier

Normally, MetadataReference is obtained using one of the static methods of the
MetadataReference class, as follows:

var asm = MetadataReference.CreateFromFile ("\Some\Folder\MyAssembly.d1l1l");

The CSharpCompilationOptions and CSharpParseOptions classes are quite extensive
and include, mostly, every setting that the compiler supports, even some that are not easily
found in Visual Studio. Explaining all of them would be tedious and really off-topic, but
I'm going to give you just two examples here:

services
.AddMvc ()
.AddRazorOptions (options =>

[232]

Views Chapter 5

//enable C# 7 syntax
options.ParseOptions.WithLanguageVersion (LanguageVersion.CSharp7);

//add a using declaration for the System.Ling namespace
options.CompilationOptions.Usings.Add ("System.Ling");
1)

This code runs as part of the bootstrap process and it sets an option for Razor Pages to use
C# version 7. It is also adding an implicit using statement for the System.Ling
namespace.

Now, we will see how to logically (and physically) organize our site functionality: areas.

Referencing the base path of the application

The base path was described in chapter 2, Configuration, as a means to host our application
in a path other than /. Should you need to get the base path for your app in a view, you can
use this:

<script>
var basePath = 'QUrl.Content ("~/")"';
</script>

In this example, we are storing the configured base path (which maps to the special ~
folder) to a JavaScript variable.

Now that we understand how layouts work, let's see how to use areas on a website.

Using areas

Areas are a way for you to segregate functionality within your website. For example,
anything related to the admin area goes in one place—for example, a physical folder,
including its own controllers, views, and so on. In terms of views, the only thing worth
mentioning is how we can configure the paths where view files can be found. This is
controlled through the AreaviewLocationFormats collection of the
RazorViewEngineOptions class, as illustrated in the following code snippet:

services
.AddMvc ()
.AddRazorOptions (options =>
{

[233]

Views Chapter 5

options.AreaViewLocationFormats.Add ("/SharedGlobal
/Areas/{2}.cshtml");
1)

The included values are the following ones:

e /Areas/{2}/Views/{1}/{0}.cshtml
e /Areas/{2}/Views/Shared/{0}.cshtml
e /Views/Shared/{0}.cshtml

Here, the {2} token stands for the area name, whereas {0} is for the view name, and
{1} stands for the controller name, as seen previously. Essentially, you have a similar
structure as for non-area views, but you now have views that are shared globally or per
area.

As stated previously, you can add special files to areas. Now, let's see how DI works in
views.

Dependency injection

View classes (RazorPage<T>) support services being injected in their constructors, as
illustrated in the following code snippet:

public class MyPage : RazorPage<dynamic>
{

public MyPage (IMyService svc)

{

//constructor injection
}
}

Views also support having services injected into them. Just declare an @inject element in
the . cshtml file with the service type to retrieve and the local variable to hold it, probably
at the beginning of the view, like this:

@inject IHelloService Service
After this, you can use the injected Service variable, like this:

@Service.SayHello ()

[234]

Views Chapter 5

There may be the need to either fully qualify the type name or add a
Qusing declaration for its namespace.

Let's see now how to have our application respond in different languages.

Using translations

We've seen in the previous chapter that ASP.NET Core includes built-in mechanisms for
displaying resources in different languages; this definitely includes views. Actually, there
are two ways to display translated texts, as follows:

e Resources
e Translated views

Let's start with resources.

Using resources

So, let's assume we have a couple of resource files (. resx), for languages PT and EN. Let's
store them under the Resources folder (this can be configured, as we'll see in a moment),
underneath a folder called Views, and inside a folder named after the controller the views
are to be served from (say, Home, for example). The filenames themselves must match the
action names—so, for example, we might have the following;:

® Resources\Views\Home\Index.en.resx

® Resources\Views\Home\Index.pt.resx

Before we can use them, we need to configure the localization services, in
ConfigureServices, like this:

services

.AddMvc ()

.AddMvcLocalization (
format: LanguageViewLocationExpanderFormat.Suffix,
localizationOptionsSetupAction: options =>
{

options.ResourcesPath = "Resources";

P

[235]

Views Chapter 5

The two parameters to AddMvcLocalization represent the following:

e format (LanguageViewLocalizationExpanderFormat): The format to use for
stating the culture of the resource file

e localizationOptionsSetupAction (Action<LocalizationOptions>): The
action to be taken for configuring the location mechanism, such as specifying the
path of the resource (currently only the ResourcesPath property)

The two possible values of LanguageViewLocalizationExpanderFormat are as follows:

e subFolder: This means that every resource file should be stored under a folder
named after the culture (for example, Resources\Views\Home\en,
Resources\Views\Home\en—-gb, Resources\Views\Home\pt,
Resources\Views\Home\pt-pt, and so on).

e suffix: The culture is part of the filename (for example, Index.en.resx,
Index.pt.resx, and so on).

As for the LocalizationOptions structure, its ResourcePath property already has a
default of Resources.

After we register this, we need to actually add the middleware that is responsible for
setting the culture and the UI culture:

var supportedCultures = new[] { "en", "pt" };

var localizationOptions = new RequestLocalizationOptions ()
.SetDefaultCulture (supportedCultures|[0])
.AddSupportedCultures (supportedCultures)
.AddSupportedUICultures (supportedCultures);

app.UseRequestLocalization(localizationOptions);
This should go in the Configure method. Here is a little explanation for this:

1. We must define the cultures that will be made available for selecting; these
should map to the resource files that we have.

2. One of them will be the default (fallback) culture if no specific culture is set by
the browser.

3. Here we are setting both the current culture (CultureInfo.CurrentCulture)
as well as the current UI culture (CultureInfo.CurrentUICulture); they are
useful because we may want to format a string value on the server before
sending it to a view, and in this case we want the server code to be using the
appropriate culture.

[236]

Views Chapter 5

As for resource providers, ASP.NET Core includes three of them, and all are included in
the RequestLocalizationOptions class by default, in this order:

® QueryStringRequestCultureProvider: Looks for the culture query string
key

® CookieRequestCultureProvider: Gets the culture to use from
the .AspNetCore.Culture cookie

e AcceptlLanguageHeaderRequestCultureProvider: Looks for the Accept-
Language HTTP header

The list of providers (classes that implement IRequestCultureProvider) is stored in the
RequestLocalizationOptions.

RequestCultureProviders and this list is crossed until it finds one provider that returns
a value.

When it comes to actually using the values from the resource files, we need to inject into the
views an instance of IViewLocalizer and retrieve values from it, like this:

@inject IViewLocalizer Localizer
<hl1>RLocalizer["Hello"]</h1>

The IViewLocalizer interface extends IHtmlLocalizer, so it inherits all its properties
and methods.

You can also use shared resources. A shared resource is a set of . resx files, plus an empty
class, and they are not tied to a specific action or controller. These should be stored in the
Resources folder, but the namespace of this class should be set to the assembly default
namespace, as illustrated in the following code snippet:

namespace chapter05
{
public class SharedResources { }

}

For this example, the resource files should be called SharedResources.en. resx, or the
name of any other culture.

Then, in your view, inject a reference to IHtmlLocalizer<SharedResources>, like this:

@inject IHtmlLocalizer<SharedResources> SharedLocalizer
<hl>@SharedlLocalizer["Hello"]</h1>

Next, we have translated views.

[237]

Views Chapter 5

Using translated views

Another option is to have an entire view translated; by translated, I mean that ASP.NET
Core will look for a view that matches the current language before falling back to a general
one.

In order to activate this feature, you need to call AddviewLocalization, as follows:

services
.AddMvc ()
.AddViewLocalization () ;

What this does is add a view location expander (remember this?) called
LanguageViewLocationExpander. This duplicates the registered view locations so as to
include ones with the current language as the file suffix. For example, we may have the
following initial view location formats:

e /Views/{1}/{0}.cshtml
o /Views/Shared/{0}.cshtml

For the pt language, these will become the following:

e /Views/{1}/{0}.pt.cshtml

e /Views/{1}/{0}.cshtml

e /Views/Shared/{0}.pt.cshtml
e /Views/Shared/{0}.cshtml

Because the order matters, this effectively means that ASP.NET Core will first try to find a
view ending with .pt (such as Index.pt.cshtml), and only after that, if not found, will it
resort to locating the generic one (for example, Index.cshtml). Cool, don't you think? Of
course, a translated view can be totally different than a generic one, even though this was
mostly designed with translation in mind.

Summary

View layouts are a must-have; try to avoid nested (or too nested) view layouts, as it may be
difficult to understand the final result. Partial views are also very handy, but make sure you
use them to avoid repeating code.

[238]

Views Chapter 5

We should also avoid having code in views—for example, by specifying custom view
classes; use filters for that purpose. We saw that we should consider the localization needs
of your app upfront; it's very difficult and error-prone to refactor an existing app that does
not use localization to introduce it.

Then, next, we saw that for security, you can use code or tag helpers to keep sensitive parts
of your views secure.

Stick to the conventions in terms of folder names and the like. This will make things easier
for everyone, currently and in the future, in your team.

We learned that _ViewImports.cshtml and _ViewStart.cshtml are your friends—use
them for common code that you want to be applied to all your pages.

Consider view compilation—it really helps in detecting some problems before they bite
you.

In this chapter, we covered the views feature of ASP.NET Core, using the built-in Razor
engine. We saw how we can use view layouts to introduce a coherent layout and partial
views for encapsulation and reuse. We learned the ways in which we can pass data from a
controller to a view.

In the next chapter, we will continue working with views, and, in particular, with HTML
forms. We will go deeper into some of the topics that were introduced here.

Questions

You should now be able to answer these questions:

What is the base class for a view?

How can you inject services into a view?

What is a view location expander?

What is a view layout?

What are partial views?

Which functionality can replace partial views?
What does the _vViewStart.cshtml special file do?

NSOk

[239]

Section 2: Improving

Productivity

This section will show us how to get productive by enforcing reuse, process forms, and
effective security measures.

This section has the following chapters:

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

6, Using Forms and Models
7, Implementing Razor Pages
8, API Controllers

9, Reusable Components

10, Understanding Filters
11, Security

Using Forms and Models

In this chapter, we will learn how to build forms for displaying and capturing data for use

in our application, how to bind controls to models, and how to use validation techniques to
exclude invalid data. We will cover client-submitted data—namely, HTML forms and their
server-side counterpart, models, and files. With these, we will learn how to deal with user-

submitted data.
Specifically, we will talk about the following:

¢ Using the form context

e Working with the model

¢ Understanding the model metadata and using metadata to influence form
generation

e How can we use HTML helpers to generate HTML

¢ Working with templates

¢ Binding forms to object models

¢ Validating the model

e Using AJAX

¢ Uploading files

Technical requirements

In order to implement the examples introduced in this chapter, you will need the NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all of our
requirements, but you can also use Visual Studio Code, for example.

The source code for this chapter can be retrieved from GitHub at https://github.com/
PacktPublishing/Modern-Web-Development-with—-ASP.NET-Core—-3-Second-Edition.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Using Forms and Models Chapter 6

Getting started

Because views are essentially HTML, nothing prevents you from manually adding your
markup to them, which can include values obtained from the controller either through the
model, view bag, or temporary data. ASP.NET Core, however, like previous versions, has
built-in methods to assist you in generating HTML that matches your model (structure and
content) and displaying model validation errors and other useful model metadata.

Because all of this works on top of the model, for the framework to be able to extract any
relevant information, we need to use strongly typed views, not dynamic views; this means
adding either an @model or @inherits directive to the views with the appropriate model
type. To be clear, the model is the object that you pass to the ViewResult object returned
from your controller, possibly returned from the view method, and it must either match the
declared @model directive in the view or its @inherit declaration.

Let's begin by looking at the form context and then we will see how we can get information
about the model.

Using the form context

The view context object (ViewContext) is available in the view components (which will be
discussed in chapter 9, Reusable Components) and as a property of Razor Pages
(IRazorPage), meaning you can access it in views. In it, besides the usual context
properties (such as Ht tpContext, ModelStateDictionary, RouteData,

and ActionDescriptor), you also have access to the form context (FormContext) object.
This object offers the following properties:

e CanRenderAtEndOfForm (bool): Indicates whether the form can render
additional content (EndOfFormContent) at the end.

e EndOfFormContent (IList<IHtmlContent>): A collection of content to add at
the end of the form (before the </form> tag).

e FormData (IDictionary<string, object>): The submitted form data.

e HasAntiforgeryToken (bool): Indicates whether the form is rendering the anti-
forgery token, which depends on how the BeginForm method was called. The
default is true.

® HasEndOfFormContent (bool): Indicates whether any end-of-form content has
been added.

® HasFormData (bool): Indicates whether the FormData dictionary has been used
and contains data.

[242]

Using Forms and Models Chapter 6

Additionally, it offers a single method, RenderedrField, with two overloads:

¢ One that returns an indication of whether a form field has been rendered in the
current view

¢ Another that sets this flag for a specific field (typically called by the
infrastructure)

Developers can leverage the form context to render additional data with the form, such as
validation scripts or extra fields.

Now that we've seen what the global context looks like, let's see how we can extract
information about the model.

Working with the model

The ASP.NET Core framework uses a model metadata provider to extract information
from the model. This metadata provider can be accessed through MetadataProperty of
Html and is exposed as IModelMetadataProvider. By default, it is set to an instance of
DefaultModelMetadataProvider, which can be changed through the dependency
injection framework, and its contract defines only two relevant methods:

® GetMetadataForType (ModelMetadata): Returns metadata for the model type
itself

® GetMetadataForProperties (IEnumerable<ModelMetadata>): Metadata for
all of the public model properties

You never normally call these methods; they are called internally by the framework. The
ModelMetadata class they return (which may actually be of a derived class, such as
DefaultModelMetadata) is what should interest us more. This metadata returns the
following;:

¢ The display name and description of the type or property (DisplayName)
e The data type (DataType)

¢ The text placeholder (Placeholder)

e The text to display in case of a null value (NullDisplayText)

e The display format (DisplayFormatString)

e Whether the property is required (IsRequired)

e Whether the property is read-only (IsReadOnly)

e Whether the property is required for binding (IsBindingRequired)

[243]

Using Forms and Models Chapter 6

¢ The model binder (BinderType)

¢ The binder model's name (BinderModelName)

e The model's binding source (BindingSource)

e The property's containing class (ContainerType)

These properties are used by the HTML helpers when generating HTML for the model and
they affect how it is produced.

By default, if no model metadata provider is supplied and no attributes are present, safe or
empty values are assumed for the metadata properties. It is, however, possible to override
them. Let's understand how each of these attributes is used.

We will start by looking at the display name (DisplayName) and description
(Description). These can be controlled by the [Display] attribute from the
System.ComponentModel.DataAnnotations namespace. This attribute also sets the
placeholder/watermark for the property (Placeholder):

[Display (Name = "Work Email", Description = "The work email",
Prompt = "Please enter the work email")]
public string WorkEmail { get; set; }

Marking a property as required (IsRequired) is achieved through [Required]. All of the
other validation attributes, which are inherited from validationAttribute (such as
Required and MaxLength), can also be supplied, as follows:

[Required]
[Range (1, 100)]
public int Quantity { get; set; }

Whether the property can be edited (IsReadOnly) is controlled by whether the property
has a setter and whether it has an [Editable] attribute applied (the default value is t rue):

[Editable (true)]
public string Email { get; set; }

The data type (DataType) contained in a string can be defined by applying a [DataType]
attribute, or one inherited from it:

[DataType (DataType.Email)]
public string Email { get; set; }

[244]

Using Forms and Models Chapter 6

There are a few attribute classes that inherit from DataTypeAttribute and can be used
instead of it:

EmailAddress]:Same as DataType.EmailAddress
CreditCard]:DataType.CreditCard
Phone]:DataType.PhoneNumber

[
[
[

e [Url]:DataType.Url
[EnumDataType]: DataType.Custom
[

FileExtensions]:DataType.Upload

DataType has several other possible values; I advise you to have a look
into it.

The text to display whether a value is null (NullDisplayText) and the display format
(DisplayFormatString) can both be set through the [DisplayFormat] attribute:

[DisplayFormat (NullDisplayText = "No birthday supplied", DataFormatString =
"{0:yyyyMMdd}")]
public DateTime? Birthday { get; set; }

When it comes to binding form fields to class properties, [ModelBinder] can be used to
specify a custom model binder type (the BinderType property) and the name in the model
to bind to (Mode1BinderName); typically, you do not supply the name of the model as it is
assumed to be the same as the property name:

[ModelBinder (typeof (GenderModelBinder), Name = "Gender")]
public string Gender { get; set; }

Here, we are specifying a custom model binder that will try to retrieve a value from the
request and convert it into the appropriate type. Here is a possible implementation:

public enum Gender

{
Unspecified = O,
Male,
Female

}

public class GenderModelBinder : IModelBinder

{
public Task BindModelAsync (ModelBindingContext bindingContext)
{

[245]

Using Forms and Models Chapter 6

var modelName = bindingContext.ModelName;
var valueProviderResult = bindingContext.
ValueProvider.GetValue (modelName) ;

if (valueProviderResult != ValueProviderResult.None)

{
bindingContext .ModelState.SetModelValue (modelName,
valueProviderResult) ;

var value = valueProviderResult.FirstValue;

if (!string.IsNullOrWhiteSpace (value))
{
if (Enum.TryParse<Gender> (value, out var gender))
{
bindingContext.Result = ModelBindingResult.
Success (gender) ;

}

else

{
bindingContext .ModelState.TryAddModelError
(modelName, "Invalid gender.");

}

return Task.CompletedTask;
}

What this does is it looks up the passed form name using the current value provider and
then, if it is set, checks whether it matches the Gender enumeration. If so, then it sets it as
the return value (bindingContext .Result); otherwise, it adds a model error.

If a property is required by setting [Bind], [BindRequired], [BindingBehavior],
or [BindNever], then IsBindingRequired will be true

[BindNever] //same as [BindingBehavior (BindingBehavior.Never)]

public int Id { get; set; }

[BindRequired] //same as [BindingBehavior (BindingBehavior.Required)]
public string Email { get; set; }

[BindingBehavior (BindingBehavior.Optional)] //default, try to bind if a

//value is provided
public DateTime? Birthday { get; set; }

[246]

Using Forms and Models Chapter 6

[Bind] is applied to the class itself or to a parameter to specify which properties should be
bound or otherwise excluded from the binding. Here, we are mentioning which should be
bound:

[Bind (Include = "Email")]
public class ContactModel

{
public int Id { get; set; }
public string Email { get; set; }
}

The BindingSource property is set if we use one of the IBindingSourceMetadata
attributes:

e [FromBody]

e [FromForm]

FromQuery]

[
[

e [FromHeader]
[
[FromRoute]
[

FromServices]

The default model metadata provider recognizes these attributes, but you can certainly roll
out your own provider and supply properties in any other way.

There are times when you should not apply attributes to model properties—for example,
when the model class is generated automatically. In that case, you can apply

a [ModelMetadataType] attribute, usually in another file where you specify the class that
will be used to retrieve metadata attributes from:

public partial class ContactModel

{
public int Id { get; set; }
public string Email { get; set; }
}

You can add an attribute to this same class from another file:

[ModelMetadataType (typeof (ContactModelMetadata))]
public partial class ContactModel

{

}

[247]

Using Forms and Models Chapter 6

In the following example, we specified the individual properties we want to bind:

public sealed class ContactModelMetadata
{
[BindNever]
public int Id { get; set; }
[BindRequired]
[EmailAddress]
public string Email { get; set; }

Besides using the model, it is also possible to bind properties on the
controller itself. All that is said also applies, but these properties need to
take the [BindProperty] attribute. See chapter 4, Controllers and
Actions, for more information.

Let's now see how we can work with anonymous types.

Using models of anonymous types

As in previous versions of ASP.NET MVC, you cannot pass an anonymous type as the
model to your view. Even if you can, the view won't have access to its properties, even if
the view is set to use dynamic as the model type. What you can do is use an extension
method such as this one to turn your anonymous type into ExpandoObject, a common
implementation of dynamic:

public static ExpandoObject ToExpando (this object anonymousObject)
{
var anonymousDictionary = HtmlHelper.
AnonymousObjectToHtmlAttributes (anonymousObject) ;
IDictionary<string, object> expando = new ExpandoObject ();

foreach (var item in anonymousDictionary)

{
expando.Add (item) ;

return expando as ExpandoObject;
}

You can use this in your controller:

return this.View(new { Foo = "bar" }.ToExpando());

[248]

Using Forms and Models Chapter 6

In your view file, you use it as follows:

@model dynamic
<p>@Model .Foo</p>

We're done with model binding for now, so let's proceed with HTML helpers.

Using HTML helpers

HTML helpers are methods of the view's Htm1 object (IHtmlHelper) and exist to aid in
generating HTML. We may not know the exact syntax and URLs to routes can be tricky to
generate, but there are two more important reasons why we use them. HTML helpers
generate the appropriate code for display and editing purposes based on the model
metadata, and they also include error and description placeholders. It is important to keep
in mind that they are always based on the model.

In general, the built-in HTML helpers have two overloads:

¢ One that takes a strongly typed model (for example, EditorFor (x =>
x.FirstName))

¢ Another that takes dynamic parameters in the form of strings (for example,
EditorFor ("FirstName"))

Also, they all take an optional parameter, htmlAttributes, that can be used to add any
attribute to the rendered HTML element (for example, TextBoxFor (x => x.FirstName,
htmlAttributes: new { @class = "first-name" })).For this reason, as we go
through the different HTML helpers, I will skip the htmlAttributes parameter.

Forms

In order to submit values, we first need a form; the HTML form element can be used for
this. The BeginForm helper generates one for us:

@Qusing (Html.BeginForm())
{

<p>Form goes here</p>

}

It returns an IDisposable instance; therefore, it should be used in a using block. This
way, we ensure it is properly terminated.

[249]

Using Forms and Models Chapter 6

This method has several overloads and among them all, it can take the following
parameters:

e actionName (string): An optional name of a controller action. If present, the
controllerName parameter must also be supplied.

e controllerName (string): An optional name of a controller; it must go along
with actionName.

e method (FormMethod): An optional HTML form method (GET or POST); if not
supplied, it defaults to POST.

e routeName (string): An optional route name (the name of a route registered
through fluent configuration).

e routeValues (object): An optional object instance containing route values
specific to routeName.

e antiForgery (bool?): Indicates whether or not the form should include an anti-
forgery token (more on this later on); if not supplied, it is included by default.

There is another form generation method, BeginRouteForm, that is more focused on
routes, so it always takes a routeName parameter. Anything that it does can also be
achieved with BeginForm.

There are two alternatives for defining the target for the form submittal:

e actionName and controllerName: An action and an optional controller name
to where the form will be submitted. If the controller name is omitted, it will
default to the current one.

e routeName: A route name, as defined in the routing table, which will, in turn,
consist of a controller and an action.

One of these must be chosen.

Single-line text boxes

All of the primitive .NET types can be edited through a text box. By text box, I mean an
<input> element with an appropriate type attribute. For that, we have the TextBoxFor
and TextBox methods, the former for the strongly typed version (the one that uses LINQ
expressions based on the model) and the other for the string-based version. These methods
can be used as follows:

@Html.TextBoxFor (x => x.FirstName)
@Html.TextBox ("FirstName")

[250]

Using Forms and Models Chapter 6

These methods have several overloads that take the format parameter.

format (string): An optional format string for cases where the type to render implements
IFormattable

For example, if the value to be rendered represents money, we could have a line such as the

following;:

@Html.TextBoxFor (model => model.Balance, "{0:c}");

Here, c is used to format currency.

The TextBox and TextBoxFor HTML helpers render an <input> tag with a value of type
that depends on the actual type of the property and its data type metadata
(DefaultModelMetadata.DataTypeName):

text: For string properties without any particular DataType attribute

date and datetime: For DateTime properties, depending on the presence
of DataType with a value of either Date or DateTime

number: For numeric properties

email: For string properties when associated with a DataType attribute of
EmailAddress

url: String properties with a DataType attribute of Url

time: The TimeSpan properties or string properties with a DataType attribute of
Time

tel: String properties with a DataType attribute of PhoneNumber

The type of the <input> tag is one of the HTML5-supported values. You can read more
about it at https://developer.mozilla.org/en-US/docs/Web/HTML/Element /input.

Multi-

line text boxes

If we instead want to render multi-line text boxes, we must use the TextArea and
TextAreaFor methods. These render HTML textarea elements and their parameters:

rows (int): The rows to generate (the textarea rows attribute)
columns (int): The cols attribute

After this, we move on to see how passwords work.

[251]

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

Using Forms and Models Chapter 6

Passwords

Passwords (<input type="password">) are produced by one of the Password and
PasswordFor methods. The only optional value they can take is the initial password which
is value (string), the initial password.

Next, come the dropdowns.

Dropdowns

The DropbownList and DropDownListFor methods render a <select> element with
values specified in the form of a collection of selectList Itemitems. The parameters are

as follows:

e selectList (IEnumerable<SelectListItem>): The list of items to display
e optionLabel (string): The default empty item

The selectListItem class exposes the following properties:

Disabled (bool): Indicates whether the item is available. The defaultis false.

Group (SelectListGroup): An optional group.
Selected (bool): Indicates whether the item is selected. There can only be one
item marked as selected; therefore, the defaultis false.

Text (string): The textual value to display.
Value (string): The value to use.

The SelectListGroup class offers two properties:

® Name (string): The mandatory group name, used to group together multiple list

items.
e Disabled (bool): Indicates whether the group is disabled. It is false by default.

There are two helper methods, GetEnumSelectList and GetEnumSelectList<>, that
return, in the form of IEnumerable<SelectListItem>, the names and values of
enumeration fields. This can be useful if we wish to use them to feed a drop-down list.

[252]

Using Forms and Models Chapter 6

List boxes

The ListBox and ListBoxFor methods are similar to their drop-down list counterparts.
The only difference is that the generated <select> element has its multiple attributes set
to true. It only takes a single parameter, which is selectList
(IEnumerable<SelectListItem>), for the items to show.

Radio buttons

As for radio buttons, we have the RadioButton and RadioButtonFor methods, which
render <input> with a type of radio:

e value (object): The value to use for the radio button

e isChecked (bool?): Indicates whether the radio button is checked (which is
default)

The radio button group name will be the name of the property that it is being generated
to—for example, the following;:

@Html.RadioButtonFor (m => m.Gender, "M") %> Male
@Html.RadioButtonFor (m => m.Gender, "F") %> Female
Checkboxes

Checkboxes are contemplated, too, by means of the CheckBox, CheckBoxFor, and
CheckBoxForModel methods. This time, they render a <input> tag with a type of
checkbox. The sole parameter is the following:

e isChecked (bool?): Indicates whether the checkbox is checked. The default is
false.

Again, the group name will come from the property, as is the case for radio buttons.

One thing to keep in mind when working with checkboxes is that we would normally bind
a checkbox value to a bool parameter. In that case, we must not forget to supply a value of
true for the checkbox; otherwise, the form will contain no data for its field.

[253]

Using Forms and Models Chapter 6

Hidden values

Hidden, HiddenFor, and HiddenForModel render an <input type="hidden"> element.
The model or its properties can be explicitly overridden with the following parameter:

e value (object): A value to include in the hidden field

Another option is to decorate your model class property with the [HiddenInput]
attribute, as in the following example:

[HiddenInput (DisplayValue = false)]
public bool IsActive { get; set; } = true;

The DisplayValue parameter causes the property to not be output as a label when using
automatic model editors.

Links

If we want to generate hyperlinks (<a>) to specific controller actions, we can use the
ActionLink method. It has several overloads that accept the following parameters:

e linkText (string): The link text

e actionName (string): The action name

e controllerName (string): The controller name, which must be supplied
together with actionName

e routeValues (object): An optional value (a POCO class or a dictionary)
containing route values

e protocol (string): The optional URL protocol (for example, http, https, and
SO on)

® hostname (string): The optional URL hostname

e fragment (string): The optional URL anchor (for example, #anchorname)

e port (int): The optional URL port

As we can see, this method can generate links for either the same host as the web app or a
different one.

[254]

Using Forms and Models Chapter 6

Another option is to use a route name and for that purpose, there is the RouteLink
method; the only difference is that instead of the act ionName and controllerName
parameters, it takes a routeName parameter, asrouteName (string), the name of a route
for which to generate the link.

Next, we have labels.

Labels

Label, LabelFor, and LabelForModel render a <label> element with either a textual
representation of the model or optional text:

e labelText (string): The text to add to the label

After labels, we have raw HTML.

Raw HTML

This renders HTML-encoded content. Its sole parameter is as follows:
® value (string, object): Content to display after HTML encoding

The next features we are about to learn are IDs, names, and values.

IDs, names, and values

These are often useful to extract some properties from the generated HTML elements, the
generated ID, and the name. This is commonly required for JavaScript:

e Id, IdFor, and IdForModel: Return the value for the id attribute

e Name, NameFor, and NameForModel: The value for the name attribute

® DisplayName, DisplayNameFor, and DisplayNameForModel: The display
name for the given property

® DisplayText and DisplayTextFor: The display text for the property or model

e Value, ValueFor, and ValueForModel: The first non-null value from the view
bag

[255]

Using Forms and Models Chapter 6

Generic editor and display

We've seen that we can use templates for individual model properties or for the model
itself. To render display templates, we have the Display, DisplayFor, and
DisplayForModel methods. All of them accept the following optional parameters:

e templateName (string): The name of a template that will override the one in
the model metadata (DefaultModelMetadata.TemplateHint)

® additionalViewData (object): An object or IDictionary thatis merged into
the view bag

e htmlFieldName (string): The name of the generated HTML <input> field

A property is only rendered in display mode if its metadata states it as such
(DefaultModelMetadata.ShowForDisplay).

As for edit templates, the methods are similar: Editor, EditorFor, and EditorForModel.
These take exactly the same parameters as their display counterparts. It is important to
mention that editors will only be generated for properties that are defined—as per their
metadata—to be editable (DefaultModelMetadata.ShowForEdit).

Utility methods and properties

The THtmlHelper class also exposes a few other utility methods:

e Encode: HTML-encodes a string using the configured HTML encoder
e FormatValue: Renders a formatted version of the passed value

Also, it exposes the following context properties:

e IdAttributeDotReplacement: This is the dot replacement string used for

generating ID values
(from MvcViewOptions.HtmlHelperOptions.IdAttributeDotReplacement

)

e Html5DateRenderingMode: The HTML5 date rendering mode (from
MvcViewOptions.HtmlHelperOptions.Html5DateRenderingMode)

® MetadataProvider: The model metadata provider

e TempData: Temporary data

[256]

Using Forms and Models Chapter 6

e ViewData or ViewBag: The strongly/loosely typed view bag
e ViewContext: All of the view's context, including the HTTP context

(HttpContext), the route data (RouteData), the form context (FormContext),
and the parsed model (ModelStateDictionary)

Next are the validation messages.

Validation messages

Validation messages can be displayed for individual validated properties or as a summary
for all the models. For displaying individual messages, we use the ValidationMessage
and ValidationMessageFor methods, which accept the following optional attribute:

® message (string): An error message that overrides the one from the validation
framework

For the validation summary, we have ValidationSummary and it accepts the following
parameters:

e excludePropertyErrors (bool): If set, displays only model-level (top) errors,
not errors for individual properties

® message (string): A message that is displayed with the individual errors

e tag (string): The HTML tag to use that overrides
MvcViewOptions.HtmlHelperOptions.ValidationSummaryMessageklemen
t)

After the validations, we move on to the next feature, which is the custom helpers.

Custom helpers

Some HTML elements have no corresponding HTML helper—for example, button. Itis
easy to add one, though. So, let's create an extension method over IHtmlHelper:

public static class HtmlHelperExtensions
{
public static IHtmlContent Button(this IHtmlHelper html, string text)
{
return html.Button(text, null);
}

public static IHtmlContent Button(this IHtmlHelper html, string

[257]

Using Forms and Models

Chapter 6

text, object htmlAttributes)

{
return html.Button (text, null, null, htmlAttributes);

public static IHtmlContent Button(
this IHtmlHelper html,
string text,
string action,
object htmlAttributes)

return html.Button (text, action, null, htmlAttributes);

public static IHtmlContent Button(this IHtmlHelper html, string
text, string action)
{

return html.Button (text, action, null, null);

public static IHtmlContent Button(
this IHtmlHelper html,
string text,
string action,
string controller)

return html.Button (text, action, controller, null);

public static IHtmlContent Button(
this IHtmlHelper html,
string text,
string action,
string controller,
object htmlAttributes)

if (html == null)
{

throw new ArgumentNullException (nameof (html));
if (string.IsNullOrWhiteSpace (text))

throw new ArgumentNullException (nameof (text));

var builder = new TagBuilder ("button");
builder.InnerHtml.Append (text);

[258]

Using Forms and Models Chapter 6

if (htmlAttributes != null)

{
foreach (var prop in htmlAttributes.GetType ()

.GetTypeInfo () .GetProperties())

{
builder.MergeAttribute (prop.Name,
prop.GetValue (htmlAttributes) ?.ToString () ?7?
string.Empty) ;

var url = new UrlHelper (new ActionContext (
html.ViewContext.HttpContext,
html.ViewContext.RouteData,
html.ViewContext.ActionDescriptor));

if (!string.IsNullOrWhiteSpace (action))

{
if (!string.IsNullOrEmpty (controller))

{
builder.Attributes["formaction"] = url.Action(
action, controller);

}

else

{

builder.Attributes["formaction"] = url.Action(action);

return builder;

}

This extension method uses the common guidelines for all the other HTML helpers:

Several overloads for each of the possible parameters

e Has a parameter of the object type called htmlAttributes, which is used for
any custom HTML attributes that we wish to add

Uses the Ur1Helper class to generate correct route links for the controller action,
if supplied

Returns an instance of THtmlContent
Using it is simple:

@Html.Button ("Submit")

[259]

Using Forms and Models Chapter 6

It can also be used with a specific action and controller:

@Html.Button ("Submit", action: "Validate", controller: "Validation")

It can even be used with some custom attributes:

@Html.Button ("Submit", new { @class = "save" })

Since ASP.NET Core does not offer any HTML helpers for submitting the form, I hope you
find this useful!

This concludes our study of custom helpers. Let's focus now on writing templates for
commonly used pieces of markup.

Using templates

When the Display, DisplayFor<T>, or DisplayForModel HTML helper methods are
called, the ASP.NET Core framework renders the target property (or model) value in a way
that is specific to that property (or model class) and can be affected by its metadata. For
example, ModelMetadata.DisplayFormatString is used for rendering the property in
the desired format. However, suppose we want a slightly more complex HTML—for
example, in the case of composite properties. Enter display templates!

Display templates are a Razor feature; basically, they are partial views that are stored in a
folder called DisplayTemplates under Views\Shared and their model is set to target a
.NET class. Let's imagine, for a moment, that we have a Location class that stores

the Latitude and Longitude values:

public class Location
{
public decimal Latitude { get; set; }
public decimal Longitude { get; set; }
}

If we want to have a custom display template for this, we could have a partial view, as
follows:

@model Location
<div>Latitude: @Model.Latitude - Longitude:
@Model.Longitude</div>

[260]

Using Forms and Models Chapter 6

So, this file is stored in Views/Shared/DisplayTemplates/Location.cshtml, but now
you need to associate the Location class to it, which you can do by applying [UIHint] to
a property of that type:

[UIHint ("Location™)]
public Location Location { get; set; }

The [UIHint] attribute accepts a view name. It is searched in the
Views\Shared\DisplayTemplates folder.

Similar to display templates, we have editor templates. Editor templates are rendered by
Editor, EditorFor, or EditorForModel and their main difference from display
templates is that the partial view files are stored in Views\Shared\EditorTemplates. Of
course, in these templates, you would probably add HTML editor elements, even with
custom JavaScript. For the case of the Location class, we could have the following:

@model Location
<div>
Latitude: Q@Html.TextBoxFor (x => x.Latitude)
Longitude: Q@Html.TextBoxFor (x => x.Longitude)
</div>

There can be only one [UIHint] attribute specified, which means that
both templates—display and editor—must use the same name. Also,
custom templates are not rendered by EditorForModel or
DisplayForModel; you need to explicitly render them using EditorFor
and DisplayFor.

OK, we've seen how to use templates for commonly used markup elements, which is very
useful from a reusing perspective. Let's have a look now at model binding.

Enforcing model binding

ASP.NET Core tries to automatically populate (set values of their properties and fields) any
parameters of an action method. This happens because it has a built-in (although
configurable) model binder provider, which creates a model binder. These model binders
know how to bind data from the many binding sources (discussed previously) to POCO
classes in many formats.

[261]

Using Forms and Models Chapter 6

Model binders

The model binder provider interface is IMode1BinderProvider and the model binder,
unsurprisingly, is IModelBinder. The model binder providers are registered in the
ModelBinderProviders collection of MvcOptions:

services.AddMvc (options =>

{

options.ModelBinderProviders.Add (new CustomModelBinderProvider());

)i

The included providers are as follows:

BinderTypeModelBinderProvider: Custom model binder (IModelBinder)
ServicesModelBinderProvider: [FromServices]
BodyModelBinderProvider: [FromBody]

HeaderModelBinderProvider: [FromHeader]
SimpleTypeModelBinderProvider: Basic types using a type converter
CancellationTokenModelBinderProvider: CancellationToken
ByteArrayModelBinderProvider: Deserializes from Base64 strings into byte
arrays

FormFileModelBinderProvider: [FromForm]
FormCollectionModelBinderProvider: IFormCollection
KeyValuePairModelBinderProvider: KeyValuePair<TKey, TValue>
DictionaryModelBinderProvider: IDictionary<TKey, TValue>
ArrayModelBinderProvider: Arrays of objects
CollectionModelBinderProvider: Collections of objects
(ICollection<TElement>,IEnumerable<TElement>,orIList<TElement>)
ComplexTypeModelBinderProvider: Nested properties (for example,
TopProperty.MidProperty.BottomProperty)

These providers help assign values to the following types:

Simple properties using type converters
POCO classes

Nested POCO classes

Arrays of POCO classes

Dictionaries

Collections of POCO classes

[262]

Using Forms and Models Chapter 6

For example, take a model of the following class:

public class Order
{
public int Id { get; set; }
public int CustomerId { get; set; }
public OrderState State { get; set; }
public DateTime Timestamp { get; set; }
public List<OrderDetail> Details { get; set; }

public enum OrderState
{
Received,
InProcess,
Sent,
Delivered,
Cancelled,
Returned

public class OrderDetail

{
public int ProductId { get; set; }
public int Quantity { get; set; }

public class Location

{
public int X { get; set; }
public int Y { get; set; }
t

Here, we have properties of different types, including primitive types, enumerations, and
collections of POCO classes. When we generate a form for a model such as this, perhaps
using the HTML helpers that were described previously, you will get HTML form elements
containing values such as the following:

Id=43434

CustomerId=100
State=InProcess
Timestamp=2017-06-15T20:00:00
Details[0]_ProductId=45
Details[0]_Quantity=1

[0]
Details[1]_ProductId=47
Details[1]_Quantity=3
X=10
Y=20

[263]

Using Forms and Models Chapter 6

Notice the _ character separating the child property names—it is configured by default to
replace dots (.) in the MvcViewOptions.HtmlHelper.IdAttributeDotReplacement
property. As you can see, ASP.NET Core can bind even somewhat complex cases.

Model binding sources

So, we declare a model (or individual base type parameters) as a parameter to an action
method and we can apply model binding source attributes to instruct ASP.NET Core to get
the values from a specific location. Again, these are as follows:

e [FromServices]: The object will be inserted from the dependency injection

container.
e [FromBody]: The value will come from the payload of a POST request, normally
either as JSON or XML.

e [FromForm]: The value will come from the posted form.

FromQuery]: The value will be obtained from the query string.

[
[FromHeader]: The value will be read from the request headers.
[

e [FromRoute]: The value will come from the route as a named template item.

You can mix different model binding source attributes on the same method, as follows:

public IActionResult Process(
[FromQuery] int id,
[FromHeader] string contentType,
[FromBody] Complex complex) { ... }

[FromPost] will take key-value pairs in either amultipart/form-data
or application/x-www-form-urlencoded format.

One thing that you need to keep in mind is that there can only be one parameter with

a [FromBody] attribute, which makes sense as the body is unique and it doesn't make
sense to have it bound to two different objects. It only makes sense to apply it to POCO
classes too. [FromBody] works with the registered input formatters; it tries to deserialize
whatever payload is sent (normally by POST or PUT) by going through each input formatter.
The first one to respond with a non-null value yields the result. Input formatters look at the
request's Content-Type header (for example, application/xml or application/json)
to determine whether they can process the request and deserialize it into the target type.
We will look at input formatters in more detail in chapter 8, API Controllers.

[264]

Using Forms and Models Chapter 6

You can construct POCO objects from the query string using [FromQuery]. ASP.NET Core
is smart enough to do that, provided you supply a value for each of the properties of the
POCO on the query string, as follows:

//call this with: SetLocation?X=10&Y=20
public IActionResult SetLocation ([FromQuery] Location location) { ... }

Some of these attributes take an optional Name parameter, which can be used to explicitly
state the source name, as follows:

[FromHeader (Name = "User—-Agent")]
[FromQuery (Name = "Id")]
[FromRoute (Name = "controller")]
[FromForm (Name = "form field")]

If you don't specify the source name, it will use the name of the parameter.

If you don't specify any attributes, ASP.NET Core will take the following logic when trying
to bind values:

1. If the request is a POST value, it will try to bind values from the form (as with
[FromForm]).

2. Then, it will route the values ([FromRoute]).
3. Then, it will query the string ([FromQuery]).

So, [FromBody], [FromServices], and [FromHeader] are never used automatically. You
always need to apply attributes (or define a convention).

If no value can be found for a parameter in your action method using either the default
logic or any attributes, that value will receive a default value:

e The default value for value types (0 for integers, false for Boolean values, and
SO on)

¢ An instantiated object for classes

If you want to force the model state to be invalid if a value cannot be found for a parameter,
apply the [BindRequired] attribute to it:

public IActionResult SetLocation (
[BindRequired] [FromQuery] int x,
[BindRequired] [FromQuery] int y) { ... }

[265]

Using Forms and Models Chapter 6

In this case, you will get an error when trying to call this action without providing the x
and Y parameters. You can also apply it to model classes, in which case, all of its properties
will need to be supplied, as follows:

[BindRequired]
public class Location
{
public int X { get; set; }
public int Y { get; set; }
}

This also has some limitations as you cannot bind to an abstract class, a value type
(struct), or a class without a public parameterless constructor. If you want to bind to an
abstract class or one without a public, parameterless constructor, you need to roll out your
own model binder and return an instance yourself.

Dynamic binding
What if you don't know upfront what the request will contain—for example, if you want to
accept anything that is posted? You essentially have three ways of accepting it:

¢ Use a string parameter, if the payload can be represented as a string.
e Use a custom model binder.
¢ Use one of the JSON-aware parameter types.

If you use a string parameter, it will just contain the payload as is, but ASP.NET Core also
supports binding JSON payloads to either a dynamic or
System.Text.Json.JsonElement parameter. JsonElement, in case you're not familiar,
is part of the new System. Text .Json API, which replaces JSON.NET
(Newtonsoft.Json) as the included JSON serializer. ASP.NET Core can bind POST with a
content type of application/json to one of these parameter types without any additional
configuration, as follows:

[HttpPost]
public IActionResult Process ([FromBody] dynamic payload) { ... }

The dynamic parameter will actually be an instance of JsonElement. You can't declare the
parameter to be of an interface or abstract base class unless you use your own model binder
and return a constructed instance from it.

Now, let's move on to validating the model post that binds it.

[266]

Using Forms and Models Chapter 6

JSON.NET is still available as an open source project from GitHub
at https://github.com/JamesNK/Newtonsoft.Json. You can use it instead

of the built-in JSON serializer. To do this, have a look at https://docs.
microsoft.com/en-us/aspnet/core/migration/22-to-30?view=

aspnetcore-3.1.

Model validation

We all know that client-side validation by validating a page without having to post its
content is what we expect from a web app these days. However, this may not be
sufficient—for example for the (granted, few) cases where JavaScript is disabled. In this
case, we need to ensure we validate our data on the server-side before actually doing
anything with it. ASP.NET Core supports both scenarios; let's see how.

Server-side validation

The result of validating a submitted model (normally through POST) is always available in
the ModelState property of the ControllerBase class, and it is also present in the
ActionContext class. Consider the following code snippet:

if (!'this.ModelState.IsValid)

{
if (this.ModelState["Email"].Errors.Any())

{

var emailErrors = string.
Join (Environment .NewLine, this.ModelState
["Email"] .Errors.Select (e => e.ErrorMessage));

}

As you can see, we have both the global validation state (Isvalid) and the individual
property error messages (for example, ["Email"] .Errors).

Using the built-in validators, all based on
the System.ComponentModel.DataAnnotations API, the following validations are
performed:

¢ Validation based on attributes (ValidationAttribute-derived)
e Validation based on the IvalidatableObject interface

[267]

https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1

Using Forms and Models Chapter 6

Validation is executed when a form is posted or when it is explicitly invoked by a call to
TryValidateModel if you happened to change the model. The ModelState property is of
the ModelStateDictionary type, which exposes the following properties:

e Item (ModelStateEntry): Access to individual model properties' states

¢ Keys (KeyEnumerable): The collection of model properties' names

e Values (ValueEnumerable): The model properties' values

e Count (int): The count of model properties

e ErrorCount (int): The error count

e HasReachedMaxErrors (bool): Whether or not the found errors have reached
the configured maximum

e MaxAllowedErrors (int): The configured maximum number of errors (see
the Configuration section)

® Root (ModelStateEntry): The root object's model state

e IsValid (bool): Whether or not the model is valid

e ValidationState (ModelvValidationState): The validation state for the
model (Unvalidated, Invalid, Valid, or Skipped)

Validation based on attributes is associated with the property to which the validation
attribute is located (some validation attributes can also be applied to classes). The
property's name will be the key and the property's value will be the value in the
ModelStateDictionary. For each property, once a validator fails, any other eventual
validators will not be fired and the model state will be immediately invalid. Each property
exposes a collection of one or more ModelError objects:

IEnumerable<ModelError> errors = this.ModelState["email"];
This class has two properties:

® ErrorMessage (string): The message produced by the property validator(s), if
any

e Exception (Exception): Any exception produced while validating this
particular property

After this, we move to the configuration for it.

[268]

Using Forms and Models Chapter 6

Configuration

There are a couple of configuration options available through the AddMvc method as part of
the MvcOptions class:

e MaxModelValidationErrors (int): The maximum number of validation errors
before no more validation is performed (the default is 200).

e ModelValidatorProviders (IList<IModelValidatorProvider>): The
registered model validation providers. By default, it contains an instance of
DefaultModelValidatorProvider and one of
DataAnnotationsModelValidatorProvider.

These built-in providers basically do the following:

e DefaultModelValidatorProvider: If a property has an attribute that
implements IModelValidator, it uses it for validation.

® DataAnnotationsModelValidatorProvider: Hooks any
ValidatorAttribute instances that the property to validate may have.

Data annotation validation

System.ComponentModel.DataAnnotations offers the following validation attributes:

e [Compare]: Compares two properties to see whether they have the same value.

[

e [CreditCard]: The string property must have a valid credit card format.
[CustomValidation]: Custom validation through an external method.
[

DataType]: Validates a property against a specific data type (DateTime, Date,
Time, Duration, PhoneNumber, Currency, Text, Html, MultilineText,
EmailAddress, Password, Url, ImageUrl, CreditCard, PostalCode,
or Upload).

EmailAddress]: Checks whether the string property is a valid email address.

MaxLength]: The maximum length of a string property.

MinLength]: The minimum length of a string property.

Phone]: Checks that the string property has a phone-like structure (US only).

RegularExpression]: Uses a regular expression to validate a string property.

[
[
[
[
¢ [Range]: The maximum and minimum values of a property.
[
[Remote]: Uses a controller action to validate a model.
[

Required]: Checks whether the property has a value set.

[269]

Using Forms and Models Chapter 6

e [SstringLength]: Checks the maximum and minimum lengths of a string; same
asone [MinLength] value and one [MaxLength] value, but using this, you only
need one attribute.

e [Url]: Checks that the string property is a valid URL.

All of these attributes are hooked automatically by the registered
DataAnnotationsModelValidatorProvider.

For custom validation, we have two options:

e Inherit from validationAttribute and implement its Isvalid method:

[AttributeUsage (AttributeTargets.Property, AllowMultiple = false,
Inherited = true)]
public sealed class IsEvenAttribute : ValidationAttribute
{
protected override ValidationResult IsValid(object wvalue,
ValidationContext validationContext)

{

if (value != null)
{
try
{
var convertedValue = Convert.ToDouble (value);
var isValid = (convertedValue % 2) == 0;

if (!isValid)

{
return new ValidationResult (this.ErrorMessage,
new[] { validationContext.MemberName });

;
catch { 1}
return ValidationResult.Success;
}
e Implement a validation method:

[CustomValidation (typeof (ValidationMethods), "ValidateEmail")]
public string Email { get; set; }

[270]

Using Forms and Models Chapter 6

In this ValidationMethods class, add the following method:

public static ValidationResult ValidateEmail (string email,
ValidationContext context)

{
if (!string.IsNullOrWhiteSpace (email))

{
if (!Regex.IsMatch(email, @""~ ([\w\.\=]1+)@ ([\w\-]+
) ((\. (\w){2,3})+)s"))
{
return new ValidationResult ("Invalid email",
new[] { context.MemberName });

}

return ValidationResult.Success;

}
A few things to note:

e This validation attribute only checks for valid emails; it does not check for
required values.

e The validationContext attribute has some useful properties, such as the
current member name being validated (MemberName), its display name
(DisplayName), and the root validating object (ObjectInstance).

e ValidationResult.Successisnull.

The signature of the validation method can vary:

e The first parameter can either be strongly typed (for example, st ring) or loosely
typed (for example, object), but it must be compatible with the property to be
validated.

e [t can be static or instance.

e It can take the validationContext parameter or not.

Why choose one or the other? The [CustomValidation] attribute potentially promotes
reuse by having a set of shared methods that can be used in different contexts. We also
have an error message in this attribute.

[CustomValidation] can be applied to either a property or the whole
class.

[271]

Using Forms and Models

Chapter 6

Error messages

There are three ways by which you can set an error message to display in the case of a

validation error:

e ErrorMessage: A plain old error message string, with no magic attached.

e ErrorMessageString: A format string that can take tokens (for example, {0},
{1}) that depend on the actual validation attribute; token {0} is usually the

name of the property being validated.

e ErrorMessageResourceType and ErrorMessageResourceName: It is possible

to ask for the error message to come from a string property
(ErrorMessageResourceName) declared in an external type

(ErrorMessageResourceType); this is a common approach if you would like to

localize your error messages.

After this, we move on to the next feature.

Self-validation

You would implement IvValidatableObject (also supported by

DataAnnotationsValidatorProvider) if the validation you need involves several

properties of a class, similar to what you would achieve with applying

[CustomValidation] to the whole class. We say that this class is self-validatable. The
IValidatableObject interface specifies a single method, validate, and the following is

a possible implementation:

public class ProductOrder : IValidatableObject
{
public int Id { get; set; }
public DateTime Timestamp { get; set; }
public int ProductId { get; set; }
public int Quantity { get; set; }
public decimal Price { get; set; }

public IEnumerable<ValidationResult> Validate (ValidationContext

context)
{
if (this.Id <= 0)
{
yield return new ValidationResult ("Missing id",
{ "Idll })’.
}

if (this.ProductId <= 0)

[272]

Using Forms and Models Chapter 6

yield return new ValidationResult ("Invalid product",
new [] { "ProductId" });

if (this.Quantity <= 0)

{
yield return new ValidationResult ("Invalid quantity",
new [] { "Quantity" });

if (this.Timestamp > DateTime.Now)

{
yield return new ValidationResult ("Order date
is in the future", new [] { "Timestamp" });

}

After self-validation, let us move on to custom validation.

Custom validation

Yet another option for custom validation involves hooking a new model validator provider
and a bespoke model validator. Model validator providers are instances of
IModelValidatorProvider, such as this one:

public sealed class IsEvenModelValidatorProvider : IModelValidatorProvider

{

public void CreateValidators (ModelValidatorProviderContext context)

{

if (context.ModelMetadata.ModelType == typeof(strlng)
| | context.ModelMetadata.ModelType == typeof (int)
| | context.ModelMetadata.ModelType == typeof (uint)
| | context.ModelMetadata.ModelType == typeof (long)
| | context.ModelMetadata.ModelType == typeof (ulong)
| | context.ModelMetadata.ModelType == typeof (short)
| | context.ModelMetadata.ModelType == typeof (ushort)
| | context.ModelMetadata.ModelType == typeof (float)
| | context.ModelMetadata.ModelType == typeof (double))
{
if (!context.Results.Any(x => x.Validator is

IsEvenModelValidator))

{
context .Results.Add (new ValidatorItem

{

Validator = new IsEvenModelValidator (),

[273]

Using Forms and Models Chapter 6

IsReusable = true
)i

}

This checks whether the target property (context .ModelMetadata) is one of the expected
types (numbers or strings) and then it adds an IsEvenModelValidator attribute. When
validation is triggered, this validator will be called.

For the sake of completion, here is its code:

public sealed class IsEvenModelValidator

IModelValidator
{

public IEnumerable<ModelValidationResult>
Validate (ModelValidationContext context)

{
if (context.Model != null)
{
try
{
var value = Convert.ToDouble (context .Model) ;
if ((value % 2) == 0)
{

yield break;

}
catch { }

yield return new ModelValidationResult (
context .ModelMetadata.PropertyName,
$"{context .ModelMetadata.PropertyName} is not even.");

}

This validator code tries to convert a number to a double value (because it's more generic)

and then checks whether the number is even. If the value is null or not convertible, it just
returns an empty result.

[274]

Using Forms and Models Chapter 6

Preventing validation

If you don't wish for your model—either the whole class or one or more properties—to be
validated, you can apply the [ValidateNever] attribute to it. This implements

the IPropertyvalidationFilter interface, which can be used to selectively include or
exclude properties from the validation process. I find that the way

the [ValidateNever] attribute is implemented, however, doesn't make much sense as it
forces you to include it in the model class, not on the model parameter, which in my
opinion would make more sense.

Automatic validation

In chapter 4, Controllers and Actions, we saw how we can register a filter that can be used to
trigger automatic model validation—which is already the case when you use POST—and
perform actions accordingly. Please do take a look at this chapter for more information.

Client-side model validation

Because server-side validation requires a post, sometimes it's more useful and provides a
better user experience to perform the validation on the client side. Let's see how we can do
this.

All of the built-in validators also include client-side behavior; what this means is that, if you
are using jQuery's unobtrusive validation—included by default in the ASP.NET Core
templates—you get it automatically. Unobtrusive validation requires the following
JavaScript modules:

¢ jQuery itself (jquery-xxx.js): https://jquery.com/
L ﬂgueryvahdaﬁon(jquery.validate.jsykmtps://jqueryvalidation.org/

® jquery.validate.unobtrusive.js: https://github.com/aspnet/jquery-
validation—-unobtrusive

The actual filenames may vary slightly (minimized versus normal version or including a
version number), but that is all. They are installed by default to wwwroot\1ib\jquery,
wwwroot\1lib\jquery-validation, and wwwroot\1lib\jquery-validation-
unobtrusive.

[275]

https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive

Using Forms and Models Chapter 6

Behind the scenes, the included validators add HTMLS5 attributes (data-*) to each
property to validate the HTML form elements and, when the form is about to be submitted,
force validation to occur. Client-side validation is only performed if it is enabled (more on
this in the next topic).

Configuration

Client validation providers are configured through the AddviewOpt ions method, which
takes a lambda function that exposes MvcVviewOptions:

ClientModelValidatorProviders
(IList<IClientModelValidatorProvider>): The registered client model
validators; by default, it contains one
DefaultClientModelValidatorProvider attribute, one
DataAnnotationsClientModelValidatorProvider attribute, and one
NumericClientModelValidatorProvider attribute.
HtmlHelperOptions.ClientValidationEnabled (bool): Whether or not
client-side validation is enabled. The default is t rue, meaning it is enabled.
ValidationMessageElement (string): The HTML element used for inserting
the validation error messages for each validated property. The default is span.
ValidationSummaryMessageElement (string): The HTML element used for
inserting the validation error messages summary for the model. The default is
span.

The included 1ClientModelValidatorProvider attributes have the following purposes:

DefaultClientModelValidatorProvider: If the validation attribute
implements IClientModelValidator, it uses it for the validation, regardless of
having a specific client model validator provider.
NumericClientModelValidatorProvider: Restricts text boxes to only contain
numeric values.

DataAnnotationsClientModelValidatorProvider: Adds support for all the
included data annotations validators.

[276]

Using Forms and Models Chapter 6

Custom validation

You can certainly roll out your own client-side validator; the core of it is the
IClientModelValidator and IClientModelValidatorProvider interfaces. Picking up
on the IsEvenAttribute attribute that we saw earlier, let's see how we can achieve the
same validation on the client-side.

First, let's register a client model validator provider:

services
.AddMvc ()
.AddViewOptions (options =>
{
options.ClientModelValidatorProviders.Add (new
IsEvenClientModelValidatorProvider());
b i

The code for the IsEvenClientModelvValidatorProvider attribute is as follows:

public sealed class IsEvenClientModelValidatorProvider
IClientModelValidatorProvider
{

public void CreateValidators (ClientValidatorProviderContext context)

{

if (context.ModelMetadata.ModelType == typeof (string)
| | context.ModelMetadata.ModelType == typeof (int)
| | context.ModelMetadata.ModelType == typeof (uint)
| | context.ModelMetadata.ModelType == typeof (long)
| | context.ModelMetadata.ModelType == typeof (ulong)
| | context.ModelMetadata.ModelType == typeof (short)
| | context.ModelMetadata.ModelType == typeof (ushort)
| | context.ModelMetadata.ModelType == typeof (float)
| | context.ModelMetadata.ModelType == typeof (double))

if (context.ModelMetadata.ValidatorMetadata.
OfType<IsEvenAttribute> () .Any())
{
if (!context.Results.Any(x => x.Validator 1is
IsEvenClientModelValidator))
{
context .Results.Add (new ClientValidatorItem
{
Validator = new IsEvenClientModelValidator(),
IsReusable = true
)i

[277]

Using Forms and Models Chapter 6

}

This requires some explanation. The Createvalidators infrastructure method is called to
give the client model validator provider a chance to add custom validators. If the property
currently being inspected (context .ModelMetadata) is of one of the supported types
(context.ModelMetadata.ModelType), numbers, or strings—and simultaneously
contains an IsEvenAttribute attribute and does not contain any
IsEvenClientModelValidator attributes—we add one to the validators collection
(context .Results) in the form of ClientValidatorItem that contains an

IsEvenClientModelValidator attribute, which is safe to reuse (IsReusable) as it
doesn't keep any state.

Now, let's see what the IsEvenClientModelValidator attribute looks like:

public sealed class IsEvenClientModelValidator : IClientModelValidator

{

public void AddvValidation (ClientModelValidationContext context)
{

context.Attributes["data-val"] = true.ToString() .
ToLowerInvariant () ;

context.Attributes["data-val-iseven"] = this.GetErrorMessage
(context) ;

private string GetErrorMessage (ClientModelValidationContext context)
{
var attr = context
.ModelMetadata
.ValidatorMetadata
.OfType<IsEvenAttribute> ()
.SingleOrDefault () ;

var msg = attr.FormatErrorMessage (context.
ModelMetadata.PropertyName) ;

return msg;

[278]

Using Forms and Models Chapter 6

It works like this:

1. Two attributes are added to the HTML element that is used to edit the model

property:
e data-val: This means the element should be validated.

e data-val-iseven: The error message to use for the iseven rule in
case the element is invalid.

2. The error message is retrieved from the
IsEvenAttribute attribute's FormatErrorMessage method. We know there

is IsEvenAttribute; otherwise, we wouldn't be here.

Finally, we need to add somehow a JavaScript validation code, perhaps in a separate . js
file:

(function ($) {

var $jQval = $.validator;
$jQval.addMethod ('iseven', function (value, element, params) {
if (!value) {

return true;

}

value = parseFloat ($.trim(value));

if (!value) {
return true;

}

var isEven = (value % 2) === 0;
return isEven;

)i

var adapters = $jQval.unobtrusive.adapters;
adapters.addBool ('iseven') ;
}) (JQuery);

What we are doing here is registering a custom jQuery validation function under

the i seven name, which, when fired, checks whether the value is empty and tries to
convert it into a floating-point number (this works for both integers and floating-point
numbers). Finally, it checks whether this value is even or not and returns appropriately. It
goes without saying that this validation function is hooked automatically by the
unobtrusive validation framework, so you do not need to be worried about it not
validating.

[279]

Using Forms and Models Chapter 6

The error message is displayed in both the element-specific error message
label and in the error message summary if it is present in the view.

You may find the process a bit convoluted, in which case, you will be happy to know that
you can add together the validation attribute and the IClientModelvValidator
implementation; it will work just the same and this is possible because of the included
DefaultClientModelValidatorProvider attribute. It is, however, advisable to separate
them because of the Single Responsibility Principle (SRP) and the Separation of
Concerns (SoC).

In this section, we've seen how to write a custom validator that works on the client side or
on the server side. Now, let's see how we can implement an AJAX experience.

Using AJAX for validation

AJAXis a term coined long ago to represent a feature of modern browsers by which
asynchronous HTTP requests can be done, via JavaScript or by the browser, without a full
page reload.

ASP.NET Core does not offer any support for AJAX, which doesn't mean that you can't use
it—it is just the case that you need to do it manually.

The following example uses jQuery to retrieve values in a form and send them to an action
method. Make sure the jQuery library is included in either the view file or the layout:

<form>
<fieldset>
<div><label for="name">Name: </label></div>
<div><input type="text" name="name" id="name" />
<div><label for="email">Email: </label></div>
<div><input type="email" name="email" id="email" />
<div><label for="gender">Gender: </label></div>
<div><select name="gender" id="gender">
<option>Female</option>
<option>Male</option>
</select></div>
</fieldset>
</form>
<script>

S ('#submit') .click (function (evt) {
evt.preventDefault () ;

[280]

Using Forms and Models Chapter 6

var payload = $('form').serialize();

S.ajax ({
url: '@Url.Action("Save", "Repository")',
type: 'POST',
data: payload,
success: function (result) {
//success
b
error: function (error) {
//error

</script>
This section of JavaScript code does the following things:

e Binds a click event handler to an HTML element with an ID of submit.
e Serializes all the form elements.

e Creates a POST AJAX request to a controller action named Save in a controller
called RepositoryController.

o If the AJAX call succeeds, the success function is called; otherwise, an
error function is called instead.

The URL to the controller action is generated by the Act ion method. It is

important not to have it hardcoded but to instead rely on this HTML
helper to return the proper URL.

Let's now see how we can perform validation AJAX-style using a built-in mechanism.

[281]

Using Forms and Models Chapter 6

Validation

One of the included validation attributes, [Remote], uses AJAX to perform validation on
the server-side transparently. When applied to a property of the model, it takes a
controller and an action parameter that must refer to an existing controller action:

[Remote (action: "CheckEmailExists", controller: "Validation")]
public string Email { get; set; }

This controller action must have a structure similar to this one, minus—of course—the
parameters to the action:

[AcceptVerbs ("Get", "Post")]
public IActionResult CheckEmailExists(string email)
{

if (this._repository.CheckEmailExists (email))

{

return this.Json(false);

}

return this.Json (true);

}

Essentially, it must return a JSON-formatted value of t rue if the validation succeeds or
false, otherwise.

This validation can not only be used for a simple property of a primitive
type (such as st ring) but also for any POCO class.

Enforcing restrictions

In previous (pre-Core) versions of ASP.NET MVC, there was an attribute, [AjaxOnly],
that could be used to restrict an action to only be callable by AJAX. While it is no longer
present, it is very easy to bring it back by writing a resource filter, as follows:

[AttributeUsage (AttributeTargets.Method, AllowMultiple = false, Inherited =
true)]
public sealed class AjaxOnlyAttribute : Attribute, IResourceFilter
{
public void OnResourceExecuted (ResourceExecutedContext context)
{
}

[282]

Using Forms and Models Chapter 6

public void OnResourceExecuting (ResourceExecutingContext context)

{
if (context.HttpContext.Request.Headers["X-Requested-With"]
= "XMLHttpRequest")
{

context.Result = new StatusCodeResult
((int)HttpStatusCode.NotFound) ;

}

This attribute implements the resource filter interface, IResourceFilter, which will be
discussed in chapter 10, Understanding Filters, and basically, what it does is check for the
presence of a specific header (x-Requested-with), which is an indication that the current
request is being carried out by AJAX if its value is XMLHt t pRequest. If not, it sets the
response result, thereby short-circuiting any other possible filters. To apply it, just place it
next to an action that you want to restrict:

[AjaxOnly]
public IActionResult AjaxOnly (Model model) { ... }

For an overview of AJAX and the XMLHt tpRequest object, please see
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest.

After this, we move on learning how to return content from AJAX.

Returning content from AJAX

According to the best practices, your AJAX endpoints should return data; in the modern
world, when it comes to web apps, this data is normally in the form of JSON. So, you will
most likely use the JsonResult class to return contents to the client code. As for sending
data to the server, if you use jQuery, it will take care of everything for you and it works.
Otherwise, you will need to serialize data to a proper format—perhaps JSON, too. Set the
appropriate content-type header and off you go.

[283]

https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest

Using Forms and Models Chapter 6

Uploading files
File uploading is a process where we send files from our computer to a server—in this case,
running ASP.NET Core. File uploading in HTTP requires two things:

* You must use the POST verb.
e Themultipart/form-data encoding must be set on the form.

Where ASP.NET Core is concerned, the included model binders know how to bind any
posted files to an IFormFile object (or collection of objects). For example, take a form such

as the following;:

@using (Html.BeginForm("SaveForm", "Repository", FormMethod.Post,
new { enctype = "multipart/form-data" }))

{
<input type="file" name="file" />
<input type="submit" value="Save"/>

}
You can retrieve the file in an action method such as this one:

[HttpPost (" [controller]/[action]")]
public IActionResult SaveForm(IFormFile file)

{
var length = file.Length;

var name = file.Name;
//do something with the file
return this.View();

}

However, the HTML file upload specification (https://www.w3.0rg/TR/2010/WD-html-
markup-20101019/input.file.html) also mentions the possibility to submit multiple files
at once with the multiple attribute. In that case, you can just declare your parameter as an
array of IFormFile instances (a collection will also work):

public IActionResult SaveForm(IFormFile[] file) { ... }
The IFormFile interface gives you everything you need to manipulate these files:

e ContentType (string): The content type of the posted file

e ContentDisposition (string): The inner content-disposition header
containing the HTML input name and selected filename

¢ Headers (IHeaderDictionary): Any headers sent with the file

e Length (long): The length, in bytes, of the posted file

[284]

https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html

Using Forms and Models Chapter 6

e Name (string): The HTML name of the input element that originated the file
upload

e FileName (string): The temporary filename in the filesystem where the posted
file was saved

By using CopyTo and CopyToAsync, you can easily copy the contents of the posted file as
arrays of bytes from the St ream source to another. OpenReadsStream allows you to peek
into the actual file contents.

The default file upload mechanism makes uses of a temporary file in the filesystem, but you
can roll out your mechanism. For additional information, please refer to the following post
by Microsoft:

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads.

Direct access to submitted files

There is also the possibility of directly accessing the Ht tpContext .Request .Form.Files
collection. This collection is prototyped as IFormFileCollection and it exposes a
collection of IFormFile.

This concludes this chapter on how to work with files. Most complex applications will need
this somewhere, so it's useful to have this knowledge.

Summary

This chapter dealt with data coming from the user and data that, because of that, needs to
be validated; otherwise, it would be possible to submit invalid information, even if
improperly formatted. After reading through this chapter, you should be able to design a
form to receive complex data structures as well as validate them.

For validation, you should probably stick to data annotations attributes and
IValidatableObject implementations, if need be. These are used in a plethora of other
.NET APIs and are pretty much the standard for validation.

It would be good to implement client-side validation and AJAX as it provides a much better
user experience, but never forget to also validate on the server side!

There is probably no need for custom model binders as the included ones seem to cover
most cases.

[285]

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads

Using Forms and Models Chapter 6

Display and editor templates are very handy, so you should try to use them as it may
reduce the code you need to add every time, especially if you want to reuse it.

In this chapter, we've seen how we can work with models, produce HTML for
them—including with templates—validate it on the frontend and backend, see the
validation error messages, and bind your model to and from HTML form elements.

In the next chapter, we will talk about a whole different subject—Razor Pages!

Questions

You should be able to answer these questions, with the answers in the Assessments section:

What is the default validation provider?

What do we call the methods used to render HTML fields?
What is model metadata?

Does ASP.NET Core support client-side validation?

What is the base interface that can be bound to an uploaded file?
What is unobtrusive validation?

NSOk =

How can we perform server-side validation?

[286]

Implementing Razor Pages

This chapter covers Razor Pages, a functionality introduced in ASP.NET Core 2.0, which
provides a simplified development model that does not use controllers.

By studying this chapter, we will be able to develop dynamic websites that are driven by
data.

We will talk about the following:

¢ Assets search order

e Working with the page model

e The commonality in Razor views
¢ Enforcing security

Technical requirements

To implement the examples introduced in this chapter, you will need the NET Core 3 SDK
and a text editor. Of course, Visual Studio 2019 (any edition) meets all of the requirements,
but you can also use Visual Studio Code, for example.

The source code can be retrieved from GitHub

here: https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Cor
e-3-Second-Edition

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Implementing Razor Pages Chapter 7

Getting started

Razor Pages was introduced in ASP.NET Core 2.0, and they follow a totally different
approach from the rest of ASP.NET Core. Instead of the MVC pattern, Razor pages are self-
contained files, similar to XAML controls or ASP.NET Web Forms, because they can also
have a code-behind file. There is no longer a controller/view separation, as Razor pages
have all they need in a single file although we can also specify a class for them.

To use Razor Pages, you need a compatible Visual Studio version, starting from 2017
Update 3, plus you need to have ASP.NET Core 2.0 or higher installed:

Create a new ASP.NET Core web application

NET Core ~ ASP.NETC

Em o
| Py Authentication

An empty project template for creating an ASP.N Mo Authentication
it.

E!Am

A project template for creating an
This template can also be usec SP.IN My d ! ; Advanced

[] Enable Docker Support
(Requires
Web Application (Model-View-Controller)

I ttemplate for creating an ASP.N application with example ASP.NET Core MVC Views and

ollers. This template can also ed fo STrul HTTP services. D Enable Ra . ilati
nable Razor runtime compilation

Angular
A project template for creating an ASP.NET Core application with Angular
React.js Author: Microsof

Source: Templates 3.1.3

Back Create

Razor Pages is physically stored in the filesystem, underneath a Pages folder (this is by
convention), and the pages should have the same . cshtml extension as regular Razor
views. What differentiates them is the new @page directive. This is shown with the
following code:

@page

@model HelloWorldModel
<!DOCTYPE html>

<html>

[288]

Implementing Razor Pages Chapter 7

<head><title>Hello World</title></head>
<body>
<h1>@Html.Raw ("Hello, World!")</hl>
</body>
</html>

Adding an @page directive (preferably as the first line) automatically turns
the . cshtml file into a Razor page. There is no need to reference any specific NuGet
package or perform any configuration because it is enabled by default.

Accessing a Razor page is straightforward; as no routing is involved, they can be called
directly, without the . cshtml extension:

e /HelloWorld
e /Admin/Settings

The only requirement is that the pages are located somewhere inside the Pages root folder.
The Index.cshtml file is served by default, meaning if one such file is located inside

a Pages\Admin folder, it is served without having to be explicitly requested; /Admin will
serve the \Pages\Admin\Index.cshtml file.

For routing to a Razor page, you need to explicitly enable it using the new endpoint routing
mechanism:

app.UseEndpoints (endpoints =>
{

endpoints.MapRazorPages () ;
1)

You can even use the new RequireHost extension method to ensure that Razor pages are
only accessible when using certain host headers or ports. Don't forget to also register the
services needed for it:

services.AddRazorPages () ;

Leave the Pages prefix and the . cshtml extension out; they cannot be
used in the request. Also, Razor pages cannot start with an underscore (_).

Let's begin with the assets search order to understand how Razor pages are located.

[289]

Implementing Razor Pages Chapter 7

Assets search order

Razor Pages assets (. cshtml files) will be searched in the following folders and order:

e Current folder inside Pages
e /Pages/Shared/
e /Views/Shared/

This means that the view name, as requested by the user, or layout, will be looked for first
in the current folder (as per the request's path), then in the /Pages/Shared folder, and
lastly in /vViews/Shared—all relative to the root folder of the application.

So, after learning the basics, let's jump into the page model, a very important concept.

Working with the page model

You can use the exact same syntax as you would with a Razor view, but there's something
more; a Razor page inherently has a PageModel class associated with it—notice

the @model directive pointing to HelloWorldModel. This class must inherit

from PageModel, and in it, you can define methods for handling HTTP methods, such

as GET or POST. The file containing the definition of the page model class must have the
same physical name as the Razor page with a . cs extension, be located in the same folder,
and inherit from PageModel. So, for example, if the previous file was

named HelloWorld.cshtml, then its page model would go in
aHelloWorld.cshtml.cs file:

public class HelloWorldModel : PageModel
{
}

If you do not wish to specify a custom page model class, one is provided for you
automatically, and you can still specify handler methods directly in the . cshtml file:

@functions
{
public async Task<IActionResult> OnGetAsync ()
{
if (!'this.User.Identity.IsAuthenticated)
{
return this.RedirectToAction (actionName: "Login",
controllerName: "Account");

[290]

Implementing Razor Pages Chapter 7

return this.Page();

}

Consider the following properties that, for example, you might declare in the PageMode1-
derived class:

public string Message { get; set; }

public void OnGet ()

{
this.Message = "Hello, World!";
}

These can then be used in the . cshtml file:
<p>Message: @Model.Message</p>

You can even have the class declared there:

@page
@model IndexModel
@functions
{
public class IndexModel : PageModel
{
public async Task<IActionResult> OnGetAsync ()
{

//whatever

}
}
The PageModel class offers the following properties:

e HttpContext (HttpContext): The usual context

e ModelState (ModelStateDictionary): The model state, filled from all of the
value providers

e PageContext (PageContext): Offers access to the current handler method (if
any), plus the value provider and view start factory collections

e Request (HttpRequest): The same value as Ht tpContext . Request, the
request object

® Response (HttpResponse from HttpContext .Response): The response object
® RouteData (RouteData): The route data, not normally needed
e TempData (ITempDataDictionary): Temporary data

[291]

Implementing Razor Pages Chapter 7

e Url (IUrlHelper): Used for generating URLs that point to route actions, for
exampleUser (ClaimsPrincipal coming from HttpContext.User): The
current user, as determined by the authentication mechanism in use

e ViewData (ViewDataDictionary): The view bag, as introduced in Chapter
4, Controllers and Actions

This is the general information about the page model—let's now see each of these features
in detail; so, first, let's see how to implement a page handler.

Understanding page handlers

The HTTP method handlers can have several signatures:

¢ The name must start with on and be followed by the HTTP method name
(Get, Post, Put, Delete, and so on).

¢ The return type must either be void or IActionResult.

e If we are to use the asynchronous version, the method must either
return Task or Task<IActionResult> and optionally have the async keyword
applied to it, and it should end with the Async suffix.

¢ They can either take parameters (basic types with default values or complex
types), no parameters at all, or an IFormCollection parameter.

You can now add methods for handling requests, either synchronously, as shown here:

public IActionResult OnGet ()

{
if (this.HttpContext.Request.Headers["HTTP-
Referer"].SingleOrDefault () .Contains ("google.com") == true)

{

//hey, someone found us through Google!

}

return this.Page();

}

Or these can handle requests asynchronously:

public async Task<IActionResult> OnGetAsync ()
{
/...

return this.Page();

[292]

Implementing Razor Pages Chapter 7

You cannot have both a synchronous and an asynchronous handler
method or multiple overloads for the same HTTP verb, as it will result in
a runtime error.

You can even have custom handlers, which do not follow these patterns. A few ways to
achieve that are as follows:

e Pass a handler parameter in the query string, for
example, ?handler=MyHandler.

e Pass the handler parameter in the route instead, for example, @page
"{handler?}".

¢ In the <form>, <input>, or <button> tags, set an asp-page-handler attribute,
for example, asp-page-handler="MyHandler" (this uses the tag handler
functionality).

This way, you can have a method such as the following:

public async Task<IActionResult> OnPostMyHandlerAsync() { ... }

Regardless of the name you give it, you will always have the on prefix and
the Async suffix, if it is an asynchronous handler.

If you want to have your page post to multiple handlers, depending on what is clicked, it's
easy:

<form method="post">
<input type="submit" value="One Handler" asp-page-handler="One" />
<input type="submit" value="Another Handler" asp-page-handler="Two" />
</form>

For this to work, both buttons must be inside a form with a POST method and the default
tag helpers must be registered in _viewImports.cshtml:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The handler's names must follow the convention. For this example, you can have them as
the following:

public void OnPostOne() { ... }

public async Task<IActionResult> OnPostTwoAsync () { ... }

[293]

Implementing Razor Pages Chapter 7

This is just an example—they can be asynchronous or not, and return values or not
too. Inside they can perform tasks such as redirection by returning IActionResult:

public async Task<IActionResult> OnPostTwoAsync ()
{

return this.RedirectToPage ("/Pages/Success");

}

Not all action results make sense though; for example, it doesn't make sense to
return ViewResult, as Razor Pages does not execute in the context of a controller. If this is
not required, you do not even need to return TActionResult:

public void OnGet ()
{

//initialize everything

}

And these can be used as helpers for returning IActionResults, in pretty much the same
way as the ControllerBase and Controller classes:

e Challenge (ChallengeResult)

e Content (ContentResult)

e File (FileContentResult, FileStreamResult, VirtualFileResult)
e Forbid (ForbidResult)

e LocalRedirect (LocalRedirectResult)

® LocalRedirectPermanent (LocalRedirectResult)

e LocalRedirectPermanentPreserveMethod (LocalRedirectResult)
¢ LocalRedirectPreserveMethod (LocalRedirectResult)

¢ NotFound (NotFoundResult, NotFoundObjectResult)

e Page (PageResult)

e PhysicalFile (PhysicalFileResult)

e Redirect (RedirectResult)

e RedirectPermanent (RedirectResult)

e RedirectPermanentPreserveMethod (RedirectResult)

e RedirectPreserveMethod (RedirectResult)

e RedirectToAction (RedirectToActionResult)

e RedirectToActionPermanent (RedirectToActionResult)

e RedirectToActionPermanentPreserveMethod (RedirectToActionResult)

e RedirectToActionPreserveMethod (RedirectToActionResult)

[294]

Implementing Razor Pages Chapter 7

e RedirectToPage (RedirectToPageResult)

® RedirectToPagePermanent (RedirectToPageResult)

e RedirectToPagePermanentPreserveMethod (RedirectToPageResult)
e RedirectToPagePreserveMethod (RedirectToPageResult)

e RedirectToRoute (RedirectToRouteResult)

e RedirectToRoutePermanent (RedirectToRouteResult)

e RedirectToRoutePermanentPreserveMethod (RedirectToRouteResult)
e RedirectToRoutePreserveMethod (RedirectToRouteResult)

e SignIn (SignInResult)

e SignOut (SignOutResult)

e StatusCode (StatusCodeResult, ObjectResult)

¢ Unauthorized (UnauthorizedResult)
Some of these methods offer overloads, and each of these can return different result types.

Finally, if you want, you can pass parameters to your handlers:

<input type="submit" value="Third Handler" asp-page-handler="Three" asp-
route-foo="bar" />

Just declare a parameter on the handler:

public void OnPostThree (string foo)

{
//do something with the value of foo

}

Having seen how a page handler can be implemented, let's see now how we can bind a
request to a class model.

Doing model binding

If you declare a property in the page model class (or in a @ functions block, for that
matter) and decorate it with a [BindProperty] attribute, it will be bound automatically,
using the same rules (binding source providers and binding attributes) as described in the
previous chapter:

[BindProperty]
public Order Order { get; set; }

[295]

Implementing Razor Pages Chapter 7

You will then be able to access and change any of its properties, perhaps in

an HTTP handler method. You can also supply your own binder through the BinderType
property. BindProperty can also bind on GET calls if its SupportsGet property is set to
true.

If you prefer, you can also apply the [BindProperties] attribute to the whole class, and
all of its properties will be automatically bound:

[BindProperties]
public class Model

{
public int OneProperty { get; set; 1}
public string AnotherProperty { get; set; }

Do notice that properties bound this way will only be so for non-GET calls
(typically POST) unless you set its SupportsGet property (both
[BindProperty] and [BindProperties] have SupportsGet). It works
pretty much the same as [ModelBinder], but the latter never binds on
GET requests.

Also, similarly to controller actions, parameters in HTTP handler methods are
automatically bound:

public void OnGet (int? id = null)
{

//?21id=1212
}

You can opt for not declaring a model as part of the handler method signature but instead
update it dynamically:

public void OnPost ()

{
var model = new OrderModel () ;
this.TryUpdateModel (model) ;

}

A possible reason for this would be that the same page handles different requests and,
consequently, different models.

Now that we've seen how to turn a request into a class, it's time to learn how to validate it!

[296]

Implementing Razor Pages Chapter 7

Doing model validation
Model validation also works in pretty much the same way as in controllers:

public IActionResult OnPost ()
{

var model = new OrderModel () ;
this.TryUpdateModel (model) ;

if (this.TryValidateModel (model))

{ return this.RedirectToPage ("/Pages/Error");

}

return this.Page();

}

Similarly to controllers, the ModelState property also keeps track of all injected values and
their validation state.

Maintaining state

All of the usual ways to persist data apply also to Razor Pages, so there is nothing specific
worth mentioning here.

Using view layouts

Razor Pages can use the same layout functionality as views, but you are advised to keep
your layout pages outside the Views\Shared folder, as this is reserved for views.

Using partial views

Like view layouts, partial views are also supported in exactly the same way.

Let's see now how areas are supported.

[297]

Implementing Razor Pages Chapter 7

Using areas

As of ASP.NET Core 2.1, Razor Pages also supports areas. Areas are a way to physically
separate modules inside our application, in folders. This just means that Razor Pages can be

addressed inside these folders, as in these examples:

e /Admin/Index
e /HR/Index
e /Orders/Index

Notice that these folders must be created below an Areas folder on the root of the project,
like this:

4 @l Areas
4 @ Admin
B Pages

4 = HR

B Page
4 @l Orders
B Page
P WM Pages

And inside each named area, we must create a Pages folder. Inside of it, you can put
whatever you like, such as . cshtml files, _ViewStart.cshml, and many others. Areas are

enabled by default.

It's time to mention the special files that exist for Razor views and Razor Pages.

Special files

The _viewStart.cshtml and _ViewImports.cshtml files are respected by Razor Pages
and treated in the same way as for regular Razor views, that is, they are called before the
actual page. They also work in areas too, meaning you can have different files, one per each
area.

Next, let's discuss filters.

[298]

Implementing Razor Pages Chapter 7

Using filters

Razor Pages works with any filters except action filters—these will not be triggered, as you
don't have actions. There is also a new filter, IPageFilter, with an asynchronous version
as well, IAsyncPageFilter. | already talked about them in the Using filters section, so I
won't repeat myself here.

Dependency injection, as we will see next, is also supported.

Using dependency injection
You can have dependencies injected in the constructor of your page model class in the
usual way:

public class HelloWorldModel : PageModel

{
public HelloWorldModel (IMyService svc)

{

//yes, dependency injection in the constructor also works!

}
}

If you decorate a property in your custom page model with [FromServices], it will be
honored, and the property will have its value set from the dependency injection
framework, from its declared type.

You can also use the @inject directive, in the same way as you would in a Razor view.

Now, we will see how we can configure Razor Pages specific options.

Configuring options
The AddRazorPagesOptions extension method can be called subsequently to AddMvc so
that we can configure some of the options of Razor Pages:

services
.AddMvc ()
.AddRazorPagesOptions (options =>
{

options.RootDirectory = "/Pages";
1)

[299]

Implementing Razor Pages Chapter 7

The RazorPagesOptions class offers the following properties:

e AllowAreas (bool): Whether or not areas should be allowed—the default is
false

e AllowMappingHeadRequestsToGetHandler (bool): Whether or not HEAD
requests will be turned into GET requests if the Razor page (or it's model) does
not provide a handler for HEAD—the default is false

e Conventions (IList<IApplicationModelConvention>): The conventions to
use—this will be discussed in a future chapter

® RootDirectory (string): The root directory, relative to the application root,
which is normally set to /Pages

In addition, there are a few extension methods that are configured
through RazorPagesOptions, and basically, add one or more conventions:

e AllowAnonymousToFolder: Allows anonymous requests to all pages under a
specific folder

e AllowAnonymousToPage: Allows anonymous requests for a given page

e AuthorizeFolder: Defines an authorization policy for all pages under a specific
folder (this will be discussed in more depth in Chapter 11, Security)

e AuthorizePage: Defines an authorization policy for a specific page

e ConfigureFilter: Allows the configuration (adding and removing) of global
filters

Check out the following example:

services
.AddMvc ()
.AddRazorPagesOptions (options =>
{

options.Conventions.AllowAnonymousToPage ("/Pages/HelloWorld");

P

Page routes are a specific kind of configuration that we will see next.

[300]

Implementing Razor Pages Chapter 7

Understanding page routes

Besides calling Razor pages directly, you can also have them answer to routes. There is a
new AddPageRoute extension method for RazorPagesOptions that you can leverage to
add friendly routes to your pages:

services
.AddMvc ()
.AddRazorPagesOptions (options =>

{
options.Conventions.AddPageRoute ("/Order", "My/Order/{id:int}");

P
Interestingly, we can see that Razor Pages depends on the MVC framework somehow.
The parameters to AddPageRoute are as follows:

® pageName (string): The name of a page to direct to, starting with /, and without
the . cshtml suffix

e route (string): A regular route, with possible some route or query string
parameters

In the view, you can then access any route or query string parameters using
HttpContext.RouteData Oor HttpContext .Request.Query.

Interestingly, here's how you set a page (/HelloWorld) to be your default one:

.AddRazorPagesOptions (options =>

{

llll),.

options.Conventions.AddPageRoute ("/HelloWorld",
1)

Moreover, you can have your Razor page to listen to a specific route, by adding a route
template parameter to the page directive:

@page "{id:int}"

In this case, if the Razor page is called without the id parameter, which must also be of
the int type, it will not be found and an HTTP 404 error will be returned instead.

Next up, how to enforce security rules in Razor Pages.

[301]

Implementing Razor Pages Chapter 7

Enforcing security

There are essentially two ways by which we can enforce security rules over Razor Pages:

e By applying the [Authorize] attribute to page models or page handlers
¢ By defining conventions

Let's start with the attribute approach.

Using the [Authorize] attribute

It's simple for a whole page:

[Authorize]

public class AdminIndexModel: PageModel
{

}

Or you can also use it for a single handler:

public class AdminIndexModel: PageModel
{

[Authorize]
public void OnGet () { ... }

}

And now, let's move on to conventions.

Conventions

Using the AddRazorPagesOptions extension method, we can control how security can be
applied to one or more pages or folders. The available methods are the following;:

e AllowAnonymousToPage: Grants anonymous access to a single page

e AllowAnonymousToFolder: Grants anonymous access to all pages underneath a
given folder

e AuthorizePage: Defines an authorization policy for a page

e AuthorizeFolder: Defines an authorization policy for all pages underneath a
folder

[302]

Implementing Razor Pages Chapter 7

Here's an example:

services

.AddMvc ()

.AddRazorPagesOptions (options =>

{
//adds an AuthorizeAttribute with a named Policy property
options.Conventions.AuthorizePage ("/ShoppingBag",
"Authenticated");
//adds an AuthorizeAttribute
options.Conventions.AuthorizeFolder ("/Products");
//adds an AllowAnonymousAttribute
options.Conventions.AllowAnonymousToPage ("/Login");
options.Conventions.AllowAnonymousToFolder ("/Images");

1)

Here, we are making sure the "/ShoppingBag" endpoint is only available for the
"Authenticated" policy and ensuring that whoever tries to access " /Products" needs to
be authorized. Lastly, both " /Login™ and "/Images™" URLs are available for anyone,
including anonymous users.

And now, what can we learn about XSS attacks?

Cross-site request scripting

Razor Pages on the server, by default, checks for Cross-Site Request Scripting (XSS)
attacks. If you want to use AJAX with Razor Pages, make sure you include the anti-forgery
token in your page and send the header in each AJAX request, as described in chapter

11, Security, in the Anti-forgery protection section.

Summary

First, choosing between regular views and Razor Pages is a decision that should be made
upfront—they're just too different. Having controllers and views may be more appealing to
people who have worked with MVC before, and I'd say it can result in better coupling and
organization, but Razor Pages is just so easy to use—no server-side code and no
recompilation (if the page model is not used) are required.

Keep on using partial views and view layouts as they are a good mechanism to improve
reusability.

[303]

Implementing Razor Pages Chapter 7

The same security concerns apply to Razor Pages as they do to controller actions. It might
be better to prefer conventions over attributes, as we have a central location where the
security information is stored.

In this chapter, we were introduced to the new Razor Pages feature of ASP.NET Core 2,
which, although different from the ordinary views, shares quite a bit of functionality. It can
be used for simpler solutions, without all of the hassle of controllers and actions.

In the next chapter, we shall see how we can extract information about what is happening
inside ASP.NET Core.

Questions

You should now be able to answer the following questions:

Do Razor pages use code-behind?

What is the purpose of the page model?

What are page handlers?

How can we restrict a Razor page from being called by anonymous users?
What are the two ways by which we can inject services into a Razor page?
Do Razor pages use page layouts?

NSOk =

Where are Razor pages served by default?

[304]

APl Controllers

This chapter introduces API controllers. An API controller is just an MVC controller that
doesn't return a Ul but instead works with requests and payloads and returns responses in
machine-readable formats, such as JSON or XML. We will cover a number of aspects
related to API controllers, from security to versioning.

The following topics will be covered in this chapter:

e Introduction to REST

e Model binding

e Authorizing access to resources
e Applying OpenAPI conventions
e Returning validation results

e Performing content negotiation
¢ Handling errors

¢ Understanding API versioning
¢ Generating API documentation
¢ Serving OData

By the end of this chapter, we will be able to work with authentication and validation
overall, without much human interaction.

Technical requirements

In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all the
requirements, but you can also use Visual Studio Code, for example.

The source code for this chapter can be retrieved from GitHub from https://github.com/
PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

API Controllers Chapter 8

Getting started with web APIs

Not all actions are meant to return HTML (such as views). Some return content is only
suitable for non-human processing, such as some client APIs. In this case, other content is
more suitable than HTML—namely, a presentation language, such as JSON or XML.
Sometimes, it is only necessary to return an HTTP status code or some response headers. In
the past, this was done with APIs outside the ASP.NET MVC, such as with

Microsoft's ASP.NET Web API (https://www.asp.net/web-api), Nancy (http://nancyfx.
org), or ServiceStack (https://servicestack.net).

Let's look at the ASP.NET web APL. It shared quite a few concepts and similarly named
(and purposed) APIs with MVC, but it was an entirely different project that used different
assemblies and a different bootstrap mechanism such as Open Web Interface for NET
(OWIN). Unsurprisingly, Microsoft made the decision with ASP.NET Core to unify the
MVC and web API; now, there is no more web AP, just the MVC. All of the API's features
can be found on the MVC, however.

There is a concept called Representational State Transfer (REST), which is the de facto
standard for writing web services and APIs that embrace HTTP in its entirety, including its
verbs, headers, and URLs. ASP.NET Core allows us to write web services that comply with
what REST proposes.

API controllers differ from non-API controllers because the former does not return a
UI—HTML or otherwise—but rather, consumes and returns data. This data is essentially
machine-readable and uses enterprise-standard formats, such as XML and JSON.
Sometimes, it is possible to negotiate what the acceptable and returned protocols are. In any
case, whenever data is received, it should be validated.

The API features of ASP.NET Core build on the MVC functionality, but it does not need all
of the functionality. it. So, you may need to add the MVC functionality, as follows:

services.AddMvc () ;

Alternatively, you could use just the bare minimum for the API, which may be enough for
your needs and uses less memory:

services.AddControllers () ;

Now that we've learned a bit about the basics, let's delve further into REST.

[306]

https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
http://nancyfx.org
http://nancyfx.org
http://nancyfx.org
http://nancyfx.org
http://nancyfx.org
http://nancyfx.org
https://servicestack.net
https://servicestack.net
https://servicestack.net
https://servicestack.net
https://servicestack.net
https://servicestack.net
https://servicestack.net

API Controllers Chapter 8

Understanding REST

REST is a style—rather than an architectural pattern—that prescribes the use of meaningful
URLs and HTTP verbs.

Verbs represent operations. Take the following, for example:

HTTP verb Meaning

GET Reads

PUT Updates or replaces
POST Creates

PATCH Partially updates
DELETE Deletes

As you can see, this resembles what we have in the ASP.NET MVC, but HTML forms only
use POST and GET.

URLs, on the other hand, expose entities and identifiers. Take the following examples:

e http://store.com/products/1
e http://profile.net/users/rjperes
e http://search.pt/term/rest+api

All of these URLs have a different meaning; if, for example, each URL is called using
a GET verb, it should return results and cause no side effects. For POST, new records should
be created. PUT updates an existing record and DELETE removes the underlying record.

As you can imagine, the actual content that is required for POST, PUT, and PATCH cannot
always be sent through the URL; if the content is complex, they need to be sent as payloads.
GET and DELETE normally do not take complex parameters.

REST is particularly useful for creating Create, Retrieve, Update, and Delete (CRUD)-style
applications. These are applications used for the addition of records, such as blog posts.

Finally, HTTP status codes represent the outcome of operations, such as the following:

e 200 OK: An entity/entities was/were successfully retrieved.

e 201 Created: An entity was successfully created.

e 202 Accepted: An entity was accepted to be deleted or updated.

® 204 No Content: A request was processed successfully but did not return any
content.

[307]

API Controllers Chapter 8

404 Not Found: The requested entity does not exist.

409 Conflict: The entity to save conflicts with the persisted version.
e 422 Unprocessable Entity: The entity failed to validate.

501 Bad Request: A bad request was issued.

For more information about the REST and RESTful APIs, please
read https://searchmicroservices.techtarget.com/definition/
RESTful-API.

In this section, we've learned about REST, which is essentially a consent mechanism. Let's
now look at ASP.NET Core—specifically, how we turn a request into a .NET class.

Model binding

Normally, when using a REST API, we use either POST, PUT, or sometimes even PATCH
verbs to send content as payloads. This content is then translated into POCO classes, which
are defined as parameters to action methods.

It turns out that ASP.NET Core can bind payloads to POCOs if you bind from the body of
the request or from the query string, but you cannot exclude (or include) specific properties
using the [Bind], [BindNever], and [BindRequired] attributes. A typical example is as
follows:

[ApiController]
public class PetController : ControllerBase

{
[HttpPost]
public IActionResult Post ([FromBody] Pet pet) { ... }

}

This is because ASP.NET Core uses input formatters to bind requests to models, and since
these can change, it's up to them to decide what properties should be skipped or not—for
example, a certain JSON serializer might use some attributes to configure property
serialization, which would be ignored by others.

[308]

https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API

API Controllers Chapter 8

Authorizing access to resources

While forms normally use username and password pairs to enforce authentication, that is
not normally the case with APIs. However, the concepts of both authentication and
authorization apply, too; authorization is ensured by means of roles, claims, or custom
rules, but authentication is usually achieved through JSON Web Tokens (JWTs). JWTs are
similar to cookies, but cookies are stored in the browser and web APIs are not usually
called by a browser but by an API client. ASP.NET Core offers a mechanism for checking
both the authentication of a request and for checking that the requester is entitled to do
what it wants to do. Explaining how to do this is the purpose of this chapter.

Using JWTs

JWTs are open-standard—defined in RFC 7519—securely representing claims between two
connecting parties using HTTP for communication. The spec is available at https://tools.
ietf.org/html/rfc7519.

Using JWTs is similar to using cookies for authentication, but cookies are usually associated
with human interaction, whereas JWTs are more common in machine-to-machine scenarios,
such as web services. Using cookies requires a cookie container that can hold them and
send them upon each request—normally, the browser does this for us. However, with web
APIs, the request is not often made by a browser.

Let's have a look at a full example. Before we delve into the code, make sure you add
the Microsoft.AspNetCore.Authentication.JwtBearer NuGet package to the code.

Let's see how we can generate a token by looking at a simple GenerateToken method that,
for example, generates a token for a given username:

private string GenerateToken (string username)
{
var claims = new Claim[]
{
new Claim(ClaimTypes.Name, username),
new Claim(JwtRegisteredClaimNames.Nbf,
new DateTimeOffset (DateTime.UtcNow) .ToUnixTimeSeconds ()
.ToString()),
new Claim(JwtRegisteredClaimNames.Exp,
new DateTimeOffset (DateTime.UtcNow.AddDays (1))
.ToUnixTimeSeconds () .ToString()),
}i

var token = new JwtSecurityToken (

[309]

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

API Controllers Chapter 8

new JwtHeader (new SigningCredentials (
new SymmetricSecurityKey (Encoding.UTF8.GetBytes ("<at-least-16-
character-secret-key>")),
SecurityAlgorithms.HmacSha256)),

new JwtPayload(claims));

return new JwtSecurityTokenHandler () .WriteToken (token);

}

This code allows anyone with a valid username/password pair to request a JWT that lasts
for 1 day (DateTime.UtcNow.AddDays (1)). The secret key (<at-least-16-character-
secret-key>), of course, can be generate from configuration and should not really be
hardcoded.

Now, to set up the authentication, we need to go to ConfigureServices; this is how it
looks in ASP.NET Core 2.x and higher:

services

.AddAuthentication (options =>

{
options.DefaultAuthenticateScheme = JwtBearerDefaults.
AuthenticationScheme;
options.DefaultChallengeScheme = JwtBearerDefaults.
AuthenticationScheme;

H)

.AddJwtBearer (JwtBearerDefaults.AuthenticationScheme, options =>

{
options.TokenValidationParameters = new TokenValidationParameters
{

ValidateAudience = false,

ValidateIssuer = false,

ValidateIssuerSigningKey = true,

IssuerSigningKey = new SymmetricSecurityKey (
Encoding.UTF8.GetBytes ("<at-least-16-character
-secret-key>")),

ValidatelLifetime = true,
ClockSkew = TimeSpan.FromMinutes (5)

bi

[310]

API Controllers Chapter 8

ClocksSkew allows differences in clock synchronization between the server and any clients
connected to it. In this case, we are allowing a 5-minute tolerance, which means clients
whose token has expired by less than 5 minutes will still be accepted. This needs to go

in Configure to add the authentication middleware to the pipeline:

app.UseAuthentication();

Now, any requests for action methods with the [Authorize] attribute will be checked for
the JWT and will only be accepted if it is valid. To make sure this happens, you need to
send the authorization token with all requests (including AJAX calls); this is

the Authorization header and it looks like this:

Authorization: Bearer <my-long-jwt-authorization-token>

The <my-long-jwt-authorization-token> value is the one produced from the
GenerateToken method shown earlier.

You can play around with and generate valid JWT tokens using a number of public sites,
such as https://jwt.io. Of course, you need to find a way to store the token for the
duration of the request (HTML local storage, for example—see https://developer.
mozilla.org/en-US/docs/Web/API/Window/localStorage for more information). If the
token is tampered with or its timeout is reached, you will get an authorization error.

If you wish, you can instruct ASP.NET Core to use a different authentication validation
provider—for example, you can have both cookie- and JWT-based authorization providers.
You only need to use the AuthenticationSchemes property of

the [Authorize] attribute, as follows, for JWT:

[Authorize (AuthenticationSchemes = JwtBearerDefaults.AuthenticationScheme)]

The following can be used to use cookies:

[Authorize (AuthenticationSchemes =
CookieAuthenticationDefaults.AuthenticationScheme)]

You can mix different authentication schemes on the same ASP.NET Core app.

Now that we've finished with authentication, let's look at the mechanism that Visual Studio
offers for enforcing REST conventions.

[311]

https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

API Controllers Chapter 8

Applying OpenAPI REST conventions

ASP.NET Core 2.2 introduced API web analyzers to Visual Studio. These analyzers are
used to enforce REST conventions. Simply put, we state that an assembly or class should
follow some convention; Visual Studio then checks whether its methods declare—for the
purpose of OpenAPI (Swagger)—the proper response types and status codes and offers to
fix this by adding the correct attributes if needed. This is purely a design-time feature, not
something that you code, for a change.

The Microsoft.AspNetCore.Mvc.Api.Analyzers NuGet package includes some
standard conventions for REST APIs in the form of the DefaultApiConventions class. If
we want to ensure that all types in the current assembly follow these conventions, we apply
the following attribute at the assembly level:

[assembly: ApiConventionType (typeof (DefaultApiConventions))]

If we only want to do this at a class level, we take out the assembly modifier and instead
apply it to a class, usually a controller, as follows:

[ApiConventionType (typeof (DefaultApiConventions))]
public class PerController : ControllerBase { }

Alternatively, we can do so at a method level:

[ApiConventionMethod (typeof (DefaultApiConventions),

nameof (DefaultApiConventions.Put))]

[HttpPut ("{id}")]

public async Task<ActionResult<Pet>> PutPet (int id, Pet pet) { ... }

Note that in this case, we are specifying the name of the method (Put) that holds the
conventions that we want to use for this method. In all the other cases, Visual Studio looks
for hints at the convention methods, specified as attributes, which it uses to match the
methods in the current context.

[312]

API Controllers Chapter 8

The DefaultApiConventions class has conventions for the following kinds of methods
(same as the HTTP verbs):

® Get Or Find

e Post Oor Create

e Put, Edit, or Update
® Delete

For each of these, Visual Studio offers to add appropriate status code
([ProducesResponseType]) attributes. So, it goes like this:

Method Commands
GET 200 OK: Content was found and is returned with success.
404 Not Found: Content was not found.
50ST 201 Created: Content was created successfully.
400 Bad Request: Bad or invalid request issued.
204 No Content:No content issued.
PUT 404 Not Found: The content to be updated was not found.400 Bad Request: Bad or invalid request

issued.

DELETE 200 OK: Content deleted successfully.
404 Not Found: Content was not found.400 Bad Request: Bad or invalid request issued.

[313]

API Controllers Chapter 8

The following is an example of using Visual Studio to add response types that are missing
for a method that matches the GET convention:

etPet(id)

_context.Pet.FindAsync(id);

NotFound();

Add Pro dicesResponseType attributes.

>> GetPet(id)
k<IActionResult> PutPet(id, Pet

It is possible to roll out our own conventions, but these are the default ones for REST APIs,
so we should probably stick to them. If you wish to learn more about this, please have a

look at nttps://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/
conventions.

Returning validation results

Before ASP.NET 2.1, you would need to explicitly look at the model validation result—for
example, by inspecting ModelState.IsValid—and act accordingly, returning, for
example, BadRequestResult. Since then, for any controllers that feature the
[ApiController] attribute, ASP.NET Core will add an action filter

called ModelStateInvalidFilter, which, before an action method is actually run,
inspects the model for validity and returns BadRequestResult for us. The pseudocode
looks as follows:

public void OnActionExecuting (ActionExecutingContext context)

{
if (!context.ModelState.IsValid)

{
context.Result = new BadRequestObjectResult (context.ModelState);

}

[314]

https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions

API Controllers Chapter 8

The response sent to the client includes the model validation errors and, by default, a
special content type of application/problem+json. We will discuss this in greater detail
when we talk about error handling later in this chapter.

You can disable this behavior completely by setting a value of false to
the ApiBehaviorOptions.SuppressModelStateInvalidFilter property:

services.Configure<ApiBehaviorOptions> (options =>

{
options.SuppressModelStateInvalidFilter = true;

1)

You can just hide the validation details, which can be useful from a security point of view:

options.SuppressUseValidationProblemDetailsForInvalidModelStateResponses =
true;

Yet another option is to explicitly state how a model validation error will be translated to a
response. The ApiBehaviorOptions class offers a property

called InvalidModelStateResponseFactory, delegated just for this purpose. This
takes ActionContext as its sole parameter, from which we can inspect ModelState, as
well as other possibly useful properties. The following code sample shows how we can
return a different result depending on the number of model validation errors:

options.InvalidModelStateResponseFactory = (ctx) =>
{
if (ctx.ModelState.ErrorCount > 1)
{
return new JsonResult (new { Errors = ctx.ModelState.ErrorCount });
t
return new BadRequestObjectResult (ctx.ModelState);

bi

In this example, if the error count is greater than 1, we return a JSON result; otherwise, we
fall back to the default bad request.

Now, let's see how content negotiation works when requested by a client.

Performing content negotiation

Content negotiation is the process by which the application returns data in a format that is
requested by the client. This is usually done for API-style invocations, not requests that
serve HTML. For example, a certain client might want data returned in JSON format, while
others might prefer XML. ASP.NET Core supports this.

[315]

API Controllers Chapter 8

There are essentially two ways to achieve this:

e Through a route or query string parameter
e Through the Accept request header

The first approach lets you specify the format that you're interested in on the URL. Let's see
how this works first:

1. Say you have the following action method:

public Model Process () { ... }

2. Let's forget what Model actually is as it's just a POCO class that contains the
properties you're interested in. It could be as simple as this:

public class Model
{
public int A { get; set; }
public string B { get; set; }
}

3. Out of the box, ASP.NET Core includes a formatter for JSON, but you can also
add a NuGet package, also from Microsoft, that adds support for
XML—Microsoft .AspNetCore.Mvc.Formatters.Xml. As well as adding it to
the services, you also need to tell ASP.NET what mapping to use; in this case,
the . xml format to the application/xml content type:

services
.AddMvc (options =>
{
options.FormatterMappings.SetMediaTypeMappingForFormat ("xml",
"application/xml");
})

.AddXmlSerializerFormatters () ;

Calling AddXmlSerializerFormatters already does this:

services
.AddMvc ()
.AddXmlSerializerFormatters () ;

[316]

API Controllers Chapter 8

4. There is already a mapping from json to application/json, so there is no
need to add this as it will be the default. Then, you need to decorate your action
method with a route that specifies the format parameter:

[Route (" [controller]/[action]/{format}")]
public Model Process () { ... }

5. You also need to decorate your controller class with the [FormatFilter]
attribute, as follows:

[FormatFilter]
public class HomeController { }

6. Now, if you call your action with json or xml as the format route value, you
will get an answer properly formatted according to the format you specified,
such as this for XML:

<Model xmlns:xsi="http://www.w3.0rg/2001/XMLSchema—-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<A>1

two
</Model>

7. You will get the following for JSON:
{ lla" . 1, llb" . lltWO" }

8. The other way is to use the request's Accept header, which is a standard way of
specifying the content we're interested in receiving. API clients don't typically
use this, but browsers do. In the AddMvc call, you need to activate
theRespectBrowserAcceptHeaderpropeﬂy:

services
.AddMvc (options =>
{

options.RespectBrowserAcceptHeader = true;

b

.AddXmlSerializerFormatters () ;

Now, if you send an Accept header of
either application/xml or application/json (this is the default), you will get the
result in the desired format.

[317]

API Controllers Chapter 8

For more information about the Accept header, please consult https://
developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept.

For the sake of completeness, the JSON formatter allows us to specify additional options
through the use of the AddJsonOptions extension method:

services
.AddMvc ()
.AddJsonOptions (options =>
{
options.JsonSerializerOptions.PropertyNamingPolicy =
JsonNamingPolicy.CamelCase;

)i

This configures the resolver to use camelCasing instead of the default option. There are
too many options to discuss here and since they're not really that relevant, we won't cover
them.

Now that we've looked at request acceptance, let's now look at response formatting.

Output formatters

What does returning an object in an HTTP response mean? Well, the object needs to be
turned into something that can be transmitted over the wire. Some typical response types
are as follows:

e text/html: For HTML content

e text/plain: For generic text content

e application/json: For JSON content

e application/xml: For XML content

o binary/octet—stream:Foranylﬂnaryconkxﬁ

Therefore, the object you return needs to be turned into something that can be sent using
one of these content types. For this, ASP.NET Core uses the concept of an output formatter.
An output formatter is essentially an implementation of IOutputFormatter.

[318]

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept

API Controllers Chapter 8

Out of the box, ASP.NET Core includes the following output formatters:

e HttpNoContentOutputFormatter doesn't write any content at all; only returns
a 204 HTTP status code.

e StringOutputFormatter outputs strings as is.
e StreamOutputFormatter writes a stream as a series of bytes.
e JsonOutputFormatter serializes the object to JSON.

There are also a couple of types of XML formatters that can be installed using

the Microsoft.AspNetCore.Mvc.Formatters.Xml NuGet package and registered either
through AddxmlDataContractSerializerFormatters (for DataContractSerializer)
or AddxmlSerializerFormatters (for XmlSerializer).

Data contracts and XML serializers use different approaches; for example,
different attributes to control the output.

Output formatters can be configured using the AddMvc extension method overload, which
takes a parameter, as follows:

services.AddMvc (options =>

{
options.OutputFormatters.Insert (0, new MyOutputFormatter());

)i

So, how is an output formatter selected? ASP.NET Core iterates the list of configured
formatters and calls its TOutputFormatter.CanWriteResult method. The first formatter
that returns t rue is the one that is used to serialize the object to the output stream (the
WriteAsync method).

Handling null values

When an ASP.NET Core API controller returns a null value that is normally wrapped in
IActionResult and takes a value, ASP.NET Core automatically switches the return value
to NoContentResult (HTTP 204 No Content). This behavior is probably OK most of the
time, but it may be undesirable at other points. Fortunately, it can be controlled by us; this
is actually done through the Ht tpNoContentOutputFormatter output formatter, which is
registered by default.

[319]

API Controllers Chapter 8

So, if we want to disable it, all we need to do is remove this formatter:

services.AddMvc (options =>

{
options.OutputFormatters.RemoveType<HttpNoContentOutputFormatter> () ;

1)

In this case, be warned that you may end up returning, for example, a response of 200 OK
with a null response if you don't validate the response being returned. If you wish, you
can implement a result filter that returns something else—for example,
NotFoundResult—in the event of the response being null. This would look something as
follows:

public sealed class NoResultToNotFoundFilterAttribute : Attribute,
IAlwaysRunResultFilter
{

public void OnResultExecuting (ResultExecutingContext context)

{
if ((context.Result is ObjectResult result) && (result.Value

== null))
{

context.Result = new NotFoundResult ();

}
}

public void OnResultExecuted (ResultExecutedContext context) { }
}

Notice that we implemented this as an always run result filter, described in chapter
10, Understanding Filters. You just need to register this filter as a global filter and you're
good to go.

This concludes the section on content negotiation. In the next section, we will be looking at
error handling.

Handling errors

Error handling, when we are talking about APIs, means returning information that

can possibly be consumed by a non-human endpoint in the event of an error that can
provide useful information. The W3C (which is World Wide Web Consortium) this, on RFC
7807 (nttps://tools.ietf.org/html/rfc7807), as "a way to carry machine-readable details of
errors in an HTTP response”.

[320]

https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807

API Controllers Chapter 8

The idea here is that when an error occurs, we gather all the useful information and return
a response that describes what happened with the appropriate level of detail.

One way to intercept any exceptions that occur on a web request is through an exception
handler—a middleware that is added through a call to UseExceptionHandler. Let's look
at an example:

app.UseExceptionHandler (errorApp =>
{
errorApp.Run (async context =>
{
var errorFeature = context.Features.Get
<IExceptionHandlerPathFeature>();
var exception = errorFeature.Error;
var path = errorFeature.Path;
var problemDetails = new ProblemDetails
{
Instance = $"urn:my:error:{Guid.NewGuid() }",
Detail = exception.Message

Yi

if (exception is BadHttpRequestException badHttpRequestException)
{

problemDetails.Title = "Invalid request!";
problemDetails.Status = StatusCodes.Status400BadRequest;

}

else

{
problemDetails.Title = "An unexpected error occurred!";
problemDetails.Status = StatusCodes
.Status500InternalServerError;

context .Response.ContentType = "application/problem+json";
context.Response.StatusCode = problemDetails.Status.Value;

await context.Response.WriteAsync (JsonSerializer.
Serialize (problemDetails));
F) i
F) i

What we have here is a handler that is called in the event of an exception; we retrieve the
current exception through IExceptionHandlerPathFeature and check what it is. There
is another feature class, IExceptionHandlerFeature, but
IExceptionHandlerPathFeature extends it and adds a Path property to the already
existing Error property.

[321]

API Controllers Chapter 8

We then build an instance of a ProblemDetails class (provided by .NET Core; you can
inherit from it should you wish to provide your own properties) and fill in the appropriate
properties. We then set the response content type to application/problem+json, as
defined by the RFC interface, and serialize this instance as JSON to the response stream.

The properties of the ProblemDetails class have the following meanings (from the RFC):

e Type (string): A URI reference (REC3986) that identifies the problem type. If
not supplied, it defaults to about :blank.

e Title (string): A short, human-readable summary of the problem type. This
should not change from occurrence to occurrence of the problem, except for the
purposes of localization.

e Detail (string): A human-readable explanation specific to this occurrence of
the problem.

e Instance (string): A URI reference that identifies the specific occurrence of the
problem. It may or may not yield further information if dereferenced.

e Status (int): The HTTP status code.

Of course, the exact level of detail depends on the message that occurred and on what you
want to expose to the client, so you must consider this carefully by inspecting the exception,
the request URL, and any other possible parameters.

Since ASP.NET Core 3, we can also create a ProblemDetails object such as this within a
controller action method:

var problemDetails =
ProblemDetailsFactory.CreateProblemDetails (HttpContext) ;

This includes general information about the exception that occurred and, in the case of a
more specific model validation error, which is not a server-side error and normally does not
throw any exception, we can do this instead:

var validationProblemDetails = ProblemDetailsFactory.
CreateValidationProblemDetails (HttpContext, ModelState);

This includes all of the validation errors in the generated object. You could have code such
as this in a controller:

if (!'this.ModelState.IsValid)
{

var validationProblemDetails = ProblemDetailsFactory
.CreateValidationProblemDetails (HttpContext,
ModelState) ;

[322]

API Controllers Chapter 8

return BadRequest (validationProblemDetails);

}

That's all for error handling; the next section explains how we can have multiple versions of
an API and have our customers select the one that they're interested in.

Understanding API versioning

Also related to API (web service)-style method invocations is versioning. By versioning
your API, you can have multiple simultaneous versions of it by possibly taking different
payloads and returning different results. ASP.NET Core supports API

versioning through the Microsoft.AspNetCore.Mvc.Versioning library.

Out of the box, you can apply the following techniques to specify the version that you're
interested in:

e A URL query string parameter
e A header
¢ Any of the previous options—either the query string or a header

Let's say you have two controller classes of the same name in two different namespaces:

namespace Controllers.V1

{
[ApiVersion ("1.0")]
public class ApiController

{

[ApiVersion("1.0", Deprecated = true)]
[HttpGet (" [controller]/[action] /{version:apiversion}")]
public Model Get () { ... }

[ApiVersion ("2.0")]
[ApiVersion ("3.0")]
public Model GetVv2() { ... }

}

Here, you can see that we applied a couple of [ApiVersion] attributes to each, with each
one specifying an API version that the controller supports. Let's see how we can implement
versioning, starting with the route approach.

[323]

API Controllers Chapter 8

Using header values

We will configure API versioning to infer the desired version from a header field. We
configure versioning in the ConfigureServices method. Notice
the HeaderApiVersionReader class:

services.AddApiVersioning (options =>

{

options.ApiVersionReader = new HeaderApiVersionReader ("api-version");
P

Here, we're saying that the version should come from the header string called api-
version. This is not a standard value; it's just some string we picked up.

Now, when calling your API at /Api/Get, while passing an api-version header with a
value of 1.0, the request will be handled by the Controllers.Vvl.ApiController class.
If you pass a value of 2.0 or 3.0, however, it will be picked up by

the Controllers.V2.ApiController class.

Using a header is the most transparent technique, but it is also one that you can't easily
force, for example, using a browser. Let's look at another technique.

Using the query string
In order to infer the version from the URL, we need to use
the QueryStringApiVersionReader class, as follows:

services.AddApiVersioning (options =>

{

options.ApiVersionReader = new QueryStringApiVersionReader ("api-
version");

P
We also need to configure a route that takes this into account:

[Route (" [controller]/{version:apiversion}")]
public Model Get () { ... }

Now, if we make a request to /api/1.0, we get version 1.0, and the same goes
for2.0and 3.0.

[324]

API Controllers Chapter 8

If we want to be more flexible, we can use
the QueryStringOrHeaderApiVersionReader class as
ApiVersionReader; both approaches will work.

We've seen how to specify a version using either the query string or a header. Let's now see
how to mark a version as deprecated.

Deprecating versions

You can say that one version is obsolete by setting a flag to the Deprecated property:
[ApiVersion ("1.0", Deprecated = true)]

Now, if you set the ReportApivVersions flag to t rue, you will receive the versions that
are supported and those that aren't as part of the response:

services.AddApiVersioning (options =>

{
options.ReportApiVersions = true;
options.ApiVersionReader = new QueryStringApiVersionReader ("
api-version");
P

This yields the following response headers:

api-deprecated-versions: 1.0
api-supported-versions: 2.0, 3.0

Now, let's move on to see how default versions work.

Default versions

You can also specify a default version:

services.AddApiVersioning (options =>

{

options.AssumeDefaultVersionWhenUnspecified = true;

options.DefaultApiVersion = new ApiVersion (2, 0);

options.ApiVersionReader = new QueryStringApiVersionReader ("
api-version");

)i

In this case, if you don't specify a version, it will assume that you want version 2. 0.

[325]

API Controllers Chapter 8

Version mapping

As we've seen, the Controllers.V2.ApiController class is mapped to two
versions—2 .0 and 3. 0. But what happens if you want to handle version 3. 0 separately?
Well, you simply add a [MapToApiVersion] attribute to a new method:

[MapToApiVersion ("3.0")]
public Model GetV3() { ... }

Henceforth, all requests for version 3. 0 will be handled by this method.

Invalid versions

If an unsupported version is requested, not a deprecated one, an exception will be thrown
and returned to the client, as follows:

{

"error":
{
"code": "ApiVersionUnspecified",
"message":"An API version 1s required, but was not specified."
}
}

That's about it for versioning ASP.NET Core web APIs. As you can see, you have several
options, from using the URL to using headers, and you can have multiple, simultaneous
versions of your API. This will hopefully help you migrate clients running an old version to
the new one.

Next, we'll see how to generate documentation for an API and even create a Ul for calling it
from the browser.

Generating APl documentation

Web APIs have a specification that was initially called Swagger but now goes by the
name OpenAPI (https://github.com/OAI/OpenAPI-Specification). It is used

to describe the endpoints and versions offered by some APIs. The Swagger v3.0
specification contributed to the OpenAPI Initiative, and so Swagger is merged with
OpenAPL

[326]

https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification

API Controllers Chapter 8

It is still colloquially called Swagger in several places, and there is also an open source
implementation for .NET called Swashbuckle, which is available on NuGet

as Swashbuckle.AspNetCore (https://github.com/domaindrivendev/Swashbuckle.
AspNetCore). What this package does is inspect the action methods of your controllers and
generate a JSON document that describes them. It also offers a simple web interface for
invoking each of these action methods—how cool is that?

In order to use Swashbuckle.AspNetCore, we need to add a few NuGet
packages—sSwashbuckle.AspNetCore, . SwaggerGen,
Swashbuckle.AspNetCore.SwaggerUI, and Microsoft .OpenApi. The latter is added
automatically by the former. To use Swashbuckle, as with most ASP.NET Core APIs, we
first need to register the required services to the dependency injection framework
(ConfigureServices). This is done as follows:

services.AddSwaggerGen (c =>

{

c.SwaggerDoc ("vl", new OpenApiInfo {
Title = "My API V1",
Version = "v1",
OpenApiContact = new Contact {
Email = "rjperes@hotmail.com",
Name = "Ricardo Peres",
Url = "http://weblogs.asp.net/ricardoperes"

1)
1)

We add the Swagger middleware to the pipeline in the Configure method:

app.UseSwagger () ;
app.UseSwaggerUI (options =>
{
options.SwaggerEndpoint ("/swagger/vl/swagger.json", "My API V1");
P

The two calls, UseSwagger and UseSwaggerUI, refer to two different functionalities; the

first is for the actual API documentation and the second is the UI for invoking controller
actions.

You can add as many calls to AddSwaggerGen as you like, with different API names or
versions. Each version will generate a different API version document.

[327]

https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore

API Controllers Chapter 8

Swashbuckle works by introspecting all the controllers and their action methods, but it will
only find those that you explicitly want it to find, such as the following:

e Controllers marked with a [Route] attribute

o Action methods marked with [Route], [HttpGet], [HttpPost], [HttpPut],
[HttpDelete], [HttpOptions], [HttpPatch], or [HttpMethod] and with an
explicit route template

Swashbuckle will also look at the following:

e [Produces]: The content type(s) and contract of the POCO class(es) that may be
produced by an action method.

e [ProducesResponseType]: The contract and status code that may be returned
by an action method. You can have as many as you like for different status codes.

e [ProducesDefaultResponseType]: The contract that is returned for any status
code not explicitly mentioned by a [ProducesResponseType] attribute.

e [ProducesErrorResponseType]: The contract to be returned in the event of an
error.
e [Consumes]: The content type(s) that will be accepted by an action method

These attributes can be applied at the class (controller) or method (action) level; so, for
example, if all actions in a controller consume and produce JSON, you could have this:

[Produces ("application/json")]
[Consumes ("application/json")]
public class HomeController : Controller { }

When you access the /swagger/v1/swagger. json URL, you get something like this:

{
"swagger": "2.0",
"info": {
"version": "v1",
"title": "My API V1",
"contact": {
"name": "Ricardo Peres",
"url": "http://weblogs.asp.net/ricardoperes",
"email": "rjperes@hotmail.com"
}
}I
"basePath": "/",
"paths": {
"/Home": {
"get": {

[328]

API Controllers Chapter 8

"tags": ["Home"],
"operationId": "HomeIndexGet",
"consumes": ["application/json"],
"produces": ["application/json"],
"responses": {
"200": {
"description": "Success"
t
t
t
t
s
"definitions": {1},
"securityDefinitions": {}

}

Due to space constraints, we have only included one action method, Index, of

the Home controller in this sample output. However, you can see a single document, named
My API V1 version V1. For each action method, Swashbuckle describes the HTTP methods
it accepts, any content types that it accepts (these can be specified through the use of

the [Consumes] attribute) and returns (as set by [Produces]), and the return status codes
(the [ProducesResponseType] attribute). If these are not specified, the defaults are used,
which is 200 for the status code, no accept, or return content types.

This version has nothing to do with the versioning schema discussed in
the previous topic.

If a single method can return more than one document type or status code, you can apply
as many [Produces] and [ProducesResponseType] attributes as you wish:

ProducesResponseType (typeof (Model), StatusCodes.Status201Created)]
ProducesResponseType (typeof (Model), StatusCodes.Status202Accepted)]
ProducesResponseType (typeof (Model), StatusCodes.Status304NotModified)]
ProducesDefaultResponseType]

public IActionResult AddOrUpdate (Model model) { ... }

[
[
[
[

In this case, we mean the following;:

e If the model already exists somewhere, then we return HTTP 303 Not
Modified.

e If the model was changed, we return HTTP 202 Accepted.
e If the model was added, we then return HTTP 201 Created.

[329]

API Controllers Chapter 8

All of this is inferred from the REST conventions, mind you!

A word of caution—the difference between [Produces] and
[ProducesResponseType] is that the former is a result filter that sets the
response type to be of a specific value and the latter only declares it! This
may be relevant if you wish to use content negotiation, so it's something
that you must keep in mind!

For each document you add with AddswaggerGen, you get a different URL, such
as /swagger/vl/swagger.json, /swagger/v2/swagger . json, and more.

Of greater interest is the generated U, which can be accessed through
the /swagger endpoint:

¢} swagger

My API V1

Home

/Home/Process
€38 /Home

[BASE URL: /, API VERSION: V1]

Here, we can see two actions (known as operations)—/Home and /Home /Process. They
are two action methods in the Home controller, and these are the routes to access each one.
For the sake of clarity, let's consider the Process action method to have the following
signature:

[HttpGet ("Process")]
[ProducesResponseType (typeof (Model), StatusCodes.Status2000K)]
public IActionResult Process(string id, int state) { ... }

Now, expanding the operations yields the following:

[330]

API Controllers

Chapter 8

+} swagger

My API V1

MyAPIV1I ¥

Home Show/Hide | List Operations | Expand Operations

/Home/Process

Response Class (Status 200)
Processes some order

Model Example Value
{
"id": "string®,
"state": @

}

Response Content Type

Parameters
Parameter Value Description Parameter Type Data Type
id [| query string
state [| query integer

Try it outl

Here, you get a form that asks for the parameters to Process and even shows you a sample
response formatted as JSON. Brilliant! This sample response comes from the Type property
applied to the [Produces] attribute. If you fill this out and click on Try it out!, this is what

you get:

\r —
@ Swagger Ul x

&

C' | @ localhost:58962/swagger/#!/Home/HomeProcessGet

Response Messages
HTTP Status Code Reason Response Model

Headers

200 Success

Tryitoutl | Hide Response

Curl
curl -X GET --header 'Accept: application/json’ 'http://localhost:58962/Home/Process?id=fookstate=100"
Request URL
http://localhost:58962/Home/Process?id=fookstate=100
Response Body
{

3d": "foo",

"state": 100

Response Code
200
Response Headers

{

“date”: "Sun, 28 May 2017 19:12:53 GMI",
Ergiie ¢

F-82B2QzpcVXN1cnNcenBlcmVzXERVY3VEZWS0c1xWaXN1YhwgU3R1 amVjdHN

: "chu B
"content-type": "application/json; charset=utf-8"

< I ———

TuC:

[331]

API Controllers Chapter 8

Here, you get the response payload and all of the response headers. Pretty cool, right?

What remains to be shown is how we can customize the URLs for both the JSON
documentation and the UL We do this through
the UseSwagger and UseSwaggerUI extension methods, as follows:

app.UseSwagger (options =>

{

options.RouteTemplate = "api-doc/{documentName}/swagger.json";

)i

The RouteTemplate property only needs to take a { documentName} token, the default
being swagger/{documentName}/swagger. json. This token is replaced by whatever you
add as the first parameter to the swaggerDoc call in the AddSwaggerGen lambda. Don't
forget that if you change one, you need to change both, as shown:

app.UseSwaggerUI (options =>

{
options.SwaggerEndpoint ("/api-doc/vl/swagger.json", "My API V1");

)i

There are lots of other configuration options, so we advise you to take a
look at the documentation available at https://github.com/

domaindrivendev/Swashbuckle.AspNetCore.

After the generation, let us see how to add the documentation.

Adding APl documentation

Swashbuckle can add the documentation that is provided with the code, as long as we
make MSBuild generate an XML file for it. Using Visual Studio, this is just a matter of
setting a property on the . csproj file:

<PropertyGroup>
<GenerateDocumentationFile>true</GenerateDocumentationFile>
<NoWarn>$ (NoWarn) ; 1591</NoWarn>

</PropertyGroup>

This results in every documentation comment in the code to be included in an XML file that
is suitable to be fed into Swashbuckle. In order to load this file, we need to do the following:

services.AddSwaggerGen (options =>

{

options.SwaggerDoc ("v1l", new OpenApiInfo {

[332]

https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore

API Controllers Chapter 8

Title = "My API V1",
Version = "v1",
Contact = new OpenApiContact {
Email = "rjperes@hotmail.com",
Name = "Ricardo Peres",
Url = "http://weblogs.asp.net/ricardoperes"

}
1)

//assume that the XML file will have the same name as the current

//assembly

var xmlFile = $"{Assembly.GetExecutingAssembly () .GetName () .Name}.xml";
var xmlPath = Path.Combine (AppContext.BaseDirectory, xmlFile);
options.IncludeXmlComments (xmlPath) ;

1)

Now, all comments for public types and their public members and parameters will be
shown on the Swashbuckle user interface.

Serving OData

OData is an open standard for querying data over the web. It allows us to expose metadata
about a domain model and to query it using nothing more than HTTP verbs and the query
string. It can be used, for example, to expose any data model as a REST APIL.

Previous versions of ASP.NET already supported it, and since version 2.0, it is also
supported in ASP.NET Core through the Microsoft.AspNetCore.OData NuGet package.

For additional information about the OData spec, please check
out https://www.odata.org

In the case of ASP.NET Core, OData allows us to query, through the URL, any collection
that implements IQueryable<T> or IEnumerable<T>; in the first case, this means that the
query will not be executed in memory, but it will be translated to the data source-specific
dialect. In the case of an object-relational mapper, such as Entity Framework (EF) Core or
NHibernate, this is SQL.

Throughout the course of the following sections, we will see how OData can be used to
expose an object model to the web so that it can be queried easily using nothing but the
browser. Let's start at the beginning with the setup.

[333]

https://www.odata.org
https://www.odata.org
https://www.odata.org
https://www.odata.org
https://www.odata.org
https://www.odata.org
https://www.odata.org
https://www.odata.org
https://www.odata.org

API Controllers

Setting up OData

So, after adding the Microsoft.AspNetCore.OData NuGet package, we need to register
the required services and declare the model that we will be exposing. Let's take a look at

some code:

private static IEdmModel GetEdmModel ()

{

var builder = new ODataConventionModelBuilder () ;
//register an entity set of type Order and call it Orders
builder.EntitySet<Order> ("Orders") ;

//same for products

builder.EntitySet<Product> ("Products");

//add other entity sets here

return builder.GetEdmModel () ;

public void ConfigureServices (IServiceCollection services)

{

//rest goes here
services.AddOData () ;
services
.AddControllers ()
.SetCompatibilityVersion (CompatibilityVersion.Latest);

public void Configure (IApplicationBuilder app)

{

}

Notice that the Get EdmModel method returns the entity sets that will be made available to
the OData endpoint—in this case, Products and Orders, as an Entity Data Model (EDM).
There are more advanced capabilities, such as declaring functions, but we won't cover them

here.

//rest goes here
app.UseRouting () ;
app.UseEndpoints (endpoints =>
{

endpoints.MapControllers () ;

//add a route named odata for an endpoint /odata using the EDM

//model

endpoints.MapODataRoute ("odata", "odata", GetEdmModel());

)i

[334]

API Controllers Chapter 8

We must register the services by calling the AddoData extension method in
ConfigureServices and then, in Configure, when we include the MVC middleware, we
need to declare a route where the OData endpoint will listen—in this example, this is
odata.

The MapODataRoute extension method takes the name of the route as the first
parameter, the actual URL path as the second parameter, and, lastly, the EDM model.

Now, we need to add a controller to actually return collections or single items; this
controller must inherit from ODataController, a class that inherits from
ControllerBase and, therefore, inherits its methods (no need for the Controller class
because this one basically adds view-related methods):

[ODataRoutePrefix ("Products")]
public class ProductsController : ODataController

{

private readonly ProductContext _ctx;

public ProductsController (ProductContext ctx)
{
this._ctx = ctx;

}

[EnableQuery]
public IQueryable<Product> Get () => _ctx.Products;

public async Task<Product> Get (int id) => await _ctx.Products.
FindAsync (id) ;
}

The [ORouteDataPrefix] attribute indicates the prefix to be used for this controller if we
do not wish to use the default convention of the controller name minus the Controller
suffix. It can be safely omitted, otherwise.

Notice the [EnableQuery] attribute in the method that returns the collection; this is the
attribute that does the actual magic by allowing it to be queried over the URL. Also, the two
methods named Get also have an attribute of ODataRoute, but the overload that takes the
id parameter also mentions it in its constructor; this is so that it can be mapped to the
parameter.

[335]

API Controllers Chapter 8

This setup allows the following HTTP calls:

® GET /odata/$metadata#Product: For retrieving the metadata—a set of public
properties—of the Product entity

® GET /odata/Products toProductController.Get (): Returns all of the
products, allowing querying over them

® GET/ odata/Products (1) to ProductController.Get (1): Returns a single
product

Now that we've seen how to prepare ASP.NET Core for OData, let's look at how we can
query our model.

Getting metadata

There is no need to declare a return type of IQueryable<T>, as long as the actual return
value is of this type—for example, IActionResult, ActionResult<IQueryable<T>>, or
even Task<IQueryable<T>>, where T is an actual type. If you don't return

an IQueryable<T> type, but instead, for example, something that

implements IEnumerable<T>, querying is also possible, but just not on the server side (as
in the database server), but in memory instead.

Listing collections

Calling the OData endpoint (odata, as specified earlier), we get to see the list of entities
that are exposed. In our example, this is the Product s and Orders collections:

[https://localhost:5001/odata X + - o X
e 2R S Whtips://localhost:5001/odata bve 7R
i Apps i Other bookmarks

{"@odata.context":"https://localhost:5001/odata/$metadata", "value":
[{"name":"Orders","kind" : "EntitySet","url":"Orders"},
{"name" : "Products”,"kind": "EntitySet"”,"url" :"Products™}]}

The preceding screenshot shows the collections exposed by our model in the endpoint that
we defined. Let's now look at the metadata for each of these entities.

[336]

Chapter 8

API Controllers

Entity metadata

The metadata for an entity shows all of the entity's properties and is available at the

following endpoint:

/odata/S$metadata
The following is the output we get when we run this:
D https:/flocalhost:5001/odata/$m: X + - o ot
€« > C @ https//localhost:5001/odata/$metadata#Products b g 8 :
. Other bookmarks

i Apps

This XML file does not appear to have any style information associated with it. The document tree is shown below.

¥<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">
¥ <edmx:DataServices>
v<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="ODataTest.Models">

¥<EntityType Name="Order">
¥<Key>
<PropertyRef Name="Id"/>
</Key>
<Property Name="Id" Type="Edm.Int32" Nullable="false"/>
<Property Name="Timestamp" Type="Edm.DateTimeOffset" Nullable="false"/>
<NavigationProperty Name="Products" Type="Collection(ODataTest.Models.Product)"/>

</EntityType>
¥<EntityType Name="Product">
¥ <Key>
<PropertyRef Name="Id"/>
</Key>

<Property Name="Id" Type="Edm.Int32" Nullable="false"/>

<Property Name="Name" Type="Edm.String"/>

<Property Name="Price" Type="Edm.Decimal"™ Nullable="false"/>
</EntityType>

</Schema>
¥<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Default">

¥<EntityContainer Name="Container">
Y<EntitySet Name="Orders" EntityType="ODataTest.Models.Order">
<NavigationPropertyBinding Path="Products"” Target="Products"/>
</EntitySet>
<EntitySet Name="Products" EntityType="ODataTest.Models.Product"/>
</EntityContainer:>
</Schema>
< /edmx:DataServices>
< fedmx: Edmx>

This shows all of the entity properties as well as all of its collections.

Let's now see how we can filter the metadata.

[337]

API Controllers Chapter 8

Querying
Querying an entity is just a matter of accessing the endpoint for that entity:

/odata/Products

This will return all the records for that entity, but what if we just want a few of them?

Filtering an entity

Querying over the URL can be achieved by adding a query parameter named $filter, as
follows:

/odata/Products?$filter=Price gt 100

The following is the output we get on running the query:

[https://localhost:5001/odata/Pro. X + - = =
& - C @& httpsy//localhost:5001/odata/Products?$filter=Price%20gt%20100 T I8
i Apps Other bookmarks

{"@odata.context":"https://localhost:5801/odata/$metadata#Products”, "value":[{"Id":3,"Name" : "Expensive
Product","Price":150}]}

You can expect the usual operators for the different property types, such as the following;:

o Greater than/less than: gt or 1t

e Greater or equal to/less or equal to: gte or 1te
¢ Equals/does not equal: eq or ne

e And/or/not: and, or, or not

e Enumeration flags: has

As you can see, we can combine expressions using and, or, and not, even including
parentheses to group conditions.

For string properties, we can use other operators:

® concat
e contains

e endswith

[338]

API Controllers Chapter 8

e indexof

e length

e startswith
e substring
e tolower

® toupper

e trim
When working with string literals, make sure you enclose them with ', as follows:
/odata/Products?$filter=Name eq 'Expensive Product'
For collections, we have the following;:
® in
® hassubset

® hassubsequence

We also have some date and time functions:

® date

e day

e fractionalseconds
® hour

® maxdatetime

® mindatetime

® minute

e month

® now

® second

e time

e totaloffsetminutes
e totalseconds

® year

[339]

API Controllers Chapter 8

Some math functions that are available are as follows:

e ceiling
e floor

e round

Some type functions are as follows:
® cast

e isof

Some geo functions (where the underlying data access layer supports the function) are as
follows:

e geo.distance
® geo.intersects

® geo.length
Some lambda operators are as follows:

e any

e 311

I'won't try to explain all of these. For a detailed explanation of each function, please have a
look at the OData specification reference documentation, available at https://www.odata.

org/documentation.

Projections

A projection allows you to retrieve just the properties that you're interested. For example,
for Products, you may want just the Name and the Price properties. You can get this by
including a $select parameter on the query string:

/odata/Products?$select=Price

The following is the output of the query:

[340]

https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation

API Controllers Chapter 8

—] X
[https://localhost:5001/odata/Pro X +
& - C @ httpsy//localhost:5001/odata/Products?$select=Price ¥ 7 8 H
55 Apps Other bookmarks

{"@odata.context":"https://localhost:5001/odata/$metadata#Products(Price)","value":[{"Price":100},
{"Price":50},{"Price":150}]}

You can specify many fields for projection, each separated by commas.

Paging
We can specify a page size and an optional starting position by adding $top and $skip:

/odata/Products?$top=2&$skip=2

The following is the output:

D https://localhost:5001/odata/Pro. X + — U X
< - C @& https//localhost:5001/odata/Products?$top=2&$skip=2 ¥ 78
35 Apps Other bookmarks

{"@odata.context":"https://localhost:5081/cdata/$metadata#Products™,"value":[{"Id":3,"Name" : "Expensive
Product”,"Price":150}]}

This returns up to 10 records, starting from the 21st. Never forget, however, that you
shouldn't apply paging without an explicit sort order, otherwise the results may not be
what you expect.

Sorting
Sorting is achieved through $orderby:

/odata/Products?$Sorderby=Price

[341]

API Controllers Chapter 8

The following is the output:

[httpsy//localhost:5001/odata/Pro. X + - o X
<« - C & https://localhost:5001/odata/Products?$orderby=Price Pnd 7 8 :
i Apps Other bookmarks

{"@odata.context":"https://localhost:5001/odata/$metadata#Products™,"value": [{"Id":2, "Name" :"Cheap Product”,"Price":50},
{"Id":1,"Name": "Unexpensive Product”,"Price":180},{"Id":3,"Name":"Expensive Product”,"Price":150}]}

To see these results in descending order, use desc:

/odata/Products?$orderby=Price desc

The following is the output for the descending order results:

[httpsy//localhost:5001/odata/Pro. X + - o X
<« - C & https://localhost:5001/odata/Products?$orderby=Price%20desc h~d P8 :
i Apps Other bookmarks

{"@odata.context":"https://localhost:5001/odata/$metadata#Products™,"value": [{"Id":3, "Name" : "Expensive
Product”,"Price”:150},{"Id":1, "Name" : "Unexpensive Product"”,"Price":10@},{"Id":2,"Name":"Cheap Product"”,"Price":5@}]1}

It is also possible to order by several properties:

/odata/Products?$orderby=Price desc,Name asc

The asc value is the default and can be omitted.

Expansion

Using an expansion we can force the traversal of a related entity through a navigation
property. It is the $expand parameter that we want to use in this case:

/odata/Orders?$expand=Products

Mind you, this is the same as calling the Include extension method in an EF Core LINQ
query for a child collection, forcing EF Core to include it in the query and instantiate all its
records as entities.

[342]

API Controllers Chapter 8

Counting

Even when using filters, we can return the total number of records by including a $count
keyword with a value of t rue:

/odata/Products?S$count=true

After this, let us look at the configuring options.

Configuring options
The OData options are configured in the UseMVC extension method. By default, no option is

allowed, and so they must be explicitly set. The available actions that can be allowed are as
follows:

Selection of entities (Select)

Expansion of child properties and collections (Expand)
Filtering (Filter)

Sorting (OrderBy)

Counting (Count)

Multiple options can be chained together, as follows:

public void Configure (IApplicationBuilder app)
{

//rest goes here
app.UseMvc (options =>

{
options.Select () .Expand() .Filter () .OrderBy () .Count () ;
options.MapODataServiceRoute ("odata", "odata", GetEdmModel());

)i
}

This tells OData that selection, expansion, filtering, ordering, and counts are allowed.

Limits
It is usually advised that you set some limits to queries, so as to minimize resource
consumption.

[343]

API Controllers Chapter 8

Maximum returnable records

It is possible—and recommended—to set the maximum number of records to be returned
by a query. This is done to save resources. We can do this when configuring the OData
options using the MaxTop extension method:

app.UseMvc (options =>
{
options.MaxTop (10);
options.MapODataServiceRoute ("odata", "odata", GetEdmModel());

)i

This defines the maximum number of entities to retrieve as 10.

Expansion

You can also configure whether or not to allow expansion for the $expand command:
options.Expand();

If this is supplied, queries can be more complex and can return substantially more results as
they can bring child entities together with the master ones.

If you wish to play with OData with a complex model, please go
to https://www.odata.org/odata-services.

Summary

In the chapter, we saw how we can make use of JWTs to authenticate our endpoints
without the need for human interaction.

We now know how to use the Data Validation API to perform automatic model validation.
Then, we learned that content negotiation can be useful if you wish to return data in
different formats; but, in reality, JSON is the de facto standard for data exchange over the
web these days.

The OpenAPI specification is also helpful in development mode to inspect your endpoints
and issue requests against them.

[344]

https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services

API Controllers Chapter 8

Next, we saw that OData is a great addition to ASP.NET Core, especially when integrated
with EF Core or any other data provider that exposes data as IQueryable<T>.

In this chapter, we also learned how REST is implemented in ASP.NET Core to expose
APIs. We looked at how to carry out model binding and validate data before this. We were
also introduced to the JWT mechanism for authorizing endpoints and how to carry out
versioning and content negotiation. Finally, we looked at how we can leverage OData to
expose a data model to the web.

In the next chapter, we will cover the ways in which we can create reusable components.

Questions

You should now be able to answer the following questions:

What is OData?

What is content negotiation?

Why is it not suitable to use cookies for authentication in web APIs?

What are the different ways that we can ask for a specific version of our API?
What is the purpose of conventions with regard to action methods?

What are the problem details?

What is REST?

NSOk =

[345]

Reusable Components

This chapter covers ASP.NET Core's reusable components. By reusable, I mean that they
can potentially be used across different projects—or in the same project in different
places—with different parameters, yielding possibly distinct results. In this chapter, we will
cover view components and tag helpers (which are new to ASP.NET Core), tag helper
components (new to ASP.NET Core 2), and our old friend, partial views.

In this chapter, we will cover the following topics:

e View components

Tag helpers

Tag helper components
Partial views

Razor class libraries

Adding external contents

Technical requirements

In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all the
requirements, but you can also use Visual Studio Code.

The source code can be retrieved from GitHub
at https://github.com/PacktPublishing/Modern-Web-Development-with—-ASP.NET-Core—

3-Second-Edition.

All of the techniques introduced in this chapter help structure the code and minimize the
size of the global code base.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Reusable Components Chapter 9

Diving into the view components

View components are new to ASP.NET Core—they didn't exist in ASP.NET pre-Core. You
can think of them as replacements for partial views (which are still around) and the
RenderAction method for returning child actions (which is no longer available). No more
being tied to controllers; they are reusable because they can be loaded from external
assemblies (that is, not the assembly of the web app) and they are better suited than partial
views to render complex HTML. In the following sections, we will understand what view
components are, how they work, and where we use them, as well as compare them to
partial views.

Discovering view components

View components can be discovered in one of the following ways:

e By inheriting from the ViewComponent class
e By adding a [ViewComponent] attribute
¢ By adding the VviewComponent suffix to a class

You will most likely inherit the components from the ViewComponent class as this class
offers a couple of useful methods. View components can be loaded from external
assemblies if the web app references them or they are registered as application parts:

services
.AddMvc ()
.ConfigureApplicationPartManager (options =>

{
options.ApplicationParts.Add (new AssemblyPart (Assembly.Load

("ClassLibrary"));
})

For POCO view components, you won't get easy access to the ambient context of your
request. If you have to choose between the preceding options, opt for inheriting from
ViewComponent because otherwise, you will need to put in extra work to get all the
references (such as Ht tpContext and so on) that you need. We will describe this in more

detail in the Dependency injection section later.

[347]

Reusable Components Chapter 9

View components need only declare a single method, InvokeAsync:

public class MyViewComponent : ViewComponent

{

public async Task<IViewComponentResult> InvokeAsync ()

{

return this.Content ("This is a view component");
}
}

You can also use parameters, as we will see.

The [ViewComponent] attribute can be used to change the name of the view component,
but you should be aware that doing it implies that you need to use this name when loading
it:

[ViewComponent (Name = "MyView")]
public class SomeViewComponent : ViewComponent { ... }

non

Do not give it a name that has hyphens ("-"), as it will affect the usage! We will see this in
the next section.

Using view components

View components are called from views and there are two different syntaxes:

¢ A code syntax lets you pass parameters of complex types, but the code must be
syntactically valid:

@await Component.InvokeAsync ("MyViewComponent", new { Parameter
= 4, OtherParameter = true })

The InvokeAsync method takes a view component name - by default, the name
of the class minus the ViewComponent suffix - and an optional parameter
containing the parameters to be passed to the view component's InvokeAsync
method; this method can take any number of parameters and return an instance
of IViewComponentResult.

e Markup uses the tag helpers syntax (more on this shortly); notice the vc
namespace:

<vc:my-view—-component parameter="4" otherParameter="true"/>

[348]

Reusable Components Chapter 9

Again, this is the name of the class without the ViewComponent suffix, but using
hyphen casing. Here you also need to use the Name specified in the
[ViewComponent] attribute, if any. Do not use hyphens in the naming.

Pascal-cased class and method parameters for tag helpers are translated
into lower-kebab case, which you can read about at http://
stackoverflow.com/questions/11273282/whats—-the-name-for-dash-

separated-case/12273101#12273101.

If you have complex parameters that cannot be represented easily by attributes, you should
choose the code syntax. Also, the namespace is configurable.

Another option is to return a view component from a controller action in the form
of ViewComponentResult:

public IActionResult MyAction ()
{

return this.ViewComponent ("MyViewComponent") ;

}

This is very similar to returning a partial view, only in view components, all of the contents
need to be generated by code. That is, if you want to return custom HTML, you will likely
need to build by concatenating strings.

View component results

View components return an instance of IViewComponentResult, which has three
implementations in ASP.NET Core, each returned by a method of the ViewComponent
class:

e Content (ContentViewComponentResult): Returns string content.
e View (ViewViewComponentResult): Returns a partial view.

e HtmlViewComponentResult: Similar to ContentViewComponentResult, but
returns encoded HTML instead. There is no method that creates an instance of
this class, but you can instantiate one yourself.

The rules for discovering partial view files are identical to the ones
described earlier in chapter 5, Views.

[349]

http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101

Reusable Components Chapter 9

The 1vViewComponentResult interface only specifies a single method in both the
asynchronous (ExecuteAsync) and synchronous (Execute) versions. It takes an instance
of ViewComponentContext as its sole parameter, which has the following properties:

e Arguments (IDictionary<string, object>): The named properties of the
object passed to the InvokeAsync method

e HtmlEncoder (HtmlEncoder): The HTML output encoder

e ViewComponentDescriptor (ViewComponentDescriptor): Describes the
current view component

e ViewContext (ViewContext): All of the view context, including the current
view object, the HTTP context, the route data, the model, the form context, and
the action descriptor

e ViewData (ViewDataDictionary): The view data from the controller

e Wiriter (TextWriter): Used to write directly to the output stream

Since you have access to all of these contexts, you can do pretty much what you
want—such as access headers, cookies, and request parameters—but you wouldn't use the
view component results for redirection, only for rendering HTML.

Dependency injection

You can register view components as services by calling the
AddViewComponentsAsServices extension method on top of the AddMve method in
ConfigureServices:

services
.AddMvc ()
.AddvViewComponentsAsServices () ;

View components support constructor injection, so you can declare any registered types in
the constructor:

public class MyViewComponent : ViewComponent

{
private readonly ILoggerFactory loggerFactory;

public MyViewComponent (ILoggerFactory loggerFactory)

{
this._loggerFactory = loggerFactory;

[350]

Reusable Components Chapter 9

A common need is to get hold of the current Ht tpContext; if you need it in a POCO
controller, you need to inject an IHttpContextAccessor instance:

public class MyViewComponent : ViewComponent

{
public MyViewComponent (IHttpContextAccessor httpAccessor)

{
this.HttpContext = httpAccessor.HttpContext;

}

public HttpContext HttpContext { get; }
}

In this example, we inject the THttpContextAccessor interface, from which we can
extract the current Ht tpContext instance of the request. Don't forget that, for this to work,
the following line must be present in ConfigureServices:

services.AddHttpContextAccessor () ;

View components versus partial views

As you can see, view components and partial views share some similarities; they are both
reusable mechanisms to generate markup. The difference between the two is that partial
views inherit a big part of the context of the containing view, such as the model and the
view data collection, so the two views—views and partial views—must be compatible. For
example, they must have a compatible model. This is not the case for view components,
which you invoke with whatever data you like.

Next, we will talk about a very similar topic that uses a different syntax that is closer to
HTML—tag helpers.

Exploring the tag helpers

Tag helpers are also new to ASP.NET Core. A tag helper is a mechanism for adding server-
side processing to a regular HTML/XML tag; you can think of them as similar to ASP.NET
Web Forms' server-side controls, although there are several differences. Tag helpers are
registered on Razor views and when any tag on the view matches a tag helper, it is fired.
They are an alternative (and, arguably, simpler) to HTML helpers as they result in much
cleaner markup without code blocks.

[351]

Reusable Components Chapter 9

A tag helper's functionality is specified through the ITagHelper interface, in which the

TagHelper abstract base class offers a base implementation. Its life cycle includes two
methods:

e Init: Called when the tag helper is initialized, prior to any possible child
e ProcessAsync: The actual processing of a tag helper

A tag helper, on the view side, is nothing more than a regular tag and, as such, it can
contain other tags, which themselves may also be tag helpers. Let's look at an example:
<time></time>

As you can see, it is nothing more than a plain XML tag—not HTML because there is no tag
such as this on any version of HTML.

In order to add custom server-side behavior, we define a tag helper class as follows:

public class TimeTagHelper : TagHelper

{
public override Task ProcessAsync (TagHelperContext context,
TagHelperOutput output)
{

var time = DateTime.Now.ToString();
output.Content .Append (time) ;
return base.ProcessAsync (context, output);

}

Tag helpers are recursive, meaning tag helpers declared inside other tag helpers are all
processed.

We'll shortly look at what we need to do for ASP.NET Core to recognize this, but for now,
let's have a look at the parameters of the ProcessAsync method.

[352]

Reusable Components Chapter 9

TagHelperContext contains the context, as seen in the tag helper. It includes the following
properties:

e AllAttributes (ReadOnlyTagHelperAttributeList): All of the attributes
declared in the view for this tag helper

e Ttems (IDictionary<string, object>): A freeform collection of items used
to pass context to other tag helpers on the current request

® Uniqueld (string): A unique identifier for the current tag helper

As for TagHelperOutput, it not only allows the return of content to the view, but also the
return of any content that is declared inside the tag. It exposes the following properties:

e IsContentModified (bool): A read-only flag that says whether the contents
have been modified

e Order (int): The order that the tag helper is processed

e PostElement (TagHelperContent): The following tag element

® PostContent (TagHelperContent): The content following the current tag

e Content (TagHelperContent): The current tag's content

e PreContent (TagHelperContent): The content prior to the current tag

e PreElement (TagHelperContent): The previous tag element

e TagMode (TagMode): The tag mode (SelfClosing, Start TagAndEndTag, and
StartTagOnly), which is used to define how the tag should be validated in the
markup (allowing inner content is Sel1fClosing, just a tag with no self-content
is StartTagOnly)

e TagName (string): The name of the tag in the view

e Attributes (TagHelperAttributeList): The original list of attributes of the
tag, which can be modified

For example, imagine you had this tag, instead:

<time format="yyyy-MM-dd">Current date is: {0}</time>

Here, you need to access both an attribute (format) and the contents of the <t ime> tag.
Let's see how we can achieve this:

public class TimeTagHelper : TagHelper

{
public string Format { get; set; }

public override async Task ProcessAsync (TagHelperContext
context, TagHelperOutput output)

[353]

Reusable Components Chapter 9

{
var content = await output.GetChildContentAsync();
var stringContent = content.GetContent ();
var time = DateTime.Now.ToString(this.Format);

output.TagName = "span";
output.Content.Append(string.Format (CultureInfo.Invariant
Culture, stringContent, time));

return base.ProcessAsync (context, output);

}
Here, we can see that we are doing a couple of things:

¢ Getting the value of the Format attribute
¢ Getting all the tag's content
e Setting the target tag's name to span

¢ Using the content and the format to output a string with the formatted
timestamp

This is essentially the way to go to get content and attributes. You can also add attributes to
the output (by adding values to output .Attributes), change the output tag name
(output .TagName), or prevent any content from being generated at all (by using

the output . SuppressOutput method).

When outputting contents, we can either return plain strings, which are encoded as per the
view's HtmlEncoder instance, or return already encoded contents—in which case, instead
of Append, we would call AppendHtml:

output.Content.Append ("<p>hello, world!</p>");

Besides appending, we can also replace all of the content; for that, we call \t or
SetHtmlContent, or even clear everything (Clear or SuppressOutput).

An [OutputElementHint] attribute can be used to provide a hint as to what tag will
output—this is useful so that Visual Studio knows to give hints about attributes of some
other elements, such as img:

[OutputElementHint ("img")]

This way, when you add your custom tag in markup, Visual Studio will suggest all of the
img element's attributes, such as SRC.

[354]

Reusable Components Chapter 9

We can use the context . Items collection to pass data from one tag helper to
another—remember that the Order property defines which will be processed first.

Let's look at the properties exposed by tag helpers now.

Understanding the properties of a tag helper

Any public properties in the tag helper class can be set through the view. By default, the
same name in either lowercase or the same case is used, but we can give a property a
different name to be used in the view by applying an [HtmlAttributeName] attribute:

[HtmlAttributeName ("time—format")]
public string Format { get; set; }

In this case, the attribute must now be declared as t ime-format.

If, on the other hand, we do not want to allow a property's value to be set through the
view's markup, we can apply the [HtmlAttributeNotBound] attribute to it.

Properties of basic types can be specified in the markup, as well as a couple of others that
can be converted from strings (such as Guid, TimeSpan, and DateTime) and any
enumerations.

We can use Razor expressions to pass code-generated values to tag attributes:
<time format="GetTimeFormat ()">Time is {0}</format>

Finally, it is worth mentioning that we can get Visual Studio's IntelliSense for the view's
model if we use a property of the Mode1Expression type:

public ModelExpression FormatFrom { get; set; }

This is what it would look like:

="yyyy-MM-dd"

The time is: {@} # Email
' Equals

RSl ViewLocalizer Localizer Fu
S ERaHtmlLocalizer<SharedResource> & State

BlLocalizer["Hello"]

To actually retrieve the value of the property, we need to analyze the Name and Metadata
properties of ModelExpression.

[355]

Reusable Components Chapter 9

Restricting the applicability of a tag helper

A tag helper can be restricted in its applicability in a few ways:

e It can target a specific element—either a known HTML tag or a custom XML tag.
o Its target tag must be contained inside another tag.

e Its target tag must have certain attributes, possibly with a specific format.

e Its tag must have a specific structure.

A number of restrictions can be specified in terms of several [HtmlTargetElement]
attributes:

//matches any a elements
[HtmlTargetElement ("a")]
//matches any a elements contained inside a div tag

[HtmlTargetElement ("a", ParentTag = "div")]

//matches any a elements that target a JavaScript file ending in .js
[HtmlTargetElement ("a", Attributes = "[href$='.js']")]

//matches any a elements that target a link starting with ~
[HtmlTargetElement ("a", Attributes = "[href*='~"]")]

//matches any a elements with a value for the name attribute
[HtmlTargetElement ("a", Attributes = "name")]

//matches any a elements with a specific id

[HtmlTargetElement ("a", Attributes = "id='link'")]

//matches any a elements that do not have any inner contents (for example,
<a/>)

[HtmlTargetElement ("a", TagStructure = TagStructure.WithoutEndTag)]
So, we have the following properties:

e ParentTag (string): The name of a parent tag
e Attributes (string): A comma-separated list of attributes and optional values

e TagStructure (TagStructure): The format of the tag, with the default being
Unspecified

TagStructure specifies whether the tag is self-closing (WithoutEndTag) or may have
contents (NormalOrSelfClosing).

If a tag helper is found that does not match its applicability rules, an exception is thrown at
runtime. Multiple rules can be specified at the same time and different tag helpers can
match the same rules.

If you target *, it will apply to any element.

[356]

Reusable Components Chapter 9

Discovering tag helpers

A tag helper needs to implement the ITagHelper interface. Tag helpers need to be
explicitly added, and a good place to do so is the _ViewImports.cshtml file. Anything
placed here will apply to all views. Let's see how each one works:

e The addTagHelper directive adds a specific assembly and tag helpers:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The syntax is @addTagHelper <types>, <assembly>, where * stands
for all types.

e If we want to prevent a specific tag helper from being used, we apply one or
more removeTagHelper directives:

@removeTagHelper
Microsoft.AspNetCore.Mvc.TagHelpers.AnchorTagHelper,

Microsoft.AspNetCore.Mvc.TagHelpers

e If we want to make the use of tag helpers explicit, we can force them to have a
prefix by using a tagHelperPrefix directive:

@tagHelperPrefix asp:

e Finally, we also have the option to disable any possible tag helpers that target a
certain tag. We just prefix it with the ! character:

<!a href="...">link

Dependency injection

Tag helpers are instantiated by the dependency injection mechanism, which means that
they can take registered services in the constructor.

Neither the Init, Process, or ProcessAsync methods offer access to the execution
context, but—similar to POCO controllers and view components—we can inject

ViewContext:

[ViewContext]
public ViewContext ViewContext { get; set; }

[357]

Reusable Components Chapter 9

From here, we have access to Ht tpContext and ActionDescriptor, as well as the route
data, the view data, and so on.

Studying the included tag helpers

The following tag helpers are included in the Microsoft .AspNetCore.Mvc.TagHelpers
assembly:

e AnchorTagHelper (<a>): Renders an anchor
e CacheTagHelper (<cache>): Defines an in-memory cached area
e ComponentTagHelper (<component>): Renders a Blazor component

e DistributedCacheTagHelper (<distributed-cache>): Renders a
distributed cached area

e EnvironmentTagHelper (<environment>): Decides whether to render
depending on the current environment

e FormActionTagHelper (<form>): Renders a form that renders to a controller
action

e FormTagHelper (<form>): Renders a form

¢ ImageTagHelper (): Renders an image

e InputTagHelper (<input>): Renders an input element

e LabelTagHelper (<label>): Renders a label

e LinkTagHelper (<link>): Renders an internal link

e OptionTagHelper (<option>): Renders a select option

e PartialTagHelper (<partial>): Renders a Razor partial view

® RenderAtEndOfFormTagHelper (<form>): Renders content at the end of a form

e ScriptTagHelper (<script>): Renders a script

e SelectTagHelper (<select>): Renders a select element

e TextAreaTagHelper (<textarea>): Renders a text area

e ValidationMessageTagHelper (): Renders a validation message
placeholder

e ValidationSummaryTagHelper (<div>): Renders a validation summary
placeholder

[358]

Reusable Components Chapter 9

Some of these translate URLs that start with ~ to the server-specific address or add
controller and action attributes, which are in turn translated to controller action URLs:

Root

<a asp-controller="Account" asp-action="Logout">Logout
<form asp-controller="Account" asp-action="Login">

</form>

For example, you can have your application deployed under / or under virtual path, such
as /admin. If you do not know this upfront, you can't just hardcode your links to point to /,
but instead, you can use ~ and the ASP.NET Core framework will make sure it is set to the
right path.

However, some other tags are quite powerful and offer very interesting features.

The <a> tag

The <a> tag helper offers some properties for anchors that allow you to target specific
actions of specific controllers, Razor pages, or named routes:
<a
asp-action="ActionName"
asp-controller="ControllerName"
asp-page="RazorPageName"

asp-route="RouteName"
asp-area="AreaName">...

Notice how we can always specify the area name, regardless of whether we are targeting a
controller's action, a Razor page, or a particular route by name.

If you add asp-action but not the asp-controller attribute, it will default to the
current controller.

The properties are as follows:

e asp-action (string): The name of an action of a controller.
® asp-area (string): The name of an area.

e asp-controller (string): The name of a controller, which should be used
with asp-action. If not supplied, it defaults to the current controller.

¢ asp-page (string): The name of a Razor page.

® asp-route (string): The name of a route, as specified in the endpoints
definition.

[3591]

Reusable Components Chapter 9

You can start the hyperlink with a "~/" instead of " /", which means that local paths with
be mapped according to the base path of the application - for example, if the application is
deployed to "/app", then a URL of "~/file" will be turned to "/app/file".

The <cache> tag

This tag helper caches the contents declared in it in the memory cache (any instance of
IMemoryCache registered in the dependency injection framework). The only options we
have are the duration to keep the cache and whether it is relative, absolute, or sliding. Let's
look at the most basic example of this:

<cache expires-after="TimeSpan.FromMinutes (5)">
@DateTime.Now
</cache>

This will keep the string in the <cache> tag in the memory cache for a certain amount of
time. We also have the following properties:

e enabled (bool): Whether it is enabled (which is the default)

® expires-after (TimeSpan): A value for relative expiration

e expires-on (DateTime): Absolute expiration

e expires-sliding (TimeSpan): Sliding expiration, which is almost identical to
relative expiration, except it restarts every time the cache is hit

e priority (CacheItemPriority): A priority for the cache, with the default
being Normal

® vary-by (string): An arbitrary (and possibly dynamic) string value to vary the
cache by

® vary-by-cookie (string): A comma-separated list of cookie names to vary the
cache by

e vary-by-header (string): A comma-separated list of header names to vary the
cache by

e vary-by-query (string): A comma-separated list of query string parameter
names to vary the cache by

e vary-by-route (string): A comma-separated list of route data parameters to
vary the cache by

e vary-by-user (bool): Whether to vary the cache as per the logged-in username
(the defaultis false)

[360]

Reusable Components Chapter 9

Either expires-after, expires-on, or expires-sliding must be supplied, but the
default value is 20 minutes. For vary-by, it is common to set a model value, such as an
order or product ID, as follows:

<cache vary-by="@ProductId">

</cache>

The <component> tag

This tag helper was only introduced to .NET Core 3.0 and is related to Blazor, which we
will talk about in more detail in chapter 17, Introducing Blazor. Essentially, it renders a
Blazor component (a . razor file). It accepts the following parameters:

e type (string): The name of the . razor file.

¢ render-mode (RenderMode): One of the possible rendering modes that are
discussed in chapter 17, Introducing Blazor.

® param-XXX (string): Optional parameters to be passed to the Blazor
component; XxX should match the names of the properties on the component.
The tag is as follows:

<component type="typeof (SomeComponent)" render-mode="ServerPrerendered"
param-Text="Hello, World"/>

The <distributed-cache> tag

The <distributed-cache> tag is identical to the <cache> tag helper, except it uses
distributed cache (IDistributedCache). It adds another property to the ones supplied by
<cache>—name (string), which is a unique name for the distributed cache entry. Each
entry should have its own tag:

<distributed-cache name="redis" />

[361]

Reusable Components Chapter 9

The <environment> tag

The <environment> tag is also very handy—it provides the ability to
add content depending on the environment that is running (for example, Development,
Staging, and Production):

<environment names="Development, Staging">
<script src="development/file.js"></script>
</environment>
<environment names="Production">
<script src="production/file.js"></script>
</environment>

From ASP.NET Core 2 onward, besides names, we also have two new attributes—include
and exclude. include is exactly the same as names, whereas exclude does what you
would expect—it shows the contents for all the environments except those listed after the
command (comma-separated).

The properties for these attributes are as follows:

e include: Provides a list of environments to include for the rendering
e exclude: Provides a list of environments to exclude from the rendering

exclude always takes precedence.

The <form> tag

The form tag helper can be used instead of IHtmlHelper.BeginForm (). Both offer the
same features, including posting to specific controller actions and adding anti-forgery
tokens as hidden fields (refer to chapter 11, Security, for more information). Let's look at
the following example:

<form asp-controller="Home" asp-antiforgery="false" asp-action="Process">
Anti-forgery is turned on by default. Its properties are as follows:

e asp-controller: The controller name—if not supplied, it defaults to the
current one (if using MVC).

e asp-action: The controller's action method

e asp-area: The name of an area where the target controller is located

[362]

Reusable Components Chapter 9

® asp-page: A Razor Page that will handle the form

¢ asp-page-hander: The name of a page handler method in an Razor Page that will
handle the form

e asp-route: A named route

e asp-antiforgery: Decides whether to detect a request forgery—turned on by
default

Notice that asp-controller, asp-area and asp-action can be used together, but it
doesn't make any sense to combine them with asp-route or asp-page, as these are
different ways to specify a destination.

The <script> tag

The <script> tag helper allows test, default, and fallback values to be specified for the
source property. The test is a JavaScript expression; let's look at an example:

<!-— if the current browser does not have the window.Promise property load
a polyfill ——>

<script asp-fallback-test="window.Promise" src="file.js" asp-fallback-
src="polyfill.js"></script>

It can also be used to load all the files into a folder at once (with some possible exceptions):

<script asp-src-include="~/app/**/*.js" asp-src-—
exclude="~/app/services/**/*.js"></script>

Finally, it can also be used to bust caching by adding a version number to local scripts; this
version reflects the file's timestamp:

<script src="~/file.]js" asp-append-version="true"></script>

You might have noticed the leading ~ symbol in the src attribute; it is automatically
replaced by the root folder of your application. For example, if your app is deployed in /, it
will use /, but if it is deployed in /virtualPath, then ~ is replaced by /virtualPath.
This is the base path that is described in chapter 2, Configuration.

The <link> tag

The <1ink> tag helper can suffix a local URL with a version to make it cache-friendly:

<link rel="stylesheet" href="~/css/site.min.css" asp-append-
version="true"/>

[363 1]

Reusable Components Chapter 9

Similar to the <script> tag helper, it includes content conditionally:

<link rel="stylesheet" href="file.css" asp-fallback-href="otherfile.css"
asp-fallback-test-class="hidden" asp-fallback-test-property
="visibility"
asp-fallback-test-value="hidden" />

The <select> tag

The <select> tag helper knows how to retrieve items from a model property of an
enumerable type or from a collection of SelectListItem objects:

@functions
{
IEnumerable<SelectListItem> GetItems ()
{
yield return new SelectListItem { Text = "Red", Value = "#FF0000"
}i
yield return new SelectListItem { Text = "Green",
Value = "#00FFOO" 1};
yield return new SelectListItem { Text
Value = "#0000FF",
Selected = true };

"Blue",

}

<select asp-items="GetItems()"/>
There are two important properties:

¢ asp-for: The property or method to retrieve the currently selected item (or list
of items) from
¢ asp-items: The property or method to retrieve the items to fill the list from

The <partial> tag

This tag was introduced to ASP.NET 2.1; it renders a partial view, which is pretty much
what the RenderPartial(aAsync)and Partial(Async) methods do.

<partial name="_PartialFile" for="ModelProperty" model="Model" view-
data="ViewData"></partial>

[364]

Reusable Components Chapter 9

Besides the name partial view (which is the only required property), we can also pass it a
view data object (view-data) and a model (a for property or model). The for property
can be used to pass an expression relative to the model of the containing view; for example,
a property of the model. If you prefer, you can pass a whole new model to the partial view
by assigning a value to the model property. Mind you, for and model are mutually
exclusive; you can only use one of them. If you don't use either, the current model is passed
to the partial view.

The properties are as follows:

e for (Expression): An optional expression, relative to the current model, to pass
to the partial view. It cannot be used with mode1l.

e model (object): An optional model to pass to the partial view. If set, it must
match its declared model type. It cannot be used with for.

¢ name (string): Required. This is the name of the partial view to render.

Validation message and summary

The validationMessageTagHelper and ValidationSummaryTagHelper tag helpers
merely add a validation message for any model properties in a tag and in a
<div> tag for the whole model. For example, say you want to get the current validation
message for the Email model property. You would do the following;:

For the whole model, do the following:
<div asp-validation-summary/>

The next topic introduces the concept of tag helpers to a higher level. We will see how the
tag helper components work.

Tag helper components

Tag helper components were introduced to ASP.NET Core 2.0. They are a way of using DI
to insert markup in the output. Imagine, for example, inserting JavaScript or CSS files at
specific locations in your views.

[365]

Reusable Components Chapter 9

Tag helper components must implement ITagHelperComponent and are registered in the
DI framework (the ConfigureServices method):

services.AddSingleton<ITagHelperComponent, HelloWorldTagHelperComponent> () ;

The ITagHelperComponent interface only specifies one method, ProcessAsync. Each
registered tag helper component has its ProcessAsync method called for every tag found
on the current view, including layouts, giving it a chance to inject custom tag helpers:

public class HelloWorldTagHelperComponent : TagHelperComponent
{
public override Task ProcessAsync (TagHelperContext context,
TagHelperOutput output)
{
if (context.TagName.ToLowerInvariant () == "head")
{
output.Content .AppendHtml ("<script>window.alert ('Hello,
World!"')</script>");

return Task.CompletedTask;

}

This example inserts custom JavaScript at the end of the current tag's content, if this tag is
head.

The TagHelperComponent class implements ITagHelperComponent and offers virtual
methods that we can override as we please. We have the same two methods as with
the ITagHelper interface—Init and ProcessAsync—and they are used in the same way.

ProcessAsync takes two parameters, which are the same as the ones the ITagHelper
interface's ProcessAsync method takes.

Tag helper components, as they are instantiated by the DI framework,
fully support constructor injection.

Let's now talk a bit about partial views, which are one of the building blocks of Razor MVC.

[366]

Reusable Components Chapter 9

Partial views

We already covered partial views in chapter 8, API Controllers. Although they are a very
interesting mechanism for reusing content, they historically have a problem—they could
not be reused across assemblies. There has always been a way around this; the idea is to
mark the view's . cshtml file as an embedded resource:

Solution E

-G @® f|=

P €* ValuesController.cs
P Bl Resources
b Wl Validation
4 @lVvi
b B Account
4 @l Home
[@ About.cshtml
CatchAll.cshtml
Contact.cshtml
Error.cshtmil
Inde html
Model.cshtml
ed
b Wl Validation
[8 _ViewImports.cshtml
[@ _ViewStart.cshtml

Team E rer C

Properties
Contact.cshtml File Properties

E Advanced
Build Action Embedded resource
Copy to Output Directory Do not copy

B Misc

Build Action
How the file relates to the build and deployment proc

d to Source Control « mem ;l':ﬂ Microsoft R Client (3.3.2.0) a

[367]

Reusable Components Chapter 9

Then, we just need to use a file provider that knows how to retrieve the file contents from
assembly-embedded resources. Add the
Microsoft.Extensions.FileProviders.Embedded NuGet package for this example.

When registering the MVC services in ConfigureServices, we need to register another
file provider, EmbeddedFileProvider, passing it to the assembly that contains the
embedded resource:

services

.AddMvc ()

.AddRazorOptions (options =>

{
var assembly = typeof (MyViewComponent) .GetTypeInfo () .Assembly;
var embeddedFileProvider = new EmbeddedFileProvider (assembly,
"ReusableComponents") ;
options.FileProviders.Add (embeddedFileProvider) ;

)i

In this case, the MyViewComponent class is hosted on the same assembly where the view is
embedded and its default namespace is ReusableComponents. When trying to load a file,
ASP.NET Core will go through all the registered file providers until one returns a non-null
result.

Fortunately, we now have Razor class libraries, which we will cover shortly.

Partial views versus view components

These two mechanisms are similar, but you would choose to use partial views if you have a
somewhat large chunk of HTML that you want to render in view components, as you
would need to manipulate strings and return them by code. On the other hand, partial
views are external files, which can have advantages.

Next, we will talk about something totally different—libraries of code that you can reuse in
projects.

[368]

Reusable Components Chapter 9

Understanding Razor class libraries

Razor class libraries were introduced to ASP.NET Core 2.2. What it means is that all
components—code- or file-based—can be added to an assembly and then referenced by an
application. If, for example, this class library contains multiple . cshtml files, we can refer
to them in our controllers or provide overrides for them in the application, provided that
the same path is respected. Think, for example, of the authentication and registration views
provided by Identity; if you don't like any of them, you can provide an alternative one
while keeping the others.

Razor class libraries can be created using Visual Studio:

Add a new project S——

Recent proiect ‘ternplates All languages All platforms All project types

xUnit Test Praject (NET Core) ni‘!' Razor Class LiZcly]
i) ! A project template for creating a hrar_\.r.

.5'3 Razor Class Library C# C# brary nux macOs Web Windows

Hi‘:* [SEEE L rary (.NET Standard)
b3 ! oject fo ating a mtur y that targets .NET Standard.

Android # i0s branr X macOs Windows

@ Class Library (MET Standard)

@ ASP.NET Core Web Application
ni‘"’ Class Lil&] ET Standard]
fis ! A nga mhrar_-; that targets .NET Standard.

Android i0s brary nux macO5 Visual Basic Windows

lazor App

nic* [EEEEEbrany (For U-50L Application)
) ! ject fo ngaC# mhra) that can run on U-50L,

MET Framework])
ating a C EEERbrary (

brary Windows

brary
ct fi y that ta .NET Care.

[369 1]

Reusable Components Chapter 9

It essentially produces a . csproj file that uses

the Microsoft .NET.Sdk.Razor SDK (Razor class libraries) instead

of Microsoft .NET.Sdk.Web (for web applications) or Microsoft .NET. Sdk (for .NET
Core assemblies):

<Project Sdk="Microsoft.NET.Sdk.Razor">
<PropertyGroup>
<TargetFramework>netstandard3.0</TargetFramework>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="Microsoft.AspNetCore.Mvc" />
</ItemGroup>
</Project>

When referencing a Razor class library assembly, ASP.NET Core knows just what to do,
and you can reference its components without any other effort.

Referencing static content

If you create a wwwroot folder in a Razor class library project, you can access any static
content (such as . js, .css, and images) stored in it in a project that references it. Just create
links by using the following format:

<script src="_content/<ClassLib>/<File>"></script>

Here, <ClassLib> is the name of the referenced Razor class library and <rile> is the
name of the static file. One thing to keep in mind is that you need to have support for
loading static files, e.g., in Configure, add this:

app.UseStaticFiles();

Referencing external components

View components and tag helpers can be added by referencing assemblies that contain
them, which is done when a project is created or is being worked on. However, we can add
references at runtime, too. These are called application parts.

In order to register an application part for a Razor class library, here's what we do:

services
.AddMvc ()
.ConfigureApplicationManager (options =>

{

[370]

Reusable Components Chapter 9

var path = "<path-to-razor-class-library-dll>";

var asm = Assembly.LoadFrom(path);

options.ApplicationParts.Add(new CompiledRazorAssemblyPart (asm));
1)

CompiledRazorAssemblyPart should be used for Razor class libraries, which also
includes static (file-based) resources. We can also do this for types, in which case the class
touseis AssemblyPart.

Here, we've seen how we can reference parts from external assemblies, which can include
any reusable components. This is the last topic of this chapter. In the next chapter, we will
cover filters.

Summary

In this chapter, we saw that we always use the supplied base classes for view components,
tag helpers, and tag helper components, as they make our life much easier.

It is preferred to use tag helpers over HTML helpers wherever possible and to write our
own tag helpers as they are much easier to read than code. Tag helper components are very
useful for inserting code automatically in specific locations. The <cache>, <distributed-
cache>, and <environment> tag helpers are very interesting and will help you out a lot.

Then, we saw that partial views are preferable to view components when you have a
template that you wish to render that is easier to code in HTML. View components are all
about code and it's harder to implement HTML by string concatenation. On the other hand,
view components let you pass parameters much more easily.

Razor class libraries are a new way of distributing static assets between projects. Make sure
you use them!

We also learned that tag helper components are a very nice way of injecting HTML
elements anywhere from a centralized location. Use them for common CSS and JavaScript.

In this chapter, we looked at techniques for reusing components across projects. Code reuse
is almost always a good idea and you can use view components with parameters to help
achieve this. In the next chapter, we will cover filters, which are a process for intercepting,
and possibly modifying requests and responses.

[371]

Reusable Components Chapter 9

Questions

You should now be able to answer the following questions:

Nk N =

How can we load partial views from a different assembly?

What are the two ways of rendering partial views?

What is the difference between tag helpers and tag helper components?

How can we restrict what is displayed on a view depending on the environment?
What is the difference between Razor class libraries and class libraries?

What are embedded resources?

What are the two syntaxes for executing view components?

[372]

10

Understanding Filters

Filters are a mechanism that ASP.NET Core makes available to apply cross-cutting
concerns, such as logging, exception handling, enforcing authorization and authentication,
and more. They have been around since the early days of the ASP.NET MVC, but have
been augmented in Core.

Filters in ASP.NET Core are an interception mechanism by which we can execute code
before, instead of after, a request is processed. Think of them as a way to add custom steps
to a pipeline without actually doing so; it remains unchanged but instead, we have finer-
grained control over what we are intercepting. They are useful for implementing cross-
cutting operations, such as access control, caching, or logging. Here, we will discuss the
following;:

¢ Learning about the different filter types

Understanding authorization filters

Understanding resource filters

Understanding action filters

Understanding result filters

Understanding exception filters

Understanding page filters

Understanding always-run-result filters

Technical requirements

In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all the
requirements, but you can also use Visual Studio Code, for example.

The source code can be retrieved from GitHub at https://github.com/PacktPublishing/
Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Understanding Filters Chapter 10

Filters in the pipeline

Filters are part of the pipeline. They execute after ASP.NET Core selects the controller (or
Razor page) to run. This is illustrated in the following diagram:

Request

[J
[]

| MVC Action |
| Invocation Pipeline |
| (Filter Pipeline)

Image obtained from https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters

Filters are an interception mechanism. A filter does something before, after, or instead of a
controller (or Razor page) action. The next section explains what the different filter types
are.

Understanding the filter types

In ASP.NET Core 3 (and version 2, for that matter), we have the following filters:

¢ Authorization (IAuthorizationFilter and IAsyncAuthorizationFilter):
These control whether the user performing the current request has permission to
access the specified resource; if not, then the rest of the pipeline is short-circuited
and an error message is returned.

¢ Resource (IResourceFilter and IAsyncResourceFilter): These execute
after a request is authorized but before action selection and model binding. These
are new to ASP.NET Core.

[374]

Understanding Filters Chapter 10

e Action (IActionFilter and IAsyncActionFilter): These are executed before
and after the action method is called.

¢ Result (IResultFilter and IAsyncResultFilter): These occur before and
after the actual execution of an action result (the
IActionResult.ExecuteResultAsync method).

e Exception (IExceptionFilter and IAsyncExceptionFilter): These are
called when an exception is thrown during the course of the action being
processed.

e Page (IPageFilter and IAsyncPageFilter): These occur before and after a
Razor page handler method is called and are new to ASP.NET Core 2.

e Always run result (IAlwaysRunResultFilter and
IAsyncAlwaysRunResultFilter): These are new to ASP.NET Core 2.1 and are
similar to an action filter, but unlike this, the always run result, always runs,
even when there is an exception:

Authorization Filters

Resource Filters

Model Binding

Action Execution r 3 .
Action Result Conversion I Action Filters

Exception Filters

Result Filters

Result Execution

Image obtained from https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters

Filters of these kinds have pre-methods and post-methods that are called before and after
the target event, respectively—authorization, resource, action, result, and page. The pre-
method version always ends in executing and the post-method version ends in

execution. For example, for action filters, the methods are called OnActionExecuting
and& OnActionExecuted. Authorization and exception filters, of course, only offer a
single method—OnAuthorization and OnException, respectively—but you can think of
them as post-event methods.

[375]

Understanding Filters Chapter 10

The only base class for all filters is IFilterMetadata, which offers no methods or
properties and is just meant as a marker interface. Because of this, the ASP.NET Core
framework must check the concrete type of a filter to try to identify the known interfaces
that it implements.

Let's start with the two cross-cutting types of filters, which have types.

Synchronous versus asynchronous

Each filter type offers both a synchronous and an asynchronous version, the latter having
an Async prefix. The difference between the two is that in the asynchronous version, only
the pre-method is defined and it is called asynchronously; for action filters, the
synchronous version offers OnActionExecuting/OnActionExecuted and the
asynchronous version offers a single OnActionExecutionAsync method. Only exception
filters do not offer an asynchronous version.

Choose either asynchronous or synchronous filters, but not both! Now, let's have a look at
the filter applicability scope.

Filter scope

Filters can be applied at different levels:

¢ Global: Global filters apply to all controllers and actions and so they also capture
any exceptions thrown. Global filters are added through the AddMvc method to
the Filters collection of the MvcOptions class:

services.AddMvc (options =>

{
options.Filters.Add(new AuthorizeAttribute());

)i

e Controller: Controller-level filters are generally added through resources applied
to the controller class and apply to any actions called on them:

[Authorize]
public class HomeController : Controller { ... }

[376]

Understanding Filters Chapter 10

e Action: These filters only apply to the action method where they are declared:

public class HomeController
{

[Authorize]

public IActionResult Index() { ... }
}

The Filters collection of MvcOptions can take either a filter type or an instance of a filter.
Use the filter type if you want the filter to be built using the DI framework.

Let's now look at the execution order of filters.

Execution order

Filters are called in the following order:

e Authorization
e Resource
e Action

Page (for Razor Pages only)
Result
e Always run result

Exception and page filters, of course, are special, so they are only called on the occurrence
of an exception or when calling a Razor page, respectively.

Because most filters have a pre-method and a post-method, the actual order looks like this:

e TAuthorizationFilter.OnAuthorization

e TResourceFilter.OnResourceExecuting

e TActionFilter.OnActionExecuting

e <controller action>

e TActionFilter.OnActionExecuted

e TResultFilter.OnResultExecuting

e TAlwaysRunResultFilter.OnResultExecuting
e TAlwaysRunResultFilter.OnResultExecuted
e TResultFilter.OnResultExecuted

e TResourceFilter.OnResourceExecuted

[377]

Understanding Filters Chapter 10

<Controller action> is, of course, the action method on the controller, in case we are
using the MVC (for Razor Pages, refer to chapter 7, Implementing Razor Pages).

It is possible to short-circuit some of the filters; for example, if on a resource or
authorization filter we return a result, by setting a value to the Result property of the
context, the action filter or any other filter set to execute after it will not be called. However,
any registered always-run-result filter will always run.

Depending on how the filters are applied, we can influence this order; for example, for
global filters, filters of the same type are ordered according to the index in the
MvcOptions.Filters collection, as follows:

options.Filters.Insert (0, new AuthorizeAttribute()); //first one

For attribute filters, the T0rderedrilter interface provides an Order property, which can
be used to order attributes of the same scope (global, controller, or action):

[Cache (Order = 1)]

[Authorize (Order = 0)]
[Log (Order = 2)]
public IActionResult Index() { ... }

Let's now see how we can apply and order filters through attributes.

Applying filters through attributes

Filter interfaces can be implemented by a regular attribute (the Attribute class) and it will
then act as a filter; there are some abstract base attribute classesActionFilterAttribute
(action and result filters), ResultFilterAttribute (result filters), and
ExceptionFilterAttribute (exception filters) that can be subclassed to implement this
behavior. These classes implement both the synchronous and asynchronous versions and
also support ordering the order by which they will be called—by implementing
IOrderedFilter. So, if you want to have a filter attribute that handles actions and results,
you can inherit from ActionFilterAttribute and implement just one or more of its
virtual methods:

® OnActionExecuting
e OnActionExecuted

e OnActionkExecutionAsync

[378]

Understanding Filters Chapter 10

® OnResultExecuting
® OnResultExecuted

® OnResultExecutionAsync

For example, if you wish to override some behavior on the abstract
ActionFilterAttribute filter attribute to do something before an action is invoked, you
can try the following:

public class LogActionAttribute : ActionFilterAttribute
{
public override void OnActionExecuting (ActionExecutingContext
context)
{
var loggerFactory = context.HttpContext.RequestServices.
GetRequiredService<ILoggerFactory> () ;
var logger = _loggerFactory.Createlogger
(context.Controller.GetType());
logger.LogTrace ($"Before {context.ActionDescriptor.
DisplayName}") ;

}

Here, we are injecting the logger factory through the attribute's constructor, which inherits
from ActionFilterAttribute, and getting a logger from it.

Filter ordering

Filters of the same kind will be ordered according to either of the following:

e The order in which they were inserted into the MvcOptions.Filters collection
o If the filter implements IOrderedFilter, its Order property

For example, all global filters of the authorization type will be sorted according to these
rules, then all controller-level filters being applied to a controller, then all action-level
filters.

All of the ActionFilterAttribute, MiddlewareFilterAttribute,
ServiceFilterAttribute, and TypeFilterAttribute classes implement
IOrderedFilter; these are the most common ways by which you can inject filters into
controllers and actions.

Let's now see how filters can be created.

[379]

Understanding Filters Chapter 10

Factories and providers

A filter factory is just an instance of a class that creates filters; the only requisite is that it
implements IFilterFactory, which, because it inherits from IFilterMetadata, can also
be used as a global filter or in a custom attribute. Why would you do that? Well, because
when the filter factory runs, you will probably learn something more from the current

execution context. Let's see an example:

public class CustomFilterFactory : IFilterFactory
{

public bool IsReusable => true;

public IFilterMetadata Createlnstance (IServiceProvider

serviceProvider)

{

//get some service from the DI framework

var svc = serviceProvider.GetRequiredService<IMyService>();
//create our filter passing it the service

return new CustomFilter (svc);

}

This filter factory depends on a very specific service that is required to be registered. For
registering this custom filter factory globally, we use the following;:

services.AddMvc (options =>

{

options.Filters.Insert (0, new CustomFilterFactory());

)i

Implementing IFilterFactory in an attribute is equally simple, so I won't show it here.

The contract for a filter factory is simple:

e IsReusable (bool): Tells the framework if it is safe to reuse the filter factory

across requests.
e CreateInstance: This method returns a filter.

The CreateInstance method takes an IServiceProvider instance as its sole parameter
and returns an IFilterMetadata object, meaning you can return any kind of filter you
want (or even another filter factory).

[380]

Understanding Filters Chapter 10

A filter provider (IFilterProvider) is the actual implementation that is registered in the
DI framework as part of the MVC configuration and is the one that fires all the different
filter behaviors. The default implementation is DefaultFilterProvider. The
IFilterProvider interface has a single property:

e Order (int): The order by which the provider will be executed. This offers the
following two methods:

e OnProvidersExecuting: Called to inject filters in its context
parameter
e OnProvidersExecuted: Called after all filters have been executed

What about the DI—is there any way to use it with filters? Oh yes, there is, and we'll see
how just now!

DI

The ways to add filters that we've seen so far—globally through the Filters collection or
by means of attributes—are not DI-friendly; in the first case, you add an already
instantiated object, and for attributes, they are static data that is not instantiated by the DI
framework. However, we have the [ServiceFilter] attribute—it accepts the type of a
filter class (of any kind) as its sole required parameter and it uses the DI framework to
instantiate it; what's more, it even allows ordering;:

[ServiceFilter (typeof (CacheFilter), Order =
[ServiceFilter (typeof (LogFilter), Order = 1
public class HomeController : Controller { ... }

2)]
)]

The LogFilter class, for example, might look like this:

public class LogFilter : IAsyncActionFilter

{
private readonly ILoggerFactory _loggerFactory;

public LogFilter (ILoggerFactory loggerFactory)

{
this._loggerFactory = loggerFactory;

}

public Task OnActionExecutionAsync (ActionExecutingContext
context, ActionExecutionDelegate next)

{

var logger = this._loggerFactory.CreatelLogger

[381]

Understanding Filters Chapter 10

(context.Controller.GetType());
logger.LogTrace ($"{context .ActionDescriptor.DisplayName}
action called");

return next ();

}

ILoggerFactory is passed in the controller by the DI framework, as usual, and the
LogFilter class itself must be registered:

services.AddSingleton<LogFilter> () ;

There is another special attribute, [TypeFilter], which, given a certain type and some
optional arguments, tries to instantiate it:

[TypeFilter (typeof (CacheFilter), Arguments = new object[] { 60 * 1000 * 60
)]

These arguments are passed as parameters to the constructor of the filter type. This time, no
DI is used; it will just pass along any values it receives when attempting to build the
concrete type, in the same way as Activator.CreateInstance does.

If you want, you can change the default filter provider by supplying your own
implementation for the IFilterProvider service:

services.AddSingleton<IFilterProvider, CustomFilterProvider>();

This process is complex because you need to return filters coming from the global
repository (MvcOpt ions), attributes applied to the class, the method, and more, so you'd
better know what you're doing. If in doubt, keep the existing implementation.

The other way is to use the RequestServices service locator:

var svc = context.HttpContext.RequestServices.GetService<IMyService>();

This is available in every filter that exposes the HttpContext object.

[382]

Understanding Filters Chapter 10

Accessing the context

You can pass the context from one filter to another by using the HttpContext.Items
collection, as follows:

public class FirstFilter : IActionFilter
{

public void OnActionExecuting (ActionExecutingContext context) { }

public void OnActionExecuted (ActionExecutedContext context)
{
context.HttpContext.Items["WasFirstFilterExecuted"] = true;

public class SecondFilter : IActionFilter
{

public void OnActionExecuted (ActionExecutedContext context) { }

public void OnActionExecuting (ActionExecutingContext context)

{
if (context.HttpContext.Items["WasFirstFilterExecuted"]
is bool parameter && parameter)
{

//proceed accordingly

}

The first filter that is called sets a flag in the current request items, and the second checks
for its presence and carries out an action accordingly. We just need to be certain of the order
by which filters will be applied, and this can be achieved through the
IOrderedFilter.Order property, as mentioned previously, exposed by
ActionFilterAttribute, ServiceFilterAttribute, and TypeFilterAttribute

Now, let's see how filters actually work.

[383]

Understanding Filters Chapter 10

Applying authorization filters

This kind of filter is used to authorize the current user. The most notorious authorization
attribute is [Authorize] and it can be used for common checks, such as being
authenticated, belonging to a given role, or fulfilling a given policy.

This attribute does not implement either TAuthorizationFilter or
IAsyncAuthorizationFilter, butinstead, it implements TAuthorizeData, which lets
us specify either role names (the Roles property), a custom policy name (Policy), or
authentication schemes (AuthenticationSchemes). This attribute is handled by a built-in
filter called AuthorizeFilter, which is added by default when we add the authorization
middleware (AddAuthorization).

Other things that you can check in an authorization attribute include, for example, the
following;:

e Validating the source IP or domain of the client
¢ Verifying whether a given cookie is present
e Validating the client certificate

So, for custom authorization, we either need to implement IAuthorizationFilter or
IAsyncAuthorizationFilter; the first one exposes a single method, OnAuthorization
The context object passed to the OnAuthorization method exposes HttpContext,
ModelState, RouteData, and ActionDescriptor for the current request and the MVC
action; you can use any of these to perform your own custom authorization. If you do not
wish to authorize access, you can return UnauthorizedResult in the context's Result
property, as follows:

public void OnAuthorization (AuthorizationFilterContext context)
{
var entry = Dns.GetHostEntryAsync (context.HttpContext.
Connection.RemoteIpAddress)
.GetAwaiter ()
.GetResult () ;

if (!entry.HostName.EndsWith (".MyDomain",
StringComparison.OrdinalIgnoreCase))
{
context.Result = new UnauthorizedResult ();
}
}

In this case, if the request does not come from a known domain, it is denied access.

[384]

Understanding Filters Chapter 10

The AuthorizationFilterContext class has the following properties:

e ActionDescriptor (ActionDescriptor): The descriptor of the action to be
called

e Filters (IList<IFilterMetadata>): The filters bound to this request

e HttpContext (HttpContext): The HTTP context

e ModelState (ModelStateDictionary): The model state (not used for
authorization filters)

e Result (IActionResult): An optional result to return to the client, bypassing
the request pipeline

e RouteData (RouteData): Route data of the request

You may be tempted to add a global filter that requires users to be authenticated
everywhere; in this case, keep in mind that at least the entry page and the action that takes
the credentials need to allow anonymous access.

As for IAsyncAuthorizationFilter, its OnAuthorizationAsync method also takes an
AuthorizationFilterContext parameter, the only difference being that it is called
asynchronously.

So now, let's look at a few authorization policies that need to be followed.

Authorization policies

In chapter 9, Reusable Components, we talked about authorization handlers. They can be
added as global filters, too, through the AuthorizeFilter class, which is a filter factory.
Here's one example:

services.AddMvc (options =>
{
var policy = new AuthorizationPolicyBuilder ()
.RequireAssertion(ctx => true) //let everything pass
.Build();

options.Filters.Add (new AuthorizeFilter (policy));
)i

Here, we are building a policy with a specific assertion (in this case, we are allowing
everything to be t rue), and we are adding a global AuthorizeFilter parameter thatis
built from this policy. This will then apply to all requests.

OK, we're done with authorization filters, so now let's look at resource filters.

[385]

Understanding Filters Chapter 10

Resource filters

In resource filters, you can apply similar logic as authorization filters but it executes slightly
after the authorization filters, and you have more information. For example, when resource
filters execute, the user has already logged in (if using authentication). Some common uses
for resource filters are the following;:

e Logging

¢ Caching

Throttling

Modifying model binding

The IResourceFilter interface defines two methods:

e OnResourceExecuting: Called before the request reaches the action
e OnResourceExecuted: Called after the action is executed

Each of these methods takes a single parameter of the ResourceExecutingContext and
ResourceExecutedContext types for pre-events and post-events, respectively.
ResourceExecutingContext offers the following properties, which reflect the context
prior to the resource being processed:

® Result (IActionResult): If you wish to short-circuit the request pipeline, you
can set a value here, and all the other filters and middleware will be bypassed
(except the OnResourceExecuted method), returning this result; if you want to
return a POCO value, wrap it in ObjectResult.

® ValueProviderFactories (IList<IValueProviderFactory>): Here, you
can inspect, add, or modify the collection of value provider factories to be used
when providing values to the target action's parameters.

As for ResourceExecutedContext, we have the following;:

e Canceled (bool): Whether or not a result was set in OnResourceExecuting.

e Exception (Exception): Any exception thrown during the processing of the
resource.

® ExceptionDispatchInfo (ExceptionDispatchInfo): The exception dispatch
object, used for capturing the stack trace of an exception and, optionally, re-
throwing it, while preserving this context.

[386 1]

Understanding Filters Chapter 10

® ExceptionHandled (bool): Whether the exception was handled or not (if there
was one), the default being false; if not handled, then the framework will re-
throw it.

e Result (IActionResult): The action set by the OnExecuting method, which
can also be set here.

If an exception is thrown during the processing of the resource (in the action method or in
another filter) and it is not explicitly marked as handled (ExceptionHandled) by the
resource filter, it will be thrown by the framework, resulting in an error. If you want to
know more, consult the documentation for ExceptionDispatchInfo at https://msdn.
microsoft.com/en-us/library/system.runtime.exceptionservices.
exceptiondispatchinfo.aspx

The asynchronous alternative, IAsyncResourceFilter, only declares a single method,
OnResourceExecutionAsync,hﬂdngtMK)paﬂuneﬁxs——ResourceExecutingContext
(the same as for the OnResourceExecuting method) and ResourceExecutionDelegate;

this one is interesting, as you can use it to inject other middleware at runtime to the
pipeline.

Here is an example of a caching filter:

[AttributeUsage (AttributeTargets.Method, Inherited = true, AllowMultiple =
false)]
public sealed class CacheResourceFilter : Attribute, IResourceFilter
{
public TimeSpan Duration { get; 1}

public CacheResourceFilter (TimeSpan duration)
{

this.Duration = duration;

public void OnResourceExecuted (ResourceExecutedContext context)
{
var cacheKey = context.HttpContext.Request.Path.ToString/()
.ToLowerInvariant () ;
var memoryCache = context.HttpContext.RequestServices.
GetRequiredService<IMemoryCache> () ;

var result = context.Result as ContentResult;
if (result != null)

{

memoryCache. Set (cacheKey, result.Content, this.Duration);

[387]

https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx

Understanding Filters Chapter 10

public void OnResourceExecuting (ResourceExecutingContext context)
{
var cacheKey = context.HttpContext.Request.Path.ToString/ ()
.ToLowerInvariant () ;
var memoryCache = context.HttpContext.RequestServices.
GetRequiredService<IMemoryCache> () ;

if (memoryCache.TryGetValue (cacheKey, out var cachedValue))
{

if (cachedvalue != null && cachedValue

is string cachedvValueString)

{
context.Result = new ContentResult () {
Content = cachedValueString };

}

This filter takes the request path and checks that the IMemoryCache service, which it
retrieves from the current context, has a value for it, and if it does, it sets the content from it.
This is before the request is executed (OnResourceExecuting). After the resource is

executed, the filter just stores the content in the memory cache. To make this work, we need
to have the IMemoryCache service registered.

Again, do not implement the synchronous and asynchronous interfaces at the same time as
only the asynchronous interface will be used.

That is it for resource filters; let's move on to action filters.

Understanding action filters

Action filters are invoked before and after an action method is called, so they can be used,
for example, to do the following:

e Cache results
¢ Modify parameters
e Modify results

[388]

Understanding Filters Chapter 10

Now, we already have the parameters to the action method, which come from the value
providers. Here, the filter interfaces are IActionFilter and IAsyncActionFilter. The
synchronous one offers two methods, OnActionExecuting and OnActionExecuted.
They are for pre-event and post-event notifications. OnAct ionExecuting takes a single
parameter of the Act ionExecutingContext type, offering the following properties:

e Result (IActionResult): Set a value here to short-circuit the request
processing pipeline and return a value to the client, without actually executing
the action.

e ActionArguments (IDictionary<string, object>): The parameters of the
action method.

e Controller (object): The target controller instance.

You may be wondering why the Controller property is not prototyped as
ControllerBase or Controller: do not forget that we can have POCO controllers!

The ActionArguments parameter has entries for each parameter of the target action
method, and its values have been provided by the registered value providers.

The post-event method, OnActionExecuted, takes a parameter of
the ActionExecutedContext type, which exposes the following properties:

e Canceled (bool): Whether or not a result was set in OnActionExecuting.

e Controller (object): The controller instance.

e Exception (Exception): Any exception thrown during the processing of the
resource.

® ExceptionDispatchInfo (ExceptionDispatchInfo): The exception dispatch
object, used for capturing the stack trace of an exception and, optionally, re-
throwing it, while preserving this context.

® ExceptionHandled (bool): Whether the exception was handled or not (if there
was one), the default being false; if not handled, then the framework will re-
throw it.

e Result (IActionResult): The action set by the OnExecuting method, which
can also be set here.

[389]

Understanding Filters Chapter 10

As for IAsyncActionFilter, it offers a single method, which

is, OnActionExecutionAsync. It takes two parameters in the same fashion as
OnResourceExecutionAsync: ActionExecutingContext and
ActionExecutionDelegate. The ActionExecutionDelegate instance points to the next
action filter method in the pipeline.

Now, we will move on to understanding result filters and how they are used in code.

Result filters

Result filters let you execute custom actions before and after the result is processed if an
action executes with success. Action results are represented by IActionResult, and we
can have code run before and after ExecuteResultAsync is called. Some common uses for
result filters include the following:

¢ Caching (as before)

e Interception (modification of the response)
¢ Adding response headers

¢ Result formatting

The IResultFilter interface defines the OnResultExecuting and OnResultExecuted
methods. The first takes an instance of ResultExecutingContext as its sole parameter,
which offers the following properties:

e Cancel (bool): Whether or not to cancel the processing of the result

® Result (IActionResult): The result to process in case we want to bypass the
returned result's execution

e Controller (object): The controller instance

As for the post-event method, OnResultExecuted, we have the following properties in
ResultExecutedContext:

e Canceled (bool): Whether or not a result was set in OnResultExecuting.

e Controller (object): The controller instance.

e Exception (Exception): Any exception thrown during the processing of the
resource.

® ExceptionDispatchInfo (ExceptionDispatchInfo): The exception dispatch

object, used for capturing the stack trace of an exception and, optionally, re-
throwing it, while preserving this context.

[390]

Understanding Filters Chapter 10

® ExceptionHandled (bool): Whether the exception was handled or not (if there
was one), the default being false; if not handled, then the framework will re-
throw it.

e Result (IActionResult): The action set by the OnResultExecuting method,
which can also be set here.

These are exactly the same as for ResourceExecutedContext. As usual, we also have an
asynchronous version of the result filters, IAsyncResultFilter, which, following the
same pattern, offers a single method called OnResultExecutionAsync that has two
parameters—one of the ResultExecutingContext type, which has the following
properties:

e Cancel (bool): Whether or not to cancel the processing of the result

e Result (IActionResult): The result to process in case we want to bypass the
returned result's execution

e Controller (object): The controller instance

The other parameter is ResultExecutionDelegate, which will point to the next delegate
of the IAsyncResultFilter type in the pipeline. Here is a simple example of a result
filter:

public class CacheFilter : IResultFilter
{

private readonly IMemoryCache _cache;

public CacheFilter (IMemoryCache cache)
{

this._cache = cache;

private object GetKey (ActionDescriptor action)

{
//generate a key and return it, for now, Jjust return the id
return action.Id;

public void OnResultExecuted (ResultExecutedContext context)
{
}

public void OnResultExecuting (ResultExecutingContext context)
{

var key = this.GetKey (context.ActionDescriptor);

string html;

[391]

Understanding Filters Chapter 10

if (this._cache.TryGetValue<string> (key, out html))
{

context.Result = new ContentResult { Content = html,
ContentType = "text/html" };
t

else

{

if (context.Result is ViewResult)

{

//get the rendered view, maybe using a TextWriter, and
//store it in the cache

}

When this filter runs, it checks whether there is an entry in the cache for the current action
and parameters and if so, it just returns it as the result.

Let's have a look now at filters that deal with exceptions.

Exception filters

These are the easiest to understand; whenever there's an exception under the scope of an
exception filter (action, controller, or global), its OnExcept ion method is called. This is
pretty useful for logging errors, as you can imagine.

The OnException method takes a parameter of the ExceptionContext type:

e Exception (Exception): Any exception thrown during the processing of the
resource.

e ExceptionDispatchInfo (ExceptionDispatchInfo): The exception dispatch
object, used for capturing the stack trace of an exception and, optionally, re-
throwing it while preserving this context.

e ExceptionHandled (bool): Whether the exception was handled or not (if there
was one), the default being false; if not handled, then the framework will re-
throw it.

e Result (IActionResult): Possibly an action result (if one was set) which can
also be set here.

[392]

Understanding Filters Chapter 10

There is no Controller property because the exception may have been thrown outside of
a controller.

The asynchronous interface, IAsyncExceptionFilter, has a single method declared,
OnExceptionAsync, and it also receives a parameter of the ExceptionContext type. The

behavior is exactly the same as its synchronous counterpart, but it is called in another
thread.

Caught exceptions are propagated unless the ExceptionHandled property is set to t rue.
If you do handle the exception, it is your responsibility to return a result (the Result
property) or write something to the output, as in this example:

public sealed class ErrorFilter : IAsyncExceptionFilter

{

public async Task OnExceptionAsync (ExceptionContext context)

{
context .ExceptionHandled = true;
await context.HttpContext.Response.WriteAsync ($S"An
error occurred: {context.Exception.Message}");

}

This filter should be registered as a global one:

services.AddMvc (options =>

{

options.Filters.Insert (0, new ErrorFilter());
)i

This concludes the section on exception filters. Let's now look at the Razor Pages-specific
filters.

Razor page filters

This is a new filter for Razor Pages. Basically, we can have custom actions that are fired
before or after a Razor Pages model method. As for the other filters, the filter is available in
synchronous (IPageFilter) and asynchronous flavors (IAsyncPageFilter).

[393]

Understanding Filters Chapter 10

Starting with the synchronous version, it declares the following three methods:

e OnPageHandlerSelected: Called after the framework selects a target handler
method for the processing of the request, giving developers a chance to change
this

e OnPageHandlerExecuting: Called before the handler is invoked

e OnPageHandlerExecuted: Called after the handler is invoked

OnPageHandlerSelected takes a parameter of the PageHandlerSelectedContext type,
and this class offers the following properties:

e ActionDescriptor (CompiledPageActionDescriptor): Describes the
handler and model classes

e HandlerMethod (HandlerMethodDescriptor): The method that will be called,
which can be changed
e HandlerInstance (object): The instance that will handle the request

The pre-event handler, OnPageHandlerExecuting, takes a single parameter of
the PageHandlerExecutingContext type with the following properties:

e ActionDescriptor (CompiledPageActionDescriptor): The handler and
model classes

® Result (IActionResult): The result to return if we want to override the default
processing of the page

¢ HandlerArguments (IDictionary<string, object>): The arguments to be
passed to the handler method

e HandlerMethod (HandlerMethodDescriptor): The method that will be called
on the handler instance

e HandlerInstance (object): The instance that will handle the request

As for the post-event, OnPageHandlerExecuted, we have a parameter of
the PageHandlerExecutedContext type, which has similar properties
to PageHandlerExecutingContext:

e ActionDescriptor (CompiledPageActionDescriptor): The handler and
model classes.

e Canceled (bool): Whether or not the current processing has been canceled by
setting a result in the pre-event.

e HandlerMethod (HandlerMethodDescriptor): The method that will be called
on the handler instance.

[394]

Understanding Filters Chapter 10

e HandlerInstance (object): The instance that will handle the request.

e Exception (Exception): Any exception thrown during the processing of the
resource.

® ExceptionDispatchInfo (ExceptionDispatchInfo): The exception dispatch
object, used for capturing the stack trace of an exception and, optionally, re-
throwing it.

e ExceptionHandled (bool): Whether the exception was handled or not; the
default is false, meaning the framework will re-throw it.

e Result (IActionResult): The result to return if we want to override the default
processing of the page.

Finally, the asynchronous interface offers two asynchronous methods, which are the
counterparts to OnPageHandlerSelected (now called OnPageHandlerSelectionAsync
) and OnPageHandlerExecuted (now called OnPageHandlerExecutionAsync)
OnPageHandlerSelectionAsync has an instance of PageHandlerSelectedContext as
its single parameter and OnPageHandlerExecutionAsync takes two
parameters—PageHandlerExecutingContext and PageHandlerExecutionDelegate.
PageHandlerExecutionDelegate is, again, a delegate that points to the next method of
the same type in the pipeline, if one exists.

That is all there is to Razor Pages filters, so let's have a look now at a different, peculiar
kind of filter.

Always-run-result filters

An always-run-result filter (IAlwaysRunResultFilter and
IAsyncAlwaysRunResultFilter)is an interesting filter that was only introduced recently
(to ASP.NET Core 2.1). Its purpose is to always have something run, even when an action
does not run, such as when there is an exception or when an authorization or resource filter
short-circuits the pipeline and returns something directly. It offers two methods—one that
is called before the result is processed and the other after it (or after its short-circuiting at
the end of the request). These methods take one ResultExecutingContext or
ResultExecutedContext parameter, respectively, which we discussed when we
addressed result filters.

[395]

Understanding Filters Chapter 10

One possible usage for an always-run-result filter could be, for example, to check whether a
null value was returned by the controller and if so, replace it with NotFoundResult. We
can achieve this with the following code:

[AttributeUsage (AttributeTargets.Class, Inherited = true, AllowMultiple =
false)]

public sealed class NotFoundAttribute : Attribute, IAlwaysRunResultFilter
{

public void OnResultExecuted (ResultExecutedContext context)

{
if (context.Result is ObjectResult objectResult &&
objectResult.Value == null)
{
objectResult.Value = new {}; //anonymous method,

//add whatever properties you like

}

public void OnResultExecuting(ResultExecutingContext context)
{
}

}

This attribute, when applied to a class (which only makes sense in a controller) checks
whether the result is null, in which case it sets it as NotFoundResult.

Summary

In this chapter, we saw that in general, the asynchronous versions of each filter method are
preferred because they are inherently more scalable—a thread does not block while filters
are being invoked—and also that on the same class, threads do not mix the synchronous
and asynchronous versions of a filter interface because only the asynchronous version is
called. It is best not to mix synchronous and asynchronous filters at all! In this section, we
also saw what the filter types are based on.

An important observation is that we can use the DI through the [ServiceFilter]
attribute if we need to inject dependencies into our filters. For global filters, add the filter
type to the MvcOptions.Filters collection in AddMvc, rather than a filter instance.

[396]

Understanding Filters Chapter 10

Then, we saw that we need to be aware of each filter's intended purpose and not use a
resource filter for authorization. Use action filters if you need to intercept action parameters
or carry out caching, and result filters for modifying the output or the format of a result.
Then, we saw that exception filters are crucial for logging failures; these are safe to have at
a global level. We also learned that we need to apply authorization filters to protect any
sensitive resources and choose the best possible authorization (roles, policies, or merely
being authenticated).

Next, we understood that it is crucial to pay attention to the scope of the filter—carefully
opt for a global, controller, or action, whatever best suits your needs.

Overall, in this chapter, we looked at the interception mechanisms of ASP.NET Core, and in
the next chapter, we will talk about securing access and using views and forms.

Questions

You should now be able to answer these questions:

What are the two interfaces used to control authorization to a resource?
Why are there two versions of each kind of filter?

How can we apply a filter by specifying its type on an action method?
How can we apply ordering to the application of filters?

What are the different levels to which we can apply filters?

How can we pass the context from one filter to another?

NSOk =

How can filters make use of a DI?

[397]

11

Security

Security is a very hot topic nowadays; no company can afford to have their customers' data
exposed as seen in recent times, which is very unfortunate. Security is not just about data; it
covers a lot of aspects. It's not just about restricting access to a website or to specific parts of
it; it is about preventing the upload of malicious content, storing configuration (and other)
data, allowing access to scripts for specific origins, and, most importantly, creating a secure
channel for communicating between clients and the server.

After reading this chapter, you will have a very good understanding of the many aspects of
security surrounding an ASP.NET Core application.

We will cover the following topics in this chapter:

¢ Authenticating users

¢ Authorizing requests

e Checking requests for forgery

e Applying HyperText Markup Language (HTML) encoding
e Working with HyperText Transfer Protocol Secure (HTTPS)
¢ Understanding cross-origin resource sharing (CORS)

¢ Using data protection

¢ Protecting static files

e Applying HTTP Strict Transfer Security (HSTS)

¢ Learning about the General Data Protection Regulation (GDPR)
¢ Binding security

We will begin with two topics: authentication—who is who; and authorization—who can
do what. These are the building blocks for any secure web application. Let's study each in
the following sections.

Security Chapter 11

Technical requirements

In order to implement the examples introduced in this chapter, you will need the NET
Core 3 software development kit (SDK) and some form of text editor. Of course, Visual
Studio 2019 (any edition) meets all the requirements, but you can also use Visual Studio
Code, for example.

The source code can be retrieved from GitHub
here: https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Cor

e-3-Second-Edition.

Authenticating users

Authentication is the process by which you tell your application who you are; from this
moment on, the application will know you—for a certain period of time, at least.

Authentication is not the same as—although it is related to—authorization. You probably
need authentication if you have resources that require authorization to access them.

The general authorization flow is as follows:

1. Someone requests access to a protected resource.

2. The framework checks that the user is not authorized and redirects them to a
login page, issuing a 302 code. This is the challenge stage.

3. The user supplies their credentials.

4. The credentials are checked and, if they are valid, the user is directed to the
requested resource (HTTP 302) with a cookie (usually) that identifies them as
being logged in.

5. Otherwise, the framework redirects to the failed login page.

6. Access to the protected resource is now granted.

The following screenshot describes the HTTP flow between the client browser and the
application:

[399]

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Security Chapter 11

GET /home >

382 Found

GET fAccount/lLogin?ReturnUrl=%2home -

- 208 0K

POST /Account/Login?ReturnUrl=%2home

-
- 222.Found ool
GET /home -
- 288 0K

Image taken from https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/basic-authentication

In ASP.NET Core, we use the [Authorize] attribute or some form of filter to restrict
access to a resource, either through a controller as a whole or through some specific action
methods, as shown in the following code snippet:

//whole controller is protected
[Authorize]
public class AdminController { }

public class SearchController

{
//only this method is restricted
[Authorize]
public IActionResult Admin() { ... }
}

Beyond this, when we try to access one of these resources, we will end up with a 401
Unauthorized error code. What we need is some form of middleware that is capable of
intercepting this error code and proceeding accordingly.

The next section is only relevant to Windows developers. We will see how authorization
works for Windows first.

[400]

Security Chapter 11

Using claims

Modern authentication and authorization uses the concept of claims for storing information
that the logged-in user will have access to. This will include roles, for example, but it can be
any other information, as dictated by the authentication provider (Windows or a third

party).

In .NET Core, the root class, where all identity information is made available, is
ClaimsPrincipal. A reference to the current identity is available in the Ht tpContext
class, as HttpContext .User. In it, we can find three important properties, detailed as
follows:

e Identity (IIdentity): The main identity associated with the currently logged-
in user

e Identities (IEnumerable<ClaimsIdentity>): The collection of identities
associated with the currently logged-in user; it typically only contains one
identity

e Claims (IEnumerable<Claim>): The collection of claims associated with the
currently logged-in user

The Identity property contains the following:

¢ Name (string): The name of the logged-in user, if any
e IsAuthenticated (bool): Whether or not the current user is authenticated
e AuthenticationType (string): The current authentication type, if in use

Don't forget that, as we will see, we can use multiple authentication types on the same
application, each with a different name, and a user will be authenticated against one of
them.

As for the Claims class, a typical collection of claims might contain the following claim
types, which will map to the Type property of the C1aim class:

e ClaimTypes.Authentication
e ClaimTypes.Country

e ClaimTypes.DateOfBirth

¢ ClaimTypes.Email

e ClaimTypes.Gender

® ClaimTypes.GivenName

e ClaimTypes.HomePhone

[401]

Security Chapter 11

¢ ClaimTypes.MobilePhone
e ClaimTypes.Name

e ClaimTypes.Role

® ClaimTypes.Surname

® ClaimTypes.WindowsAccountName

This will, however, depend on the authentication provider. There are actually a lot more
standardized claims, as you can see from the ClaimTypes class, but nothing prevents
anyone from adding their own claims. Keep in mind that, in general, claims do not mean
anything, but there are a few exceptions: Name and Role can be used for security checks, as
we will see in a moment.

So, the Claim class features the following main properties:

e Issuer (string): The claim issuer

® Type (string): The type of the claim—typically, one from ClaimTypes, but
might be something else

e Value (string): The value for the claim

Let's start our discussion of authentication by talking about Windows authentication.

Windows authentication

ASP.NET Core, because it is platform-agnostic, does not natively support Windows
authentication. Probably the best way to achieve this, if we do need it, is to use Internet
Information Server (IIS)/IIS Express as a reverse proxy, handling all the requests and
directing them to ASP.NET Core.

For IIS Express, we need to configure the launch settings in the project's
Properties\launchSettings. json file as follows, with the changes in bold:

"iisSettings": {
"windowsAuthentication": true,
"anonymousAuthentication": false,
"iisExpress": {
"applicationUrl": "http://localhost:5000/",
"sslPort": O

}

For IIS, we need to make sure that AspNet CoreModule is enabled for our website.

[402]

Security Chapter 11

In any case, we need to configure Windows authentication in the ConfigureServices
method, like this:

services.AddAuthentication (IISDefaults.AuthenticationScheme) ;

Finally, the AspNetCoreModule makes use of a Web . config file that is not needed or used
by ASP.NET Core itself; it is used for deployment and includes the following content:

<?xml version="1.0" encoding="utf-8"7?>
<configuration>
<system.webServer>
<aspNetCore forwardWindowsAuthToken="true"
processPath="$LAUNCHER_PATHS%"
argument s="$LAUNCHER_ARGSS%" />
<handlers>
<add name="aspNetCore" path="*" verb="*"
modules="AspNetCoreModule"
resourceType="Unspecified" />
</handlers>
</system.webServer>
</configuration>

And that's it. The [Authorize] attribute will require authenticated users and will be
happy with Windows authentication. Ht tpContext . User will be set to an instance of
WindowsPrincipal, a subset of ClaimsPrincipal, and any Windows groups will be
available as roles and also as claims (ClaimTypes.Role). The Windows name will be set in
ClaimsIdentity.Name in the form of domain\user.

In any place where you want to get the current Windows authentication, you can use the
following code:

var identity = WindowsIdentity.GetCurrent ();

Additionally, for example, if you want to know whether the current user belongs to a
specific role, such as the built-in administrators, you can use the following code:

var principal = new WindowsPrincipal (identity);
var isAdmin = principal.IsInRole (WindowsBuiltInRole.Administrator);

This code will return t rue if the current user is part of the Windows built-in
administrators' group.

[403]

Security Chapter 11

Don't forget that, although this code will compile on any platform, you
can only use Windows authentication on Windows. You can check that by
using System.Runtime.InteropServices.RuntimeInformation.Is
OSPlatform(System.Runtime.InteropServices.OSPlatform.Wind
OowWSs).

Next, let's now see how to bake our own authentication mechanism for all non-Windows
developers.

Custom authentication

ASP.NET Core does not include any authentication provider, unlike previous versions of
ASP.NET that shipped with support for Windows and Structured Query Language (SQL)-
based authentication—the membership provider. This means that we have to implement
everything manually—or not quite, as we will see in a moment.

The method used to register the services is AddAuthentication, which can be followed by
AddCookie, as shown in the following code:

services
.AddAuthentication (CookieAuthenticationDefaults.AuthenticationScheme)
.AddCookie (CookieAuthenticationDefaults.AuthenticationScheme, options

options.LoginPath = "/Account/Login/";
options.AccessDeniedPath = "/Account/Forbidden/";
options.LogoutPath = "/Account/Logout";
options.ReturnUrlParameter = "ReturnUrl";

})i

We add the UseAuthentication method in Configure, like this:

app.UseAuthentication () ;

The changes in AccountController are minor—we must call the SignInAsync and
SignOutAsync extension methods over the Ht tpContext instance instead of calling the
old versions in HttpContext . Authorization, as illustrated in the following code block:

[HttpPost]
[AllowAnonymous]
public async Task<IActionResult> PerformLogin(string username, string
password, string returnUrl,
bool isPersistent)

[404]

Security Chapter 11

//...check validity of credentials

await this.HttpContext.SignInAsync (CookieAuthenticationDefaults.
AuthenticationScheme, new ClaimsPrincipal (user), new
AuthenticationProperties { IsPersistent = isPersistent });
return this.LocalRedirect (returnUrl);

[HttpGet]
public async Task<IActionResult> Logout ()

{
await this.HttpContext.SignOutAsync (CookieAuthenticationDefaults

.AuthenticationScheme) ;
/).
t

Before using these new methods, add a using statement for the
Microsoft.AspNetCore.Authentication namespace.

A minimum login page (Views/Account/Login) could look like this:

using (Html.BeginForm(nameof (AccountController.PerformlLogin), "Account",
FormMethod.Post))
{
<fieldset>
<p>Username:</p>
<p><input type="text" name="username" /></p>
<p>Password:</p>
<p><input type="password" name="password" /></p>
<p>Remember me: <input type="checkbox" name="isPersistent"
value="true" /></p>
<input type="hidden" name="ReturnUrl" value="@Context.Request.
Query["ReturnUrl"]"/>
<button>Login</button>
</fieldset>
}

Instead of implementing our own authentication mechanism, it is quite often more
convenient to use an existing and well-established one, and that's exactly what we will talk
about next.

Identity

Because you shouldn't have to deal with low-level authentication yourself, there are a
number of packages that can assist you in that task. The one that Microsoft recommends is
B4k1080ftIdeniﬁy(http://github.com/aspnet/identity)

[405]

https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity

Security Chapter 11

Identity is an extensible library for doing username-password authentication and storing
user properties. It is modular and, by default, it uses Entity Framework (EF) Core for the
data store persistence. Of course, because EF itself is quite extensible, it can use any of its
data providers (SQL Server, SQLite, Redis, and so on). The NuGet packages for Identity
with EF Core are Microsoft .AspNetCore.Identity.EntityFrameworkCore,
Microsoft.EntityFrameworkCore.Tools,

and Microsoft.AspNetCore.Diagnostics.EntityFramework, and you should also
know that Identity is installed by default with the Visual Studio templates for ASP.NET
Core Web Applications if we choose to use authentication through Individual User Accounts.
The following screenshot shows the Visual Studio screen, where we can select the
authentication method:

Change Authentication >

| Store user accounts in-app ~{ Learn more

i Select this option to create a project that includes a local user accounts store.
! Mo Authentication

- Individual User Accounts
) Work or School Accounts

O Windows Authentication

Learn more about third-party cpen source authentication options | 0K | | Cancel |

Identity supports both user properties and roles. In order to use Identity, we first need to
register its services, as follows:

services
.AddDbContext<ApplicationDbContext> (options =>
options.UseSglServer (this.Configuration.
GetConnectionString ("DefaultConnection")))
.AddDefaultIdentity<IdentityUser> (options => options.SignIn.
RequireConfirmedAccount = false)
.AddEntityFrameworkStores<ApplicationDbContext> () ;

By all means, do replace the connection string key
(Data:DefaultConnection:ConnectionString) in the configuration to whatever suits
you best, and make sure it points to a valid configuration value.

[406]

Security Chapter 11

It will be something like this:

"ConnectionStrings": {
"DefaultConnection": "Server=(localdb)\\mssgllocaldb;
Database=aspnet-chapter07-2AF3F755-0DFD-4E20-BBA4-9B9C3F56378B;
Trusted_Connection=True;MultipleActiveResultSets=true"

}I

Identity supports a large number of options when it comes to security; these can be
configured on the call to AddDefaultIdentity, as follows:

services.AddDefaultIdentity<IdentityUser> (options =>

{
options.SignIn.RequireConfirmedAccount = false;
options.Password.RequireDigit = false;
options.Password.RequireLowercase = false;
options.Password.RequiredUniqueChars = 0;
options.Password.RequiredLength = 0;
options.Password.RequireNonAlphanumeric = false;
options.Password.RequireUppercase = false;

options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes (30);
options.Lockout.MaxFailedAccessAttempts = 10;
}) i

This example sets numerous options for login, such as disabling the confirmation of the
email, simplifying the password requirements, and setting the timeout and number

of failed login attempts. I won't go through all of the available options; please refer to the
Identity site for the full picture: https://docs.microsoft.com/en-us/aspnet/core/
security/authentication/identity

And, if you need to change the path and cookie options, you need to use
ConfigureApplicationCookie, as per this example:

services.ConfigureApplicationCookie (options =>

{
options.Cookie.HttpOnly = true;
options.ExpireTimeSpan = TimeSpan.FromMinutes (20);
options.SlidingExpiration = true;

options.LoginPath = "/Account/Login";
options.AccessDeniedPath = "/Account/Forbidden";
options.LogoutPath = "/Account/Logout";
options.ReturnUrlParameter = "ReturnUrl";

[407]

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity

Security Chapter 11

This simple example sets the paths to be the same as the ones provided earlier, in the
custom authentication topic, and sets a few cookie properties too, listed as follows:

e HttpOnly: Requires that the cookies be sent with the Ht tpOnly flag set
(see https://owasp.org/www-community/HttpOnly)
e ExpireTimeSpan: The duration of the authentication cookie

e slidingExpiration: Sets the cookie expiration to be sliding—that is, it is
renewed for an equal amount of time for each time the application is accessed

The Identity registration code (the first code listing in this subsection) mentioned the
ApplicationDbContext and IdentityUser classes. A skeleton of these classes is added
automatically when we create a project using the Visual Studio template that uses custom
authentication, but I'm adding them here for your reference, as follows:

public class ApplicationDbContext : IdentityDbContext

{
public ApplicationDbContext (DbContextOptions options) : base(options) {

}
}

Now, this is very important, you need to create the database before using Identity. To do
that, open Package Manager Console and run these commands:

Add-Migration "Initial"
Update-Database

After this, we can add some additional properties to the model.

Adding custom properties

Nothing fancy here, as you can see. The only thing worth mentioning is that you can add
your own custom properties to the IdentityUser and IdentityRole classes, and these
will be persisted and retrieved as part of the login process. Why would you want to do
that? Well, because these base classes do not contain any useful properties—only username,
email, and phone (for the user), and the role name. These classes map, respectively, a user
and a role, where a user can have a single role and each role can have multiple users
associated with it. You just need to create new classes and have the context use them, as
illustrated in the following code block:

public class ApplicationUser : IdentityUser
{
public ApplicationUser () {}
public ApplicationUser (string userName) : base (userName) {}

[408]

https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly

Security Chapter 11

//add other properties here, with public getters and setters
[PersonalDatal]

[MaxLength (50)]

public string FullName { get; set; }

[PersonalDatal]

public DateTime? Birthday { get; set; }

public class ApplicationRole : IdentityRole

{
public ApplicationRole() {}
public ApplicationRole(string roleName) : base(roleName) {}

//add other properties here, with public getters and setters
}

Notice the [PersonalbData] attribute to mark the new properties being added: this is a
requirement so that so it's automatically available for download and deletion. This is a
requirement for GDPR, discussed later on in this chapter. If you don't care about it, you can
leave it out.

You can add validation attributes to this model.

You also need to modify your context to use the new properties, like this:

public class ApplicationDbContext : IdentityDbContext<ApplicationUser,
ApplicationRole, string>

{
public ApplicationDbContext (DbContextOptions options) : base (options)

{1}

The names ApplicationUser and ApplicationRole are typical names for custom classes
for identity and role data. Notice the three generic arguments to ApplicationDbContext:
these are the types of Identity user and role, and the type of the primary key, which is
string.

You must also change the registration code in the startup class to refer to the new Identity
user class, as follows:

services
.AddDefaultIdentity<ApplicationUser> (options =>
{

[409]

Security

Chapter 11

/...
1)

Finally, we must create a migration and update the database to reflect the changes, from
inside Visual Studio (Package Manager Console), as follows:

Add-Migration "PersonalData"

Update-Database

Or, we can do this from the command line, like this:

dotnet ef migrations add PersonalData

dotnet ef database update

Of course, if we have custom data, we also need to update the registration forms so that

they include the new properties.

Updating the user interface

Fortunately, ASP.NET Core Identity fully supports this: it is possible to supply all or some
forms, and they will replace the ones provided!

Right-click on the web project and select New Scaffolded Item..., as illustrated in the

following screenshot:

Add

Manage NuGet Packag
Manage Client-Side Librari
Manage Us rets

Set as Startup Project
Debug

Cut

Remove

Rename

Unload Project

Load Project Dependencies

Copy Full Path

Open Folder in File Explorer

Open Command Line

Properties

New ltem...

Existing ltem...

Mew Empty File...

New Scaffolded Item...

New Folder

Application Insights Telemetry...

Container Orchestrator Support...

Docker Support...

Client-Side Library...

Connected Service

Class...

Shift+Alt+A

Shift+F2

[410]

Security

Chapter 11

Then, after it, select Identity, as illustrated in the following screenshot:

Add New Scaffolded ltem
4 |nstalled

4 Common
API
P MVC
Razor Pa
Identity
Layout

Identity

Identity

by Microsoft
v1.0.0.0

Adds code req

d for using ASP.NET Core

|dentity in the application.

|d: IdentityScaffolder

Cancel

Then, we have the choice to pick which pages we want to override in the current project, as

illustrated in the following screenshot:

Add Identity

Select an existing layout page, or specify a new one:

(Leave empty if it is set in a Razor _viewstart fi
D Override all files
Choose files to override
D Account\ A
D Account\ExternalLogin
D Account\Lockout
D Account\LoginWithRecoveryCode
D Account\Manag
D Account\Man

D Account\StatusMes: ied
D Account\ConfirmEmailChange
D Account\ForgotPa
D Account\LoginWith2fa

D Account\Manag

vordConfirmation

ayout AanageMav

DeletePersonalData

D Account\Man

D Account\Manage\DownloadPersonalData D Account\Manage\Email

ngePassword g
D Account\Manage\GenerateRecoveryCodes
D Account\Manage
D Account\Mana
D Account\ResetPa

D Account\Manage\ExternalLogins

¥ Account\Manage sonalData setAuthenticator
D Account\Man.
D Account\Reg

Data contex

ge\ShowRecoveryCodes ge\IwoFactorAuthentication

rConfirmation ord

ApplicationDbContext (MasteringAspNetCore30.Data)

l:‘ Accour
D Account)
D Account\Login
D Account\Logout
D Account\Manag
D Account\Manag
D Account\Manage
D Account\Manage\Index
D Account\Manage'\SetPa
Account\Register
D Account\ResetPa:

ConfirmEmail

orgotPassword

tatusMessage
sable2fa

ableAuthenticator

rord

nation

-+

wardConfi

Cancel

[411]

Security Chapter 11

Notice that you must select the context (DbContext—derived class) to use. The files will
then, by default, be created under a new folder, Areas/Identity, which will correspond
to a Model-View-Controller (MVC) area. The pages themselves are Razor pages, meaning
that they do not use controllers, but they do use a code-behind file (both a . cshtml and a
.cshtml.cs file).

So, if you followed my example and added FullName and Birthday properties to the
ApplicationUser class and generated pages for the account registration, we need to add
them, in the Areas/Identity/Pages/Account/Manage/Register.cshtml file (changes
in bold), like this:

<div asp-validation-summary="All" class="text-danger"></div>
<div class="form-group">

<label asp-for="Input.FullName"></label>

<input asp-for="Input.FullName" class="form-control" />

</div>
<div class="form-group">

<label asp-for="Input.Birthday"></label>

<input type="date" asp-for="Input.Birthday" class="form-control" />

</div>
<div class="form-group">

<label asp-for="Input.Email"></label>

<input asp-for="Input.Email" class="form-control" />

</div>

And in, Register.cshtml.cs, we need to add the code to persist the data, like this:

[BindProperty]
public InputModel Input { get; set; }

public class InputModel

{
[Display (Name = "Full Name")]
[DataType (DataType.Text)]
[MaxLength (50)]
public string FullName { get; set; }

[Display (Name = "Birthday")]
[DataType (DataType.Date)]
public DateTime? Birthday { get; set; }

[412]

Security Chapter 11

[Required]

[EmailAddress]

[Display (Name = "Email")]

public string Email { get; set; }

public async Task<IActionResult> OnPostAsync(string returnUrl = null)

{

returnUrl = returnUrl ?? Url.Content ("~/");

if (ModelState.IsValid)
{
var user = new ApplicationUser { UserName = Input.Email,
Email = Input.Email,
Birthday = Input.Birthday, FullName = Input.FullName };
var result = await _userManager.CreateAsync (user, Input.Password);

Essentially, we're just adding the new properties to InputModel, which is just a Plain Old
CLR Object (POCO) class used to bind the form data, and from there to the
ApplicationUser class, which is then passed to the CreateAsync method.

Using the Identity provider

Now, picking up on the previous authentication example, let's see how it goes with
Identity:

public class AccountController : Controller

{
private readonly IOptions<IdentityOptions> _options;
private readonly UserManager<ApplicationUser> _userManager;
private readonly RoleManager<ApplicationRole> _roleManager;
private readonly SignInManager<ApplicationUser> _signInManager;

public AccountController (
IOptions<IdentityOptions> options,
UserManager<ApplicationUser> userManager,
RoleManager<ApplicationRole> roleManager,
SignInManager<ApplicationUser> signInManager)

{
this._options = options;
this._signInManager = signInManager;
this._userManager = userManager;
this._roleManager = roleManager;

[413]

Security Chapter 11

[HttpPost]
[AllowAnonymous]
public async Task<IActionResult> PerformlLogin(string username,
string password, string returnUrl)
{
var result = await this._signInManager.PasswordSignInAsync
(username, password,
isPersistent: true,
lockoutOnFailure: false);

if (result.Succeeded)

{
return this.LocalRedirect (returnUrl);

}

else if (result.IsLockedOut)

{
this.ModelState.AddModelError ("User", "User is locked out");
return this.View ("Login");

return this.Redirect (this._options.Value.Cookies.
ApplicationCookie.AccessDeniedPath);

[HttpGet]

public async Task<IActionResult> Logout ()

{
await this._signInManager.SignOutAsync() ;
return this.RedirectToRoute ("Default");

private async Task<ApplicationUser> GetCurrentUserAsync ()
{
//the current user properties
return await this._userManager.GetUserAsync
(this.HttpContext.User);

private async Task<ApplicationRole> GetUserRoleAsync (string id)
{

//the role for the given user

return await this._roleManager.FindByIdAsync (id);

[414]

Security Chapter 11

The classes used to manage the authentication process are UserManager<T>,
SignInManager<T>, and RoleManager<T>, all of which are generic and take as
parameters either the concrete identity user or the identity role class. These classes are
registered to the dependency injection (DI) framework by the call to
AddDefaultIdentity and are, therefore, available to be injected anywhere you need
them. For the record, calling AddDefaultIdentity is the same as adding the following
services:

services
.AddIdentity () //adds core functionality
.AddDefaultUI () //adds self-contained Razor Pages UI in
// an area called /Identity
.AddDefaultTokenProviders(); //for generating tokens for new

// passwords, resetting operations
We are calling the following three methods of the UserManager<T> class:

e PasswordSignInAsync: This is the method that actually validates the username
and password, returning the status of the user; optionally, it sets the cookie as
persistent (isPersistent), meaning that the user will remain authenticated for
a certain period of time, as specified in the configuration settings, and also
indicating whether or not to lock the user in the case of a number of failed
attempts (LockoutOnFailure)—again, configurable.

e signOutAsync: Signs out the current user by setting an expiration for the
authentication cookie

e RefreshSignInAsync: Refreshes the authentication cookie by extending its
expiration (not shown here)

The UserManager<T> class exposes a few useful methods, as follows:

® GetUserAsync: Retrieves the data (either IdentityUser or a subclass) for the
current user

e CreateAsync: Creates a user (not shown here)

e UpdateAsync: Updates a user (not shown here)

e DeleteAsync: Deletes a user (not shown here)

e AddClaimAsync/RemoveClaimAsync: Adds/removes a claim to/from a user
(not shown here)

e AddToRoleAsync/RemoveFromRoleAsync: Adds/removes a user to/from a role
(not shown here)

[415]

Security Chapter 11

e ConfirmEmailAsync: Confirms an email for a recently created user (not shown

here)

¢ FindByEmailAsync/FindByIdAsync/FindByNameAsync: Tries to find users by
email/ID/name (not shown here)

As for RoleManager<T>, its only use here is to retrieve the role (IdentityRole—derived)
for the current user by means of its FindByIdAsyncmethod (not shown here).

As you can see, the code is pretty similar to the previous code, but this is just a teaser as
Identity supports lots of other features, including the following:

o User registration, including email activation codes
¢ Assigning roles to users

Account locking after a number of failed login attempts

Two-factor authentication
Password retrieval

External authentication providers
Please consult the Identity site for more information: https://www.asp.net/identity

Now, let's see a very popular server for integrating data sources and serving authentication
requests to multiple clients.

Using IdentityServer

IdentityServer is an open source implementation of the OpenID Connect and OAuth 2.0
protocols for ASP.NET. The version we are interested in, IdentityServer4, was designed
specifically for ASP.NET Core; its source code is made available at https://github.com/
IdentityServer/IdentityServer4 and its documentation at http://docs.
identityserver.io/. Itis so popular that it is, in fact, Microsoft's recommended
implementation for service federation and single sign-on (SSO).

[416]

https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/

Security Chapter 11

This is the OAuth 2.0 flow for granting access to a resource:

OAuth2 Authorization
Code Grant

Web Application

1. User agent browses ta web application

P
-

2. Web application redirects user agent ta authorization server

-l
=

5. User agent provides single-use authorization code to web application

Q 10. Web application returns response to authorized user agent
-

.
-

User Agent
F
o
3. User agent sends credentials 4, Authorization server returns 0
to authorization server's single-use authorization code to s?"ao
o

user agent and redirects the user

login page
agent back to the web application

External Authorization Server

Image taken from https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/external-authentication-services

IdentityServer, loosely speaking, can be used for authentication as a service, meaning it can
accept requests for authentication, validate them against any number of data stores, and

grant access tokens.

[417]

Security Chapter 11

We won't go into the details of setting up IdentityServer as it can be quite complex and has
a huge number of features. What we are interested in is how we can use it to authenticate
users. For this, we will need the
Microsoft.AspNetCore.Authentication.OpenIdConnect and
IdentityServer4.AccessTokenValidation NuGet packages.

We set all the configuration in the ConfigureServices method, as illustrated in the
following code block:

services.AddCookieAuthentication (CookieAuthenticationDefaults.Authenticatio
nScheme) ;

services.AddOpenIdConnectAuthentication (options =>

{

options.ClientId = "MasteringAspNetCore";
//change the IdentityServer4 URL
options.Authority = "https://servername:5000";

//uncomment the next line if not using HTTPS
//options.RequireHttpsMetadata = false;
1)

Then, add the authentication middleware, in Configure, like this:
JwtSecurityTokenHandler.DefaultInboundClaimTypeMap.Clear () ;

app.UseAuthentication () ;

These two lines will first erase the mapping of claims for JSON Web Token (JWT) and then
add the authentication middleware.

For additional information, consult the wiki article at https://social.
technet.microsoft.com/wiki/contents/articles/37169.secure-your—

netcore-web-applications-using-identityserver-4.aspx and the
Identﬂyserverldentﬁy(iOCUInentaﬁorlathttp://docs.identityserver.
io/en/release/quickstarts/6_aspnet_identity.html.

The following sections describe authentication against third-party providers.

[418]

https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html

Security Chapter 11

Using Azure Active Directory

With everything moving to the cloud, it should come as no surprise that ASP.NET Core
also supports authentication with Azure Active Directory (Azure AD). When you create a
new project, you have the option to select Work or School Accounts for authentication and
then enter the details of your Azure cloud, as illustrated in the following screenshot:

Change Authentication x
For applications that authenticate users with Active Directory, Microsoft Azure Active
Directory, or Office 365.
) Mo Authentication T e
O Individual User Accounts Cloud - Single Organization v 0
i Domain:
® Work or School Accounts | mydomain.com | (i]
O Windows Authentication Directory Access Permissions:
| Read directory data ()
| More Options
Client Id:
| Overwrite the application entry if one with same |D exists
Learn more about third-party open source authentication options

You must enter a valid domain!

Essentially, the wizard adds the following two NuGet packages to the

project Microsoft.AspNetCore.Authentication.Cookies and
Microsoft.AspNetCore.Authentication.OpenIdConnect (Azure authentication is
based on OpenlID). It also adds the following entry to

the appsettings. json configuration file:

"Authentication": {
"AzureAd": |
"AADInstance": "https://login.microsoftonline.com/",
"CallbackPath": "/signin-oidc",
"ClientId": "<client id>",
"Domain": "mydomain.com",
"TenantId": "<tenant id>"

[419]

Security Chapter 11

}

The authentication uses cookies, so a similar entry is added to the ConfigureServices
method, as illustrated in the following code snippet:

services.AddAuthentication (options =>
options.SignInScheme = CookieAuthenticationDefaults
.AuthenticationScheme

)i

Finally, the OpenID middleware is added to the pipeline in Configure, as illustrated in the
following code snippet:

app.UseOpenIdConnectAuthentication (new OpenIdConnectOptions

{
ClientId = this.Configuration["Authentication:AzureAd:ClientId"],
Authority = this.Configuration["Authentication:AzureAd:AADInstance"] +

this.Configuration["Authentication:AzureAd:TenantId"],

CallbackPath = this.Configuration["Authentication:AzureAd:
CallbackPath"]

}) i

The relevant methods for signing in (SignIn), logging out (Logout), and showing the
logged-out page (Signedout) in the AccountController class (from the original listing
presented at the beginning of the chapter) are shown in the following code block:

[HttpGet]
public async Task<IActionResult> Logout ()
{
var callbackUrl = this.Url.Action("SignedOut", "Account",
values: null,
protocol: this.Request.Scheme);
return this.SignOut (new AuthenticationProperties {
RedirectUri = callbackUrl },
CookieAuthenticationDefaults.AuthenticationScheme,
OpenIdConnectDefaults.AuthenticationScheme) ;

[HttpGet]
public IActionResult SignedOut ()
{

return this.View () ;

[HttpGet]
public IActionResult SignIn ()
{

[420]

Chapter 11

Security
return this.Challenge (new AuthenticationProperties { RedirectUri = "/"
}I
OpenIdConnectDefaults.AuthenticationScheme) ;
)i
}

Now, we will see how we can use well-known social networking applications as
authentication providers for our application.

Using social logins

Another option for keeping and maintai<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>