

Modern Web Development with
ASP.NET Core 3
Second Edition

An end to end guide covering the latest features of Visual
Studio 2019, Blazor and Entity Framework

Ricardo Peres

BIRMINGHAM - MUMBAI

Modern Web Development with ASP.NET
Core 3
Second Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri
Content Development Editor: Tiksha Lad
Senior Editor: Afshaan Khan
Technical Editor: Gaurav Gala
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Alishon Mendonsa

First published: November 2017
Second edition: June 2020

Production reference: 1240620

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-976-8

www.packt.com

http://www.packt.com

I would like to thank my son, Francisco, and daughter, Madalena, for all their love; they
are the reason why I wrote this book.

Big thanks to Guilherme Castela and Pedro Januário: the best of friends. I couldn't have
done it without you guys!

In memory of my parents, Irene and Jorge Peres, with love and "saudades."

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Ricardo Peres is a Portuguese developer, blogger, and book author and is currently a team
leader at Dixons Carphone. He has over 20 years of experience in software development
and his interests include distributed systems, architectures, design patterns, and .NET
development. He won the Microsoft MVP award in 2015 and has held this title up to 2020.

He also authored Entity Framework Core Cookbook – Second Edition and Mastering ASP.NET
Core 2.0, and was a technical reviewer for Learning NHibernate 4 for Packt. He also
contributed to Syncfusion's Succinctly collection, with titles on .NET development.
Ricardo maintains a blog—Development With A Dot—where he writes about technical
issues. You can catch up with him on Twitter at @rjperes75.

About the reviewers
Alvin Ashcraft is a developer who lives near Philadelphia. He has spent his 25-year career
building software with C#, Visual Studio, WPF, ASP.NET, and more. He has been awarded
the Microsoft MVP title nine times. You can find his daily links for .NET developers on his
blog, Morning Dew. He works as a principal software engineer for Allscripts, building
healthcare software. He was previously employed by software companies, including
Oracle. He has reviewed other titles for Packt Publishing, including C# 8 and .NET Core 3
Projects Using Azure, Mastering Entity Framework Core 2.0, and Learn ASP.NET Core 3.

Prakash Tripathi is a technical manager by profession and a speaker and author by
passion. He has extensive experience in the design, development, maintenance, and
support of enterprise applications, primarily using Microsoft technologies and platforms.
He is active in technical communities and has been awarded the Microsoft MVP title four
times in a row since 2016. He holds a master's degree in computer applications from
MANIT Bhopal, India.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: The Fundamentals of ASP.NET Core 3
Chapter 1: Getting Started with ASP.NET Core 7

Technical requirements 8
Getting started 8
Beginning with .NET Core 11

Supported platforms 17
Dependencies and frameworks 18

Targeting .NET Core or the full .NET framework 20
Understanding the generic host 22
Understanding the MVC pattern 24
Getting your context 28

Working with the context 30
Understanding the OWIN pipeline 31
Hosting ASP.NET Core 36

Kestrel 38
WebListener/HTTP.sys 38
IIS 39
NGINX 39
Apache 39
Configuration 39
Features 40
Launch configuration 41
Setting the listen port and address 43

Using the command line 43
Using environment variables 44
Using launchSettings.json 44
Using code 45
Setting ports dynamically 45

Inversion of control and dependency injection 46
Validating dependencies 53

Knowing the environments 54
Understanding the project templates 57
What's new since version 2.0? 59

ASP.NET Core 2.1 59
SignalR 59
Razor class libraries 60
Razor pages improvements 60

Table of Contents

[ii]

New partial tag helper 60
Top-level parameter validation 60
Identity UI library and scaffolding 60
Virtual authentication schemes 60
HTTPS by default 61
GDPR-related template changes 61
MVC functional test improvements 61
API conventions and supporting types 61
Generic host builder 61
Updated SPA templates 62

ASP.NET Core 2.2 62
API code analyzers 62
Health check API 62
Endpoint routing 62
Problem details (RFC 7807) support 62

ASP.NET Core 3.0 62
C# 8.0 63
.NET Standard 2.1 63
Blazor 63
Built-in JSON support 63
HTTP/2 support 63
gRPC 63
IdentityServer integration 63
Endpoint routing 63

Migrating to ASP.NET Core 3.x 64
Version set 64

The NuGet and dotnet tools 65
Summary 65
Questions 66

Chapter 2: Configuration 67
Technical requirements 68
Getting started 68
Configurations in .NET Core 69
Providers 71

File-based providers 73
JSON provider 75
XML provider 75
INI provider 76

Other providers 76
User secrets 76
Azure Key Vault 78
Command line 78
Environment variables 79
Memory 80
Docker 80
Default providers 81

Creating a custom provider 81

Table of Contents

[iii]

Using configuration values 84
Getting and setting values explicitly 84
Configuration sections 85
Getting all values 86
Binding to classes 87
Injecting values 89
Retrieving named configuration options 91
Reloading and handling change notifications 91
Running pre- and post-configuration actions 92

Changes from version 2.x 94
Configuring the runtime host 95
Understanding feature toggling 96

Included feature filters 98
Percentage filter 98
Time window filter 99

Custom feature filters 99
Consistency between checks 101
Disabled features handler 101

Summary 103
Questions 104

Chapter 3: Routing 105
Technical requirements 106
Getting started 106
Endpoint routing 107
Route configuration 110
Creating routing tables 110

Fallback endpoints 112
Using route templates 113
Matching route parameters 115
Using dynamic routing 116
Selecting routes from attributes 119

Using special routes 122
Host selection from attributes 122
Setting route defaults 123
Routing to inline handlers 124
Applying route constraints 126

HTTP methods 127
Default constraints 127
Creating custom constraints 128

Route data tokens 130
Routing to areas 131
Using routing attributes 132

Defining routes 133

Table of Contents

[iv]

Default routes 135
Constraining routes 135
Defining areas 135
Specifying action names 136
Defining non-actions 136
Restricting routes 136
Setting route values 137

Error handling in routing 137
Routing errors to controller routes 138
Using developer exception pages 138
Using a catch-all route 139
Using status code pages middleware 140

Status code pages 140
Routing to specific status code pages 141
Any status code 142

Summary 143
Questions 144

Chapter 4: Controllers and Actions 145
Technical requirements 146
Getting started 146
Using controllers 146

Controller base classes 147
POCO controllers 149

Adding context to POCO controllers 149
Intercepting actions in POCO controllers 151

Finding controllers 152
Controller life cycle 153
Actions 155

Finding actions 155
Synchronous and asynchronous actions 156
Getting the context 157
Action constraints 157
Action parameters 159
Model binding 162

Body 163
Form 163
Header 163
Query string 164
Route 164
Dependency injection 164
Custom binders 165
Property binding 167
Input formatters 168
Explicit binding 168
Canceling requests 170

Model validation 170

Table of Contents

[v]

Action results 174
Redirecting 179
Streaming 181

Error handling 181
Response caching 182
Maintaining the state 184

Using the request 184
Using form data 185
Using the query string 185
Using the route 185
Using cookies 186
Using sessions 187
Using the cache 189

In-memory cache 190
Distributed cache 191

Redis 192
SQL Server 192

Using temporary data 193
Comparing state maintenance techniques 194

Dependency injection 195
Globalization and localization 195
Summary 201
Questions 202

Chapter 5: Views 203
Technical requirements 204
Getting started 204
Understanding views 206
Understanding the view life cycle 207
Locating views 209

Using view location expanders 210
Using view engines 212
Logging and diagnostics 218
View compilation 220
Passing data to views 223

Using the model 223
Using the ViewBag property 224
Using temporary data 225

Understanding view layouts 225
Understanding partial views 227

Passing data to partial views 228
Finding partial views 229

Understanding the special view files 230
Understanding the view options 231

Referencing the base path of the application 233

Table of Contents

[vi]

Using areas 233
Dependency injection 234
Using translations 235

Using resources 235
Using translated views 238

Summary 238
Questions 239

Section 2: Improving Productivity
Chapter 6: Using Forms and Models 241

Technical requirements 241
Getting started 242
Using the form context 242
Working with the model 243

Using models of anonymous types 248
Using HTML helpers 249

Forms 249
Single-line text boxes 250
Multi-line text boxes 251
Passwords 252
Dropdowns 252
List boxes 253
Radio buttons 253
Checkboxes 253
Hidden values 254
Links 254
Labels 255
Raw HTML 255
IDs, names, and values 255
Generic editor and display 256
Utility methods and properties 256
Validation messages 257
Custom helpers 257

Using templates 260
Enforcing model binding 261

Model binders 262
Model binding sources 264
Dynamic binding 266

Model validation 267
Server-side validation 267

Configuration 269
Data annotation validation 269

Error messages 272
Self-validation 272
Custom validation 273

Table of Contents

[vii]

Preventing validation 275
Automatic validation 275

Client-side model validation 275
Configuration 276
Custom validation 277

Using AJAX for validation 280
Validation 282
Enforcing restrictions 282
Returning content from AJAX 283

Uploading files 284
Direct access to submitted files 285

Summary 285
Questions 286

Chapter 7: Implementing Razor Pages 287
Technical requirements 287
Getting started 288
Assets search order 290
Working with the page model 290

Understanding page handlers 292
Doing model binding 295
Doing model validation 297
Maintaining state 297
Using view layouts 297
Using partial views 297
Using areas 298
Special files 298
Using filters 299
Using dependency injection 299
Configuring options 299
Understanding page routes 301
Enforcing security 302

Using the [Authorize] attribute 302
Conventions 302

Cross-site request scripting 303
Summary 303
Questions 304

Chapter 8: API Controllers 305
Technical requirements 305
Getting started with web APIs 306
Understanding REST 307
Model binding 308
Authorizing access to resources 309

Using JWTs 309
Applying OpenAPI REST conventions 312

Table of Contents

[viii]

Returning validation results 314
Performing content negotiation 315

Output formatters 318
Handling null values 319

Handling errors 320
Understanding API versioning 323

Using header values 324
Using the query string 324
Deprecating versions 325
Default versions 325
Version mapping 326
Invalid versions 326

Generating API documentation 326
Adding API documentation 332

Serving OData 333
Setting up OData 334
Getting metadata 336

Listing collections 336
Entity metadata 337

Querying 338
Filtering an entity 338
Projections 340
Paging 341
Sorting 341
Expansion 342
Counting 343

Configuring options 343
Limits 343

Maximum returnable records 344
Expansion 344

Summary 344
Questions 345

Chapter 9: Reusable Components 346
Technical requirements 346
Diving into the view components 347

Discovering view components 347
Using view components 348
View component results 349
Dependency injection 350
View components versus partial views 351

Exploring the tag helpers 351
Understanding the properties of a tag helper 355
Restricting the applicability of a tag helper 356
Discovering tag helpers 356
Dependency injection 357

Table of Contents

[ix]

Studying the included tag helpers 358
The <a> tag 359
The <cache> tag 360
The <component> tag 361
The <distributed-cache> tag 361
The <environment> tag 362
The <form> tag 362
The <script> tag 363
The <link> tag 363
The <select> tag 364
The <partial> tag 364
Validation message and summary 365

Tag helper components 365
Partial views 367

Partial views versus view components 368
Understanding Razor class libraries 369

Referencing static content 370
Referencing external components 370

Summary 371
Questions 372

Chapter 10: Understanding Filters 373
Technical requirements 373
Filters in the pipeline 374
Understanding the filter types 374

Synchronous versus asynchronous 376
Filter scope 376
Execution order 377
Applying filters through attributes 378
Filter ordering 379
Factories and providers 380
DI 381
Accessing the context 383

Applying authorization filters 384
Authorization policies 385

Resource filters 386
Understanding action filters 388
Result filters 390
Exception filters 392
Razor page filters 393
Always-run-result filters 395
Summary 396
Questions 397

Chapter 11: Security 398
Technical requirements 399

Table of Contents

[x]

Authenticating users 399
Using claims 401
Windows authentication 402
Custom authentication 404

Identity 405
Adding custom properties 408
Updating the user interface 410
Using the Identity provider 413

Using IdentityServer 416
Using Azure Active Directory 419
Using social logins 421

Facebook 422
Twitter 422
Google 423
Microsoft 423

Cookie security 424
Supporting SameSite cookies 425

Authorizing requests 426
Authorization based on roles 427
Policy-based authorization 428
Authorization handlers 429
Resource-based authorization 433
Allowing anonymous access 434

Checking requests for forgery 435
Applying HTML encoding 437
Working with HTTPS 438

Certificates 438
Hosting our app 439

IIS Express 439
Kestrel 440
HTTP.sys 440

Forcing HTTPS 441
Redirecting to HTTPS 442
Using HSTS 442
HSTS preload 443

Understanding CORS 443
Using data protection 446
Protecting static files 447

Using an action to retrieve files 447
Using middleware to enforce security 448

Learning about the GDPR 450
Required cookies 450
Personal data 452

Binding security 452
Summary 453
Questions 454

Table of Contents

[xi]

Section 3: Advanced Topics
Chapter 12: Logging, Tracing, and Diagnostics 456

Technical requirements 457
Introducing the .NET Core Common Logging framework 457

Using logging services 458
Defining log levels 459
Using logging providers 461
Filtering logs 462
Writing custom log providers 464
Using DI with the log providers 467
Using logging attributes 467

Writing custom logging middleware 469
Using tracing and diagnostics 470
Using performance (event) counters for obtaining metrics 474

Included counters 474
Custom counters 475
Performance monitoring 477
Tracing 478
Trace dumps 482

Using telemetry 483
Using trace identifiers 483
Azure Application Insights 485

Sending custom events 488
AWS CloudWatch 492
New Relic 493

Performing health checking 494
Summary 498
Questions 498

Chapter 13: Understanding How Testing Works 499
Technical requirements 500
Getting started with unit tests 500
Writing unit tests 501

Unit test frameworks 502
MSTest 502
NUnit 505
xUnit 508

Test setup 512
Injecting dependencies 512
Mocking 515
Assertions 517
User interface 518

Using the command line 521
Limitations of unit tests 522

Working on integration tests 522

Table of Contents

[xii]

Summary 524
Questions 525

Chapter 14: Client-Side Development 526
Technical requirements 526
Introducing client-side development 527
Using LibMan 527
Using Node.js 528

Calling Node from .NET Core 530
Serving SPA files 531

Using SPA templates 533
Using TypeScript 534
Summary 536
Questions 537

Chapter 15: Improving Performance and Scalability 538
Technical requirements 539
Getting started 539

MiniProfiler 539
Stackify Prefix 541

Hosting ASP.NET Core 542
Choosing the best host 542
Configuration tuning 543

Maximum number of simultaneous connections 543
Limits 544
Timeouts 545

Understanding bundling and minification 546
Using asynchronous actions 547
Improving performance with caching 550

Caching data 550
In-memory cache 551
Distributed cache 554

Caching action results 557
Caching views 560

Compressing responses 560
Buffering responses 562
Summary 563
Questions 564

Chapter 16: Real-Time Communication 565
Technical requirements 565
Setting up SignalR 566

Learning core concepts 568
Hosting a hub 569
Choosing communication protocols 572

Automatic reconnection 573

Table of Contents

[xiii]

Message serialization 574
Exploring the SignalR context 575

Using the query string 575
Knowing the message targets 576
Communicating from the outside 577

Communication from the same web application 577
Communicating from a different application 579

Using user authentication 581
Logging 581
Summary 583
Questions 584

Chapter 17: Introducing Blazor 585
Technical requirements 585
Getting started with Blazor 586

Hosting models 586
Implementing Blazor 589

Implementing Blazor Server 589
Implementing Blazor WebAssembly 591
Comparing Server and WebAssembly 593

Pages 593
Razor syntax 594
Namespace imports 595
Partial classes 596
Pages as code 596
Pages as components 596

Page layouts 596
Routing 598

Page routes 599
Route constraints 599
A catch-all route 600
Parameter binding from route 600
Page navigation 600

Building components 602
The <component> tag helper 602
Blazor component properties 603

Cascading properties 604
Catch-all properties 605
Child content properties 606

Components with generic parameters 607
Lists of components 608
Locating components 608
Rendering modes 609
The component life cycle 609
Reusing components in different projects 610

Table of Contents

[xiv]

Accessing the HTTP context 611
Sample components 611

Working with forms 614
Form editing 614
Form context 615
Form components 616
Form validation 617

Working with DOM elements 617
Two-way binding 618
Event handling 618
Referencing elements 621
Updating the state 621

DI 622
Injecting services 622
Registered services 622
Scoped lifetime 623

JavaScript interoperability 623
Calling JavaScript functions from .NET 623
Calling .NET methods from JavaScript 624

Maintaining state 625
Making HTTP calls 627
Applying security 628

Requesting authorization 628
Getting the current user 630
Checking permissions explicitly 632
CORS 632

Unit testing 633
Summary 633
Questions 634

Chapter 18: gRPC and Other Topics 635
Technical requirements 636
Using areas for organizing code 636

The use of areas in code 637
Tag and HTML helpers 638

Working with static files and folders 638
Configuration 638
Allowing directory browsing 639
Serving static files 640
Serving default documents 643
Applying security 643
File providers 644

Application lifetime events 645
Working with embedded resources 646
Hosting extensions 648

Table of Contents

[xv]

Hosting startup 649
Hosting background services 649
ASP.NET Core model conventions 651
Applying URL rewriting 656

URL redirection 657
URL rewriting 658
Runtime evaluation 658
Redirecting to HTTPS 660
Platform-specific 661
Enforcing URL rewriting 661

Using EF Core 661
Registering DbContext 662
Using asynchronous methods 662
Eager loading 663
Initializing a database 663
Showing migration errors and running migrations 665
Integrating an EF context with an HTTP context 665
Building a REST service 667

Understanding the gRPC framework 670
Interface definition 671
Messaging kinds 673
Hosting a service 674

Request context 676
Interceptors 676
Listening options 678

Using HTTP client factories 678
Summary 684
Questions 685

Chapter 19: Application Deployment 686
Technical requirements 686
Deploying the application manually 687

Setting the target framework 688
Self-contained deployments and runtimes 689
Real-time rebuilding 690

Deploying with Visual Studio 691
Deploying through IIS 692
Deploying with NGINX 695
Deploying to Azure 696
Deploying to AWS 697
Deploying with Docker 699
Deploying as a Windows service 702
Summary 703
Questions 703

Table of Contents

[xvi]

Chapter 20: Appendix A: The dotnet Tool 704
The dotnet Tool 704

Build 704
Creating projects from templates 705
Unit testing 705
Managing package references 706
Run 706
Publish 707
NuGet 708
Global tools 709
User secrets 710
File watcher 710
EF Core 711

Assessments 713

Other Books You May Enjoy 730

Index 733

Preface
In this book, we will discuss the new and latest features that have been added by Microsoft
to ASP.NET Core 3.

We will delve deep into the applications and understand how to apply them for the various
new tools that have been introduced. We will be looking at Blazor, gRPC, the dotnet tools,
error handling methods, and Razor Pages. We have so many new topics to look at this time,
so it is going to be one hell of a joyride. Sit back and enjoy!

Who this book is for
If you are a developer with basic knowledge of the ASP.NET MVC framework and want to
build powerful applications, then this book is for you. Developers who want to explore the
latest changes in ASP.NET Core 3.0 to build professional-level applications will also find
this book useful. Familiarity with C#, ASP.NET Core, HTML, and CSS is expected in order
to get the most out of this book.

What this book covers
Chapter 1, Getting Started with ASP.NET Core, explains the very basics of .NET and
ASP.NET Core, including the MVC pattern, which is the typical usage pattern of ASP.NET
Core.

Chapter 2, Configuration, presents you with the configuration options available to
.NET/ASP.NET Core developers.

Chapter 3, Routing, explains how an HTTP request is mapped to controller actions by
means of routes, how they are selected, and how the parameters are matched.

Chapter 4, Controllers and Actions, explains how controllers and actions work, what API
and OData controllers are, what the life cycle of a controller is, and how controllers are
found.

Chapter 5, Views, explains how to work with views, which make up the user interface of
ASP.NET Core.

Chapter 6, Using Forms and Models, shows us how to work with user-submitted data in
forms.

Preface

[2]

Chapter 7, Implementing Razor Pages, describes what Razor Pages are—an alternative
development model for ASP.NET Core.

Chapter 8, API Controllers, shows us how to work with API (non-visual) controllers.

Chapter 9, Reusable Components, talks about reusability in ASP.NET Core.

Chapter 10, Understanding Filters, talks about the different kinds of filters available to
ASP.NET Core developers.

Chapter 11, Security, shows us how to implement authentication and authorization. Here,
we will also cover how to enforce HTTPS security and how to prevent tampering.

Chapter 12, Logging, Tracing, and Diagnostics, explains how we can get a glimpse of what is
going on with our ASP.NET Core application.

Chapter 13, Understanding How Testing Works, explains how to add unit and
functional/integration tests to our solutions.

Chapter 14, Client-Side Development, covers how to integrate ASP.NET Core with common
client-side frameworks.

Chapter 15, Improving the Performance and Scalability, covers how to improve the
performance of our web application.

Chapter 16, Real-Time Communication, will help us learn how to apply real-time
communication techniques to code.

Chapter 17, Introducing Blazor, is a new addition to this version and will explain Blazer for
interoperability, dependency injections, HTTP calls, and more.

Chapter 18, gRPC and Other Topics, is a collection of topics and framework details that an
ASP.NET Core developer ought to know but that didn't fit into the rest of the chapters of
this book.

Chapter 19, Application Deployment, will help us learn how to deploy an ASP.NET Core
application to different targets, such as on-premises and the cloud.

Chapter 20, Appendix A: The dotnet Tool, provides a short description of the basics
and other useful topics relating to ASP.NET Core, including a description of its tools and
features.

Preface

[3]

To get the most out of this book
It is good to be familiar with C#, ASP.NET Core, HTML, and CSS to get the most out of this
book. It does go without saying that reading the first edition of this book will prove helpful.

Software/hardware covered in this book OS requirements
Docker Windows or Linux
Visual Studio 2019 Community edition Windows, Linux

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Modern- ​Web- ​Development- ​with- ​ASP. ​NET- ​Core- ​3-​Second- ​Edition. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/​downloads/
9781789619768_​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Keep in mind that, in general, claims do not mean anything, but, there are a few
exceptions: Name and Role can be used for security checks, as we will see in a moment..."

A block of code is set as follows:

var principal = new WindowsPrincipal(identity);
var isAdmin = principal.IsInRole(WindowsBuiltInRole.Administrator);

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

"iisSettings": {
 "windowsAuthentication": true,
 "anonymousAuthentication": false,
 "iisExpress": {
 "applicationUrl": "http://localhost:5000/",
 "sslPort": 0
 }
}

Any command-line input or output is written as follows:

Add-Migration "Initial"
Update-Database

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Right-click on the web project and select New Scaffolded Item..."

https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789619768_ColorImages.pdf

Preface

[5]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: The Fundamentals of

ASP.NET Core 3
This first section will cover the fundamentals of ASP.NET Core and the Model-View-
Controller (MVC) pattern and how the two meet, and .NET Core and its concepts will be
explored.

This section has the following chapters:

Chapter 1, Getting Started with ASP.NET Core
Chapter 2, Configuration
Chapter 3, Routing
Chapter 4, Controllers and Actions
Chapter 5, Views

1
Getting Started with ASP.NET

Core
Welcome to my new book on ASP.NET Core 3!

.NET and ASP.NET Core are relatively new in the technological landscape, as they
were only officially released in August 2017. Given that .NET is in the name, you would
think that these would probably only be new versions of the highly popular .NET
Framework, but that is not the case: we are talking about something that is truly new!

It's not just multiplatform support (howdy, Linux!), but it's so much more. It's the new
modularity in everything: the transparent way by which we can now change things—the
source code in front of our eyes teasing us to contribute to it, to make it better—is indeed a
lot different from previous versions of .NET Core!

In this first chapter, we are going to talk a bit about what changed in ASP.NET and .NET in
the core versions, and also about the new underlying concepts, such as OWIN, runtime
environments, and dependency injection (DI).

In this chapter, we will cover the following topics:

History of ASP.NET Core
Introduction to .NET Core
Inversion of control and DI
OWIN
The MVC pattern
Hosting
Environments
How the bootstrap process works for ASP.NET Core apps
The generic host

Getting Started with ASP.NET Core Chapter 1

[8]

What's new since ASP.NET Core 2
The NuGet and dotnet tools

Technical requirements
This chapter does not require any particular software component, as it deals more with
concepts.

You can find the GitHub link at https:/ ​/ ​github. ​com/​PacktPublishing/ ​Modern- ​Web-
Development-​with- ​ASP. ​NET- ​Core- ​3- ​Second- ​Edition.

Getting started
Microsoft ASP.NET was released 15 years ago, in 2002, as part of the then shiny new .NET
Framework. It inherited the name ASP (short for Active Server Pages) from its predecessor,
with which it barely shared anything else, other than being a technology for developing
dynamic server-side content for the internet, which ran on Windows platforms only.

ASP.NET gained tremendous popularity, it has to be said, and competed hand to hand
with other popular web frameworks, such as Java Enterprise Edition (JEE) and PHP. In
fact, it still does, with sites such as BuiltWith giving it a share of 21% (ASP.NET and
ASP.NET MVC combined), way ahead of Java (https:/ ​/​trends. ​builtwith. ​com/
framework). ASP.NET was not just for writing dynamic web pages. It could also be used for
XML (SOAP) web services, which, in early 2000, were quite popular. It benefited from the
.NET Framework and its big library of classes and reusable components, which made
enterprise development almost seem easy!

Its first version, ASP.NET 1, introduced web forms, an attempt to bring to the web the
event and component model of desktop-style applications, shielding users from some of the
less friendly aspects of HTML, HTTP, and state maintenance. To a degree, it was highly
successful; using Visual Studio, you could easily create a data-driven dynamic site in just a
few minutes! A great deal of stuff could be accomplished merely through markup, with no
code changes (read or compile) needed.

Version 2 came along a few years afterward, and among all the other goodies, it brought
with it extensibility in the form of a provider model. A lot of its functionality could be
adapted by the means of custom providers. Later on, it received the addition of the AJAX
Extensions, which made AJAX-style effects astonishingly easy. It set the standard for years
to come, leaving only room for more components.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework
https://trends.builtwith.com/framework

Getting Started with ASP.NET Core Chapter 1

[9]

To be honest, the following versions, 3.5, 4, and 4.5, only offered more of the same, with
new specialized controls for displaying data and charts for retrieving and manipulating
data and a few security improvements. A big change was that some of the framework
libraries were released as open source.

Between versions 3.5 and 4, Microsoft released a totally new framework, based on the
model-view-controller (MVC) pattern, and it was mostly open source. Although it sits on
top of the infrastructure laid out by ASP.NET, it offered a whole new development
paradigm, which this time fully embraced HTTP and HTML. It seemed to be the current
trend for web development across technologies, and the likes of PHP, Ruby, and Java, and
.NET developers were generally pleased with it. ASP.NET developers now had two
choices—Web Forms and MVC, both sharing the ASP.NET pipeline and .NET libraries, but
offering two radically different approaches to getting content to the browser.

In the meantime, the now venerable .NET Framework had grown up in an ever-changing
world. In the modern enterprise, the needs have changed, and sentences such as runs on
Windows only or we need to wait XX years for the next version became barely acceptable.
Acknowledging this, Microsoft started working on something new, something different
that would set the agenda for years to come. Enter .NET Core!

In late 2014, Microsoft announced .NET Core. It was meant to be a platform-independent,
language-agnostic, free, and open source full rewrite of the .NET Framework. Its main
characteristics were as follows:

The base class libraries of .NET were to be rewritten from scratch while keeping
the same (simplified) public APIs, which meant that not all of them would be
initially available.
It was also able to run on non-Windows operating systems, specifically several
Linux and macOS flavors, and in mobile devices, so all Windows-specific code
(and APIs) would be discarded.
All of its components were to be delivered as NuGet packages, meaning that only
a small bootstrap binary would need to be installed in the host machine.
There was no longer a dependency (or, let's say, a very close relationship) with
IIS, so it was able to be autohosted or run inside a hosting process, like, well, IIS.
It would be open source and developers would be able to influence it, either by
creating issues or by submitting pull requests.

This eventually took place in July 2016, when version 1.0 of .NET Core was released. The
.NET developers could now write once and deploy (almost) everywhere and they finally
had a say on the direction the framework was taking!

Getting Started with ASP.NET Core Chapter 1

[10]

Rewriting the whole .NET Framework from scratch is a task of epic proportions, so
Microsoft had to make decisions and define priorities. One of them was to ditch ASP.NET
Web Forms and to only include MVC. So gone were the days when ASP.NET and Web
Forms were synonyms, and the same happened with ASP.NET Core and MVC: it's now just
ASP.NET Core! And it's not just that the ASP.NET Web API, which used to be a different
project type, was now merged with ASP.NET Core as well (a wise decision from Microsoft,
as basically the two technologies, MVC and Web API, had a lot of overlap and even had
classes with the same name for pretty much the same purpose).

So, what does this mean for developers? Here are my personal thoughts about how the tech
has fared:

C#, Visual Basic, and F#; F# has gained a lot of momentum among the developer
communities, and they have built templates for Visual Studio as well as lots of
useful libraries.
Open source is great! If you want to change anything, you can just grab the code
from GitHub and make the changes yourself! If they're good enough, then
chances are that others may be interested in them too, so why not submit a pull
request to have them integrated?
We don't need to decide upfront if we want to use MVC or the web API. It's just a
matter of adding one or two NuGet packages anytime and adding a couple of
lines to the Startup.cs file; the same controller can serve both API and web
requests seamlessly.
Attribute routing is built in, so there's no need for any explicit configuration.
ASP.NET Core now uses Open Web Interface for .NET (OWIN) based
middleware and configuration, so you will need to (significantly) change your
modules and handlers so that they fit into this model; MVC/web API filters are
basically the same.
There is no dependency on IIS or Windows, meaning that we can easily write our
apps in good old Windows/Visual Studio and then just deploy them to
Azure/AWS/Docker/Linux/macOS. It's actually pretty cool to debug our app in
Docker/Linux from Visual Studio! It can run self-hosted in a console application
too.
A consequence of the latter is that there are no more IIS Manager or
web.config/machine.config files.

Getting Started with ASP.NET Core Chapter 1

[11]

Not all libraries are already available for .NET Core, meaning that you will either
need to find replacements or implement the features yourself. The website
https:/​/ ​icanhasdot. ​net/ ​Stats has a good list of whatever is/is not available for
.NET Core, and there is also a list in the project's roadmap at https:/ ​/​github.
com/​dotnet/ ​core/ ​blob/ ​master/ ​roadmap. ​md.
Even the core (pun intended) .NET Core classes are still lacking some methods
that used to be there; take, for example, some methods in the
System.Environment class.
You need to handpick the NuGet packages for the libraries you want to use,
including for classes that you took for granted in the old days. For .NET; this
includes, for example, System.Collections (https:/ ​/ ​www.​nuget. ​org/
packages/ ​System. ​Collections), as they are not automatically referenced.
Sometimes it's hard to find out which NuGet package contains the classes you
want; when this happens, http:/ ​/​packagesearch. ​azurewebsites. ​net may come
in handy.
There is no more Web Forms (and the visual designer in Visual Studio); now it's
MVC all the way, or Blazor, which offers some resemblance to Web Forms, and
has some advantages too! Yay!

Let's see begin by looking at what .NET Core is all about.

Beginning with .NET Core
Talking about ASP.NET Core without explaining .NET Core is somewhat cumbersome.
.NET Core is the framework everyone is talking about, and for good reasons. ASP.NET
Core is probably the most interesting API right now, as it seems that everything is moving
to the web.

And why is that? Well, all these APIs relied heavily on Windows-native features; in fact,
Windows Forms was merely a wrapper around the Win32 API that has accompanied
Windows since its early days. Because .NET Core is multiplatform, it would be a
tremendous effort to have versions of these APIs for all supported platforms. But of course,
in no way does this mean that it won't happen; it's just that it hasn't happened yet.

With .NET Core, a host machine only needs a relatively small bootstrap code to run an
application; the app itself needs to include all the reference libraries that it needs to operate.
Interestingly, it is possible to compile a .NET Core application to native format, thereby
producing a machine-specific executable that includes in it all the dependencies, and can
even be run in a machine without the .NET Core bootstrapper.

https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://icanhasdot.net/Stats
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
https://www.nuget.org/packages/System.Collections
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net
http://packagesearch.azurewebsites.net

Getting Started with ASP.NET Core Chapter 1

[12]

As I said previously, .NET Core was written from scratch, which unfortunately means that
not all the APIs that we were used to have been ported. Specifically, as of version 3, the
following features are still missing:

ASP.NET Web Forms (System.Web.UI)
XML Web Services (System.Web.Services)
LINQ to SQL (System.Data.Linq)
Windows Communication Foundation server-side classes
(System.ServiceModel)
Windows Workflow Foundation (System.Workflow and System.Activities)
.NET Remoting (System.Runtime.Remoting)
Active Directory/LDAP (System.DirectoryServices)
Enterprise Services (System.EnterpriseServices)
Email (System.Net.Mail)
XML and XSD (System.Xml.Xsl and System.Xml.Schema)
I/O ports (System.IO.Ports)
Managed Addin Framework (System.Addin)
Speech (System.Speech)
Configuration (System.Configuration); this one was replaced with a new
configuration API (Microsoft.Extensions.Configuration)
Windows Management Instrumentation (System.Management)
Windows Registry (Microsoft.Win32) in operating systems other than
Windows

This is by no means an exhaustive list. As you can see, there are a lot of features missing.
Still, it is quite possible to achieve pretty much whatever we need to, provided we do
things in a different way and handle the extra burden! Mind you, Windows Forms and
WPF are already supported on all platforms.

The following APIs are new or still around, and are safe to use:

MVC and Web API (Microsoft.AspNetCore.Mvc)
Entity Framework Core (Microsoft.EntityFrameworkCore)
Roslyn for code generation and analysis (Microsoft.CodeAnalysis)
All Azure APIs
Managed Extensibility Framework (System.Composition)
Text encoding/decoding and regular expression processing (System.Text)

Getting Started with ASP.NET Core Chapter 1

[13]

JSON serialization (System.Runtime.Serialization.Json)
Low-level code generation (System.Reflection.Emit)
Most of ADO.NET (System.Data, System.Data.Common,
System.Data.SqlClient, and System.Data.SqlTypes)
LINQ and Parallel LINQ (System.Linq)
Collections, including concurrent (System.Collections,
System.Collections.Generic, System.Collections.ObjectModel,
System.Collections.Specialized,
and System.Collections.Concurrent)
Threading, inter-process communication, and task primitives
(System.Threading)
Input/output, compression, isolated storage, memory-mapped files, pipes
(System.IO)
XML (System.Xml)
Windows Communication Foundation client-side classes
(System.ServiceModel)
Cryptography (System.Security.Cryptography)
Platform Invoke and COM Interop (System.Runtime.InteropServices)
Universal Windows Platform (Windows)
Event Tracing for Windows (System.Diagnostics.Tracing)
Data Annotations (System.ComponentModel.DataAnnotations)
Networking, including HTTP (System.Net)
Reflection (System.Reflection)
Maths and numerics (System.Numerics)
Reactive Extensions (System.Reactive)
Globalization and localization (System.Globalization, System.Resources)
Caching (including in-memory and Redis) (Microsoft.Extensions.Caching)
Logging (Microsoft.Extensions.Logging)
Configuration (Microsoft.Extensions.Configuration)

Again, this is not the full list, but you get the picture. These are just Microsoft APIs that are
made available for .NET Core; there are obviously thousands of others from different
vendors.

Getting Started with ASP.NET Core Chapter 1

[14]

And why are these APIs supported? Well, because they are specified
in .NET Standard, and .NET Core implements this standard! More on this
in a moment.

In .NET Core, there is no longer a Global Assembly Cache (GAC), but there is a
centralized location (per user) for storing NuGet packages,
called %HOMEPATH%.nugetpackages, which prevents you from having duplicated
packages locally for all of your projects. .NET Core 2.0 introduced the runtime store, which
is somewhat similar to GAC. Essentially, it is a folder on a local machine where some
packages are made available and compiled for the machine's architecture. Packages stored
there are never downloaded from NuGet; they are instead referenced locally and do not
need to be included with your app. A welcome addition, I have to say! You can read more
about metapackages and the runtime store at https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/
aspnet/​core/​fundamentals/ ​metapackage.

As of ASP.NET Core 2.1, a change was made from the previous version: whereas before
there was a dependency on the Microsoft.AspNetCore.All metapackage, now the
dependency is on Microsoft.AspNetCore.App. To cut a long story short, this one has far
fewer dependencies. Specifically, the following dependencies have been removed:

Microsoft.Data.Sqlite

Microsoft.Data.Sqlite.Core

Microsoft.EntityFrameworkCore.Sqlite

Microsoft.EntityFrameworkCore.Sqlite.Core

Microsoft.Extensions.Caching.Redis

Microsoft.AspNetCore.DataProtection.AzureStorage

Microsoft.Extensions.Configuration.AzureKeyVault

Microsoft.AspNetCore.DataProtection.AzureKeyVault

Microsoft.AspNetCore.Identity.Service.AzureKeyVault

Microsoft.AspNetCore.AzureKeyVault.HostingStartup

Microsoft.AspNetCore.ApplicationInsights.HostingStartup

Visual Studio templates for .NET Core since version 3.0 already reference this new
metapackage, and in general, things should just work; you may need to add explicit
references to one of these missing packages, if you use it.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/metapackage

Getting Started with ASP.NET Core Chapter 1

[15]

Interestingly, since version 3, you no longer need to reference this metapackage in your
.csproj file; it is referenced by default when you reference the .NET Core 3 framework.
The following is a minimum .NET Core 3 .csproj file:

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp3.1</TargetFramework>
 </PropertyGroup>
</Project>

For .NET Core 3.1, you should replace netcoreapp3.0 with netcoreapp3.1. In a
moment, we will learn more about this.

NuGet packages are at the heart of .NET Core, and mostly everything needs to be obtained
from NuGet. Even projects in the same Visual Studio solution are referenced from one
another as NuGet packages. When using .NET Core, you will need to explicitly add the
NuGet packages that contain the functionality that you wish to use. It is likely that you may
come across some of the following packages in some of your projects:

Package Purpose
Microsoft.AspNetCore.Authentication.JwtBearer JWT authentication
Microsoft.AspNetCore.Mvc.TagHelpers Tag helpers

Microsoft.EntityFrameworkCore Entity Framework
Core

Microsoft.Extensions.Caching.Memory In-memory caching
Microsoft.Extensions.Caching.Redis Redis caching

Microsoft.Extensions.Configuration General configuration
classes

Microsoft.Extensions.Configuration.EnvironmentVariables Configuration from
environment variables

Microsoft.Extensions.Configuration.Json Configuration from
JSON files

Microsoft.Extensions.Configuration.UserSecrets

Configuration from
user secrets (https:/
/​docs. ​microsoft.
com/ ​en-​us/
aspnet/ ​core/
security/ ​app-
secrets)

Microsoft.Extensions.Configuration.Xml Configuration in XML
Microsoft.Extensions.DependencyInjection Built-in DI framework
Microsoft.Extensions.Logging Logging base classes

https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets

Getting Started with ASP.NET Core Chapter 1

[16]

Microsoft.Extensions.Logging.Console Logging to the console
Microsoft.Extensions.Logging.Debug Logging to debug
System.Collections Collections

System.ComponentModel

Classes and interfaces
used in the definition
of components and
data sources

System.ComponentModel.Annotations
Data annotations for
validation and
metadata

System.Data.Common ADO.NET

System.Globalization Globalization and
localization APIs

System.IO Input/output APIs
System.Linq.Parallel Parallel LINQ
System.Net Networking APIs
System.Reflection Reflection

System.Security.Claims Security based upon
claims

System.Threading.Tasks Tasks implementation
System.Xml.XDocument XML APIs
System.Transactions Ambient transactions

Again, this not an exhaustive list, but you get the picture. You may not see references to all
of these packages, because adding one package that has dependencies will bring all these
dependencies along, and big packages have a lot of dependencies.

There are no more .exe files; now, all assemblies are .dll, which means that they need to
be run using the dotnet command-line utility. All .NET Core applications start with a
static Main method, as the .NET Framework Console and Windows Forms did, but now we
need the dotnet utility to run them. The dotnet tool is a very versatile tool, and can be
used to build, run, deploy, and restore NuGet packages, execute unit tests, and create
NuGet packages from a project. As I said, it is also possible to compile an assembly to the
native format, but we won't be covering that here.

.NET Core ships with built-in DI, logging, and a flexible configuration framework, which
allows you to plug in your own providers if you so wish. All of the new APIs (such as
Entity Framework Core and ASP.NET Core) use these services uniformly. For the very first
time, we can see a coherent behavior across APIs.

Getting Started with ASP.NET Core Chapter 1

[17]

Also, most productivity APIs, such as ASP.NET and Entity Framework, allow you to
replace the services they're built upon with customized versions, allowing you to make
them work exactly the way you want them to—provided, of course, that you know what
you are doing—and these services are generally based upon interfaces. Everything is much
more modular and transparent.

Unit testing got first-class citizenship in .NET Core. Most new APIs were designed with
testability in mind (think, for example, of the new in-memory provider for Entity
Framework Core), and the tooling (dotnet) has an explicit option for executing unit tests,
which can be written in any framework (currently, xUnit, NUnit, MbUnit, and MSTest,
among others, have released unit test frameworks compatible with .NET Core). We will
cover unit testing in Chapter 13, Understanding How Testing Works.

Next, let's look at the platforms that support .NET Core.

Supported platforms
.NET Core works on the following platforms:

Windows 7 SP1 or higher
Windows Server 2008 R2 SP1 or higher
Red Hat Enterprise Linux 7.2 or higher
Fedora 23 or higher
Debian 8.2 or higher
Ubuntu 14.04 LTS/16.04 LTS, or higher
Linux Mint 17 or higher
openSUSE 13.2 or higher
CentOS 7.1 or higher
Oracle Linux 7.1 or higher
macOS X 10.11 or higher

This covers all modern Windows, Linux, and macOS distributions (Windows 7 SP1 was
released in 2010). It may well work in other distributions, but these are the ones that have
been thoroughly tested by Microsoft.

Getting Started with ASP.NET Core Chapter 1

[18]

So, how does this work? It turns out that whenever you request a NuGet package that
needs native libraries that are not included in the operating system, these are also included
in the .nupkg archive. .NET Core uses Platform Invoke (P/Invoke) to call the operating-
system-specific libraries. This means that you do not have to worry about the process to be
located—adding a NuGet package and publishing the project is the same no matter what
the target operating system will be.

Keep in mind that platform independence is transparent to you, the developer—unless, of
course, you also happen to be a library author, in which case you may need to care about it.

Let's now see how the different frameworks that used to make up .NET are now supported.

Dependencies and frameworks
Inside a .NET Core project, you specify the frameworks that you wish to target. What are
these frameworks? Well, .NET Core itself, but the classic .NET Framework as well,
Xamarin, Universal Windows Platform (UWP), Portable Class Libraries (PCL), Mono,
Windows Phone, and more.

In the early days of .NET Core, you would either target .NET Core itself, or/as well as one
of these other frameworks. Now it is advisable to target standards instead. Now we have
.NET Standard, and the differences between the two are as follows:

.NET Standard is a specification (a contract) that covers which APIs a .NET
platform has to implement.
.NET Core is a concrete .NET platform and implements the .NET Standard.
The latest .NET Standard will always cover the highest .NET full framework
released.

David Fowler (https:/ ​/​twitter. ​com/ ​davidfowl) of Microsoft came up with the following
analogy:

interface INetStandard10
{
 void Primitives();
 void Reflection();
 void Tasks();
 void Collections();
 void Linq();
}

interface INetStandard11 : INetStandard10

https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl
https://twitter.com/davidfowl

Getting Started with ASP.NET Core Chapter 1

[19]

{
 void ConcurrentCollections();
 void InteropServices();
}

interface INetFramework45 : INetStandard11
{
 // Platform specific APIs
 void AppDomain();
 void Xml();
 void Drawing();
 void SystemWeb();
 void WPF();
 void WindowsForms();
 void WCF();
}

This should make it very easy to understand. As you can see, all .NET APIs that need
Windows (WPF, Windows Forms, Drawing) are only available in a specific platform (.NET
4.5), not a standard. Standards are for cross-platform functionality.

For more information, please refer to https:/ ​/​docs. ​microsoft. ​com/ ​en-
us/​dotnet/ ​articles/ ​standard/ ​library.

So instead of targeting a specific version, such as .NET 4.5.1, .NET Core 1.0, Mono,
Universal Windows Platform 10, you should target a .NET Standard. Your project is
guaranteed to work on all platforms that support that standard (or a higher one), either
existing or waiting to be created. You should try to keep your dependency to the lowest
standard possible to increase the number of platforms that your app will work on, if that is
important to you.

https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://docs.microsoft.com/en-us/dotnet/articles/standard/library

Getting Started with ASP.NET Core Chapter 1

[20]

The current mapping between the different .NET frameworks and the .NET Standard they
implement at the time this book was written is always available at https:/ ​/​github. ​com/
dotnet/​standard/ ​blob/ ​master/ ​docs/ ​versions. ​md.
.NET Core 2.0 and .NET Standard 2.0 were made available in August 2017, and now four
frameworks target .NET Standard 2.0:

.NET Framework full

.NET Core 2.x
Xamarin
Mono

.NET Core 3.0 was made available on September 2019 and with it .NET Standard 2.1.

You can have your dependencies specified per target or for all targets. In the former case,
all of the dependencies need to support all of the targets, and in the latter, we can have
different dependencies for each target. You'll probably want a mix of the two, with
common libraries as global dependencies and more specialized libraries specified only
where available. If you target more than one standard (or framework), then pay attention,
because you may have to resort to conditional definitions (#if) to target those features that
only exist in one of them. Let's see how.

The .NET Standard FAQ is available in GitHub at https:/ ​/​github. ​com/
dotnet/ ​standard/ ​blob/ ​master/ ​docs/ ​faq. ​md.

Targeting .NET Core or the full .NET framework
It is important that you know that you can target the full .NET framework in an ASP.NET
Core application! However, if you do this, you will lose the platform independence—that
is, you will only be able to run it on Windows.

By default, an ASP.NET Core project targets netcoreapp1.x, netcoreapp2.x, or
netcoreapp3.x, depending on whether you are targeting ASP.NET Core 1.x, 2.x, or 3.x,
but you can change it in the .csproj file. If you just want to target one framework, then
modify the TargetFramework element like this:

<TargetFramework>net461</TargetFramework>

https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md

Getting Started with ASP.NET Core Chapter 1

[21]

Or, if you want to target more than one, replace TargetFramework
with TargetFrameworks :

<TargetFrameworks>netcoreapp3.0;net461</TargetFrameworks>

For more information, please refer to the Microsoft documentation at https:/ ​/​docs.
microsoft.​com/​en- ​us/ ​dotnet/ ​core/ ​tools/ ​csproj.

For .NET Core and .NET Standard, you should use the following names in
TargetFramework or TargetFrameworks:

.NET Core/Standard Version Moniker

.NET Core 1 netcoreapp1.0

.NET Core 1.1 netcoreapp1.1

.NET Core 2 netcoreapp2.0

.NET Core 2.1 netcoreapp2.1

.NET Core 2.2 netcoreapp2.2

.NET Core 3.0 netcoreapp3.0

.NET Core 3.1 netcoreapp3.1

.NET Standard 1.0 netstandard1.0

.NET Standard 1.1 netstandard1.1

.NET Standard 1.2 netstandard1.2

.NET Standard 1.3 netstandard1.3

.NET Standard 1.4 netstandard1.4

.NET Standard 1.5 netstandard1.5

.NET Standard 1.6 netstandard1.6

.NET Standard 2.0 netstandard2.0

.NET Standard 2.1 netstandard2.1

Please see https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​dotnet/ ​standard/ ​frameworks for the up-
to-date list. Next, let's see how generic hosting works.

https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

Getting Started with ASP.NET Core Chapter 1

[22]

Understanding the generic host
Starting with version 3.0, ASP.NET Core is now bootstrapped using a generic host. This
means that it is not tied specifically to HTTP or any other web protocol, but it potentially
supports any kind of protocol, including low-level TCP. The templates have changed and
now the bootstrap looks something like this:

Host
 .CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });

We are now using the Host class to create an instance of a class that implements
IHostBuilder, not IWebHostBuilder, although the result is the same.

We can interfere in the bootstrap process by means of extension methods. Specifically, we
can configure the following:

Services registration
Logging
Configuration
Web hosting defaults (host, startup class)

Here is a full example of changing the configuration:

Host
 .CreateDefaultBuilder(args)
 .ConfigureHostConfiguration(builder =>
 {
 //host configuration (Kestrel or HTTP.sys)
 builder.Properties["key"] = "value";
 })
 .ConfigureAppConfiguration(builder =>
 {
 //app configuration
 builder.Add(new JsonConfigurationSource { Path =
 "./configuration.json", Optional = true });
 builder.Properties["key"] = "value";
 })
 .ConfigureLogging(builder =>
 {
 //add logging providers
 builder.AddConsole();
 })

Getting Started with ASP.NET Core Chapter 1

[23]

 .ConfigureServices(services =>
 {
 //register services
 services.AddSingleton<IMyService, MyService>();
 })
 .ConfigureWebHostDefaults(webBuilder =>
 {
 builder.ConfigureKestrel(options =>
 {
 //set Kestrel options
 });

 //set the startup class
 webBuilder.UseStartup<Startup>();
 })

It normally doesn't make sense to change the IHostLifetime of the application, because
this is tied to the type of the application we're building. The options we have are as follows:

ConsoleLifetime: The default, cross-platform host; listens to CTRL-C and
SIGINT, SIGTERM signals for stops
SystemdLifetime: For operating systems that use systemd, such as MacOS and
Linux; listens to SIGTERM signals
WindowsServiceLifetime: Only for Windows; listens to Windows service
events

It is the host's responsibility to call the IHostApplicationLifetime events when the
application has finished loading, is about to stop, or has stopped. You can read about it in
Chapter 18, gRPC and Other Topics.

Services registered in ConfigureServices will be available to be injected into the
Startup class's constructor, and will also be present in the services parameter passed to
its ConfigureServices method. The same goes for the logging providers and to the app
configuration. Next, let's move on to the MVC pattern.

Getting Started with ASP.NET Core Chapter 1

[24]

Understanding the MVC pattern
Let's go back to ASP.NET now. For those of you that are still working with Web Forms,
what is this MVC thing anyway, and where did it come from?

Let's face it: it was pretty easy to do terrible things in Web Forms, such as add lots of
sensitive code in the page (which wouldn't be compiled until the page was accessed by the
browser), adding complex business logic to a page class, having several megabytes of code
in View State going back and forth on every request, and so on. There was no mechanism at
all, other than the developer's discretion, to do things the right way. Plus, it was terrible to
unit test it, because it relied on browser submission (POST) and JavaScript to have things
working properly, such as binding actions to event handlers and submitted values to
controls. There had to be a different solution, and in fact, there was.

The model-view-controller (MVC) design pattern was defined in the late 1970s and early
1980s of the past century (scary, isn't it?). It was conceived as a way to properly separate
things that shouldn't conceptually be together, such as the code to render a user interface
(UI) and the code that contains the business logic and data access that will feed and control
that UI. In the MVC paradigm (and its offspring), we have controllers that expose public
actions. Inside each action, the controller applies any business logic it needs to and then
decides which view it should render, passing it enough information (the model) so that it
can do its job. A controller knows nothing about UI elements—it just takes the data and
execution context it needs to operate inside the action and goes from there. Likewise, a view
will not know anything about databases, web services, connection strings, SQL, and the
like—it just renders data, possibly making simple decisions about the way to do it. As for
the model, it's basically anything you want that contains the information required by the
view, including lists of records, static user information, and more. This strict separation
makes things much easier to manage, test, and implement. Of course, the MVC pattern is
not specific to the web—it can be used whenever this separation of concerns is useful, such
as when we have a UI and some code to control it.

The following diagram presents the relationship between views, controllers, and models:

Getting Started with ASP.NET Core Chapter 1

[25]

Image taken from https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/november/asp-net-single-page-applications-build-modern-responsive-web-apps-with-asp-net

MVC is normally associated with object-oriented programming (OOP), but there are
implementations in a myriad of languages, including JavaScript and PHP. The .NET MVC
implementation has the following basic characteristics:

Controller classes are either Plain Old CLR Objects (POCOs) or inherit from a
base class, Controller. Inheriting from Controller is not required (unlike in
previous versions), but it does make things slightly easier. Controller classes are
instantiated by the ASP.NET Core DI framework, which means they can have the
services they depend upon passed into them.
Actions are public methods in a controller; they can take parameters, both simple
types as well as complex ones (POCOs). MVC uses what is called model binding
to translate information sent from the browser (the query string, headers,
cookies, forms, DI, and other locations) into method parameters. The choice of
which method to invoke from which controller from the request URLs and
submitted parameters is achieved by a mix of a routing table, convention, and
helper attributes.
The model is sent from the controller to the view in the return of an action
method, and it can be basically anything (or nothing). Of course, action methods
for API calls do not return views, but can return a model together with an HTTP
status code. There are other ways to pass data to the view, such as the view bag,
which is essentially an untyped dictionary of data (a big bag); the difference
between the two is that the model is normally typed. A model is automatically
validated and bound to the action method parameters.

Getting Started with ASP.NET Core Chapter 1

[26]

Views consist of domain-specific language (DSL) files that are interpreted by a
view engine and turned into something that the browser can interpret, such as
HTML. ASP.NET Core features an extensible view engine framework, but
includes a single implementation, Razor. Razor offers a simple syntax that allows
developers to mix HTML and C# to get hold of the model passed in and make
decisions as to what to do with it. Views can be constrained by layouts (Web
Forms developers can think of layouts as master pages) and they can include
other partial views (similar to web user controls in Web Forms). A view for the
Razor view engine has the .cshtml extension, and cannot be accessed
directly—only as the result of an action invocation. Views can be precompiled so
that syntax errors are detected sooner.
Filters are used to intercept, modify, or fully replace the request; built-in filters
enable you to, for example, prevent access to unauthenticated users or redirect to
an error page in the event of an exception occurring.

Now, there are other patterns similar in purpose to MVC, such as model-view-presenter
(MVP) or model-view-ViewModel (MVVM). We will only focus on Microsoft's
implementation of MVC and its specifics. In particular, the version of MVC that ships with
ASP.NET Core is version 6, because it builds on version 5, which was previously available
for the .NET full framework, but both add and drop a couple of features. Because it now
sits on the new .NET Core framework, it is fully based on OWIN, so there's no more
Global.asax.cs file. More on this later on.

The way in which MVC is implemented in ASP.NET focuses on the following:

URLs: They are now more meaningful and Search Engine Optimization (SEO)
friendly.
HTTP verbs: Verbs now exactly state what the operation is supposed to do—for
example, GET is used for idempotent operations, POST for new contents, PUT for
full content updates, PATCH for partial content updates, and DELETE for
removals, among others.
HTTP status codes: These are used for returning operation result codes, which is
more important in the case of Web APIs.

For example, issuing a GET request to http://somehost/Product/120 is likely to return
a view for a product with an ID of 120, and a DELETE request for the same URL will
probably delete this product and return either an HTTP status code or a nice view
informing us of the fact.

Getting Started with ASP.NET Core Chapter 1

[27]

URLs and their binding to controllers and actions are configurable through routes, and it is
likely that this URL will be handled by a controller called ProductController and an
action method that is configured to handle GET or DELETE requests. Views cannot be
extracted from the URL because they are determined inside the action method.

We will cover Microsoft's implementation of MVC in depth in the following chapters. Of
course, being a .NET Core feature, all of its components are available as NuGet packages.
Some of the ones you will likely find are as follows:

Package Purpose
Microsoft.AspNetCore.Antiforgery Antiforgery APIs

Microsoft.AspNetCore.Authentication
Authentication base
classes

Microsoft.AspNetCore.Authentication.Cookies
Authentication through
cookies

Microsoft.AspNetCore.Authentication.JwtBearer JWT authentication
Microsoft.AspNetCore.Authorization Authorization APIs
Microsoft.AspNetCore.Diagnostics Diagnostics APIs
Microsoft.AspNetCore.Hosting Hosting base classes
Microsoft.AspNetCore.Identity Identity authentication

Microsoft.AspNetCore.Identity.EntityFrameworkCore
Identity with Entity
Framework Core as the
store

Microsoft.AspNetCore.Localization.Routing
Localization through
routing

Microsoft.AspNetCore.Mvc The core MVC features

Microsoft.AspNetCore.Mvc.Cors
Support for Cross-
Origin Request
Scripting (CORS)

Microsoft.AspNetCore.Mvc.DataAnnotations
Validation through data
annotations

Microsoft.AspNetCore.Mvc.Localization
Localization-based
APIs

Microsoft.AspNetCore.Mvc.TagHelpers
Tag helpers
functionality

Microsoft.AspNetCore.Mvc.Versioning Web API versioning
Microsoft.AspNetCore.ResponseCaching Response caching
Microsoft.AspNetCore.Routing Routing

Getting Started with ASP.NET Core Chapter 1

[28]

Microsoft.AspNetCore.Server.IISIntegration IIS integration
Microsoft.AspNetCore.Server.Kestrel Kestrel server

Microsoft.AspNetCore.Server.WebListener

(Microsoft.AspNetCore.Server.HttpSys in ASP.NET Core 2)

WebListener server
(now called HTTP.sys).
See https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/
aspnet/ ​core/
fundamentals/

servers/ ​httpsys.
Microsoft.AspNetCore.Session Session functionality

Microsoft.AspNetCore.StaticFiles
Ability to serve static
files

You may or may not need all these packages, but you should make yourself familiar with
them.

In ASP.NET Core 2.0, there was the Microsoft.AspNetCore.All NuGet
metapackage, and since 2.1 there is Microsoft.AspNetCore.App. The
former included lots of packages, so a decision was made to have another
metapackage with far fewer dependencies. Since version 2.1, all projects
will include Microsoft.AspNetCore.App, and you may need to add
other dependencies, such as SQLite, Redis, Azure Storage, and
ApplicationInsights. You can read a discussion about it at https:/ ​/
github. ​com/ ​aspnet/ ​Announcements/ ​issues/ ​287.

Next, let's see how context execution works.

Getting your context
You will probably remember the HttpContext class from ASP.NET. The current instance
of this class would represent the current context of execution, which included both the
request information and the response channel. It was ubiquitous, and even though in Web
Forms it was sometimes hidden, it was the way by which the web application
communicated with the client.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287
https://github.com/aspnet/Announcements/issues/287

Getting Started with ASP.NET Core Chapter 1

[29]

Of course, ASP.NET Core also has an HttpContext class, but there is a big difference: there
is no longer a Current static property that lets us get hold of the current context—instead,
the process is a bit more convoluted. Anyway, all of the infrastructure
classes—middleware, controllers, views, Razor pages, view components, tag helpers, and
filters—allow easy access to the current context. Those who don't can leverage the
IHttpContextAccessor interface through DI and get a pointer to the current context:

//this is required to register the IHttpContextAccessor
//services.AddHttpContextAccessor();

...

public MyType(IHttpContextAccessor httpContextAccessor)
{
 var httpContext = httpContextAccessor.HttpContext;
}

So, besides User, Request, and Response properties, which are mostly similar to their
pre-Core counterparts, we also have the following:

A Features collection, which exposes all of the features implemented by the
current hosting server (Kestrel, WebListener/HTTP.sys, and more).
A RequestServices property, which gives us access to the built-in DI
framework (more on this in the following chapters).
A TraceIdentifier property, which uniquely identifies a request in ASP.NET
Core 2.x; in earlier versions, we had to access this through a feature.
A Connection object, from which we can obtain relevant information about the
client connection, such as the client certificates, for example:

The Authentication object, giving easy access to security
primitives, such as sign in, sign out, deny, and more.
The Session object, which is implemented by the
ISessionFeature feature, and is exposed directly by the
HttpContext.
The ClientCertificate property contains any SSL certificate
sent by the client as part of the handshake protocol.

The context is a vital part of an ASP.NET Core application, as we will see.

Getting Started with ASP.NET Core Chapter 1

[30]

Working with the context
The main operations we will likely be doing with the context are as follows:

Reading values from the request
Writing to the response
Reading and writing cookies
Getting the current user
Getting the address of the remote user
Accessing the session
Accessing services from the DI framework

Here are some examples:

//writing to the response
HttpContext.Response.StatusCode = 200;
HttpContext.Response.ContentType = "text/plain";
HttpContext.Response.WriteAsync("Hello, World!");

//getting values from the request
var id = HttpContext.Request.Query["id"].Single();
var host = HttpContext.Request.Host;
var payload = HttpContext.Request.Form["payload"].SingleOrDefault();

//reading and writing cookies
var isAuthenticated = HttpContext.Request.Cookies["id"].Any();
HttpContext.Response.Cookies.Append("id", email);

//getting the current user
var user = HttpContext.User;

//getting the address of the remote user
var ip = HttpContext.Connection.RemoteIpAddress;

//accessing the session
HttpContext.Session.SetString("id", email);
var id = HttpContext.Session.GetString("id");

//getting services from DI
var myService = HttpContext.RequestServices.Get<IMyService>();

Essentially, everything we will be doing through constructs, such as MVC's controllers and
actions, are built around these and other simple HttpContext operations. The next topic
we will look at is the OWIN pipeline.

Getting Started with ASP.NET Core Chapter 1

[31]

Understanding the OWIN pipeline
Previous versions of ASP.NET had a very close relationship with Internet Information
Services (IIS), Microsoft's flagship web server that ships with Windows. In fact, IIS was the
only supported way to host ASP.NET.

Wanting to change this, Microsoft defined the Open Web Interface for .NET (OWIN)
specification, which you can read about at http:/ ​/​owin. ​org. In a nutshell, it is the standard
for decoupling server and application code, and for the execution pipeline for web requests.
Because it is just a standard and knows nothing about the web server (if any), it can be used
to extract its features.

.NET Core borrowed heavily from the OWIN specification. There are no more
Global.asax, web.config, or machine.config configuration files, modules, or
handlers. What we have is the following:

The bootstrap code in Program.Main declares a class that contains a convention-
defined method (Startup will be used if no class is declared).
This conventional method, which should be called Configure, receives a
reference to an IApplicationBuilder instance (it can take other services to be
injected from the service provider).
You then start adding middleware to the IApplicationBuilder; this
middleware is what will handle your web requests.

A simple example is in order. First, the bootstrap class, which is by default named
Program:

public class Program
{
 public static void Main(string [] args) =>
 CreateWebHostBuilder(args).Build().Run();

 public static IHostBuilder CreateHostBuilder(string [] args) =>
 Host
 .CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseStartup<Startup>();
 });
}

http://owin.org
http://owin.org
http://owin.org
http://owin.org
http://owin.org
http://owin.org
http://owin.org

Getting Started with ASP.NET Core Chapter 1

[32]

Things can get more complicated, but don't worry too much about it now. Later on, I will
explain what this all means. For the time being, it's enough to know that we are leveraging
a Host to host Kestrel (the default host), and passing a conventional class called Startup.
This Startup class looks like this (in a simplified way):

public class Startup
{
 public IConfiguration Configuration { get; }

 {
 this.Configuration = configuration;
 }

 public void Configure(IApplicationBuilder app)
 {
 app.Run(async (context) => {
 await context.Response.WriteAsync("Hello, OWIN World!");
 }
 }
}

There are a couple of things here that deserve an explanation. First, you will notice that the
Startup class does not implement any interface or inherit from an explicit base class. This
is because the Configure method does not have a predefined signature, other than its
name, taking as its first parameter an IApplicationBuilder. For example, the following
is also allowed:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env) {
... }

This version even gives you more than what you asked for. But I digress.

The IApplicationBuilder interface defines a Run method. This method takes a
RequestDelegate parameter, which is a delegate definition that accepts an HttpContext
(remember that?) as its sole parameter and returns a Task. In my example, we made it
asynchronous by adding async and await keywords to it, but it need not be so. All you
have to do is make sure you extract whatever you want from the HttpContext and write
whatever you want to it—this is your web pipeline. It wraps both the HTTP request and
response objects, and we call it middleware.

The Run method is a full-blown pipeline on its own, but we can plug other steps
(middleware) into the pipeline by using the (pun intended) Use method:

app.Use(async (context, next) =>
{

Getting Started with ASP.NET Core Chapter 1

[33]

 await context.Response.WriteAsync("Hello from a middleware!");
 await next();
});

This way, we can add multiple steps, and they all will be executed in the order they were
defined:

app.Use(async (context, next) =>
{
 await context.Response.WriteAsync("step 1!");
 await next();
});

app.Use(async (context, next) =>
{
 await context.Response.WriteAsync("step 2!");
});

Just keep in mind that the order does matter here; the next example shows this:

app.Use(async (context, next) =>
{
 try
 {
 //step 1
 await next();
 }
 catch (Exception ex)
 {
 await context.Response.WriteAsync($"Exception {ex.Message} was
 caught!");
 }
});

app.Use(async (context, next) =>
{
 //step 2
 throw new Exception();
});

Because the first step was added before the second, it wraps it, so any exceptions thrown by
step two will be caught by step one; if they were added in a different order, this wouldn't
happen.

The Use method takes an HttpContext instance as its parameter and returns a
Func<Task>, which is normally a call to the next handler, so that the pipeline proceeds.

Getting Started with ASP.NET Core Chapter 1

[34]

We could extract the lambda to its own method, like this:

async Task Process(HttpContext context, Func<Task> next)
{
 await context.Response.WriteAsync("Step 1");
 await next();
}

app.Use(Process);

It is even possible to extract the middleware to its own class and apply it using the generic
UseMiddleware method:

public class Middleware
{
 private readonly RequestDelegate _next;

 public Middleware(RequestDelegate next)
 {
 this._next = next;
 }
 public async Task InvokeAsync(HttpContext context)
 {
 await context.Response.WriteAsync("This is a middleware class!");
 }
}

//in Startup.Configure
app.UseMiddleWare<Middleware>();

In this case, the constructor needs to take as its first parameter a pointer to the next
middleware in the pipeline, as a RequestDelegate instance.

I think by now you've got the picture: OWIN defines a pipeline to which you can add
handlers which are then called in sequence. The difference between Run and Use is that the
former ends the pipeline—that is, it won't call anything after itself.

The following diagram (from Microsoft) clearly shows this:

Getting Started with ASP.NET Core Chapter 1

[35]

Image taken from https://docs.microsoft.com/en-us/dotnet/architecture/blazor-for-web-forms-developers/middleware

The first middleware, in a way, wraps all of the next ones. For example, imagine that you
want to add exception handling to all the steps in the pipeline. You could do something like
this:

app.Use(async (context, next) =>
{
 try
 {
 //log call
 await next(context);
 }
 catch (Exception ex)
 {
 //do something with the exception
 }
 await context.Response.WriteAsync("outside an exception handler");
});

The call to next() is wrapped in a try...catch block, so any exception that may be
thrown by another middleware in the pipeline, as long as it was added after this one, will
be caught.

You can set the status code of a response, but be aware that, if an
exception is thrown, it will be reset to 500 Server Error!

Getting Started with ASP.NET Core Chapter 1

[36]

You can read more about Microsoft's implementation of OWIN at https:/ ​/​docs.
microsoft.​com/​en- ​us/ ​aspnet/ ​core/ ​fundamentals/ ​owin.

Why is OWIN important? Well, because ASP.NET Core (and its MVC implementation) are
built on it. We will see later that in order to have an MVC application, we need to add the
MVC middleware to the OWIN pipeline in the Startup class's Configure method,
normally as shown in the following code, using the new endpoint routing and the default
route:

 {
 endpoints.MapDefaultControllerRoute();
});

As you know, this book talks essentially about the MVC pattern, but we could go equally
with this kind of middleware, without any MVC stuff; it's just that it would be much harder
to tackle complexity, and MVC does a very good job of that.

OWIN is essentially ASP.NET Core middleware. Everything that we add in a UseXXX
extension is middleware. Let's look at how we can host an ASP.NET Core project next.

Hosting ASP.NET Core
You probably noticed, when we talked about OWIN, that I mentioned that the sample app
was hosted in Kestrel. Kestrel is the name of a platform-independent web server fully
written in .NET Core (of course, using the native libraries of your operating system). You
need to host your web application somewhere, and .NET Core offers the following options:

Kestrel: Platform independent, your host of choice if you want to have your code
run on any platform.
WebListener: A Windows-only host, offering significant performance
advantages over Kestrel, but also has the disadvantage of needing Windows;
starting with ASP.NET Core 2, it is now called HTTP.sys.
IIS: As in the past, you can continue to host your web app in IIS, on Windows,
benefiting from the old pipeline and configuration tools.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin

Getting Started with ASP.NET Core Chapter 1

[37]

A server in this context is merely an implementation of IServer, an interface defined in the
Microsoft.AspNetCore.Hosting NuGet package. This defines the base contract that a
server offers, which can be described as follows:

A Start method, where all the fun begins. It is responsible for creating the
HttpContext, setting up the Request and Response properties, and calling the
conventional Configure method.
A collection of Features that are supported by the implementation. There are
dozens of features, but at the very least, a server needs to support
IHttpRequestFeature and IHttpResponseFeature.

Each of these server implementations is provided in NuGet packages:

Server Package
Kestrel Microsoft.AspNetCore.Server.Kestrel

WebListener/HTTP.sys Microsoft.AspNetCore.Server.WebListener(Microsoft.AspNetCore.Server.HttpSys from ASP.NET Core 2)
IIS Microsoft.AspNetCore.Server.IISIntegration

IIS cannot be used on its own. IIS is, of course, a Windows-native application and is
therefore not available through NuGet, but the
Microsoft.AspNetCore.Server.IISIntegration package includes the IIS ASP.NET
Core module, which needs to be installed in IIS so that it can run ASP.NET Core apps with
Kestrel (WebListener is not compatible with IIS). There are, of course, other server
implementations by third-party providers (take, as an example, Nowin, available at
https:/​/​github.​com/ ​Bobris/ ​Nowin). The ASP.NET Core module acts as a reverse proxy,
receiving requests through IIS and then calling ASP.NET Core, in the same process space.
Other reverse proxies are Apache and NGINX. Reverse proxies are useful because they
provide additional features that are not part of ASP.NET Core; they accept requests, do
their magic, and forward the requests to ASP.NET Core so that it too can do its magic.

So, what is there to know about these, and how can we select one of these hosting servers?

https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin
https://github.com/Bobris/Nowin

Getting Started with ASP.NET Core Chapter 1

[38]

Kestrel
Kestrel is the default, multiplatform, web server. It offers acceptable performance, but lacks
lots of features that are expected in real life:

No support for Windows authentication (as time passes, this becomes less of a
problem)
No direct file transmission
No strong security protection (large requests, and more)

From this, it should be clear that Kestrel is not meant to be used in production unless it is
sitting behind a reverse proxy (such as NGINX, Apache, or IIS). It is configured at bootstrap
through the UseKestrel extension method, and if you need to configure its options, you
will need to supply an additional lambda:

Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder
 .UseStartup<Startup>()
 .UseKestrel(opt => { opt.Limits.MaxConcurrentConnections =
 10; })
 });

You can read more about it at https:/ ​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/
fundamentals/​servers/ ​kestrel.

WebListener/HTTP.sys
This one is for Windows only, as it is a wrapper around HTTP.sys, the Windows
subsystem that handles web requests. It offers by far the best performance, supports
HTTP/2, WebSockets, Windows Authentication, direct file transmission, port sharing,
response caching, and mostly anything that you can think of. The disadvantage, of course,
is that it requires Windows 7 or Windows Server 2008 R2 and later. At bootstrap, use the
UseWebListener extension method to add it to the host builder, possibly with a
configuration parameter:

.UseWebListener(opt =>
{
 opt.ListenerSettings.Authentication.AllowAnonymous = false;
})

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel

Getting Started with ASP.NET Core Chapter 1

[39]

Since ASP.NET Core 2.0, WebListener is called HTTP.sys.

IIS
We already know about IIS. IIS can be used as a reverse proxy for Kestrel, or to add
features that the host does not support, such as Windows Authentication. For that, we
should include support for IIS by calling UseIISIntegration. Here, the configuration
should be done through the Web.config file, which in this case is a requirement (the
Visual Studio template will add this file to the root of your project).

NGINX
NGINX (pronounced EngineX) is a UNIX and Linux reverse proxy that can be used with
ASP.NET Core. We will talk a bit more about NGINX in Chapter 19, Application
Deployment.

Apache
Apache, the popular UNIX and Linux server (which actually also runs in Windows) can
also act as a reverse proxy. You can find more information in Chapter 17, Deployment.

Configuration
As we've seen, usually, the server is chosen using a Host instance. As a minimum, you
need to tell it which server to use and what the root directory is:

Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder
 .UseStartup<Startup>()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory());
 });

Getting Started with ASP.NET Core Chapter 1

[40]

Actually, the calls to UseKestrel and
UseContentRoot(Directory.GetCurrentDirectory()) are already done by
ConfigureWebHostDefaults, so you can skip them.

Features
Different servers will offer different features. Essentially, a feature in this context is just a
configuration that is available per request and offers properties that can be inspected and
changed. Here are some of the features that are included out of the box:

Interface Feature

IExceptionHandlerPathFeature Access the last error that occurred and the request path, if we
are using centralized exception handling.

IEndpointFeature Access to endpoint routing.

IHttpRequestFeature Access to the request object and collections (form, headers,
cookies, query strings, and more).

IHttpResponseFeature Access to the response object and collections (headers,
cookies, content, and more).

IHttpAuthenticationFeature Authentication based on claims and principals.

IHttpUpgradeFeature
Support for HTTP upgrades (see https:/ ​/​tools. ​ietf.
org/ ​html/ ​rfc2616. ​html#section- ​14.​42).

IHttpBufferingFeature Response buffering.
IHttpConnectionFeature Properties for local host calls.

IHttpRequestLifetimeFeature Detecting whether a client has disconnected, and the ability
to actually disconnect it.

IHttpResetFeature Used to send reset messages to protocols that support it
(HTTP/2).

IHttpSendFileFeature The ability to directly send a file as a response.
IHttpWebSocketFeature WebSockets.
IHttpRequestIdentifierFeature Uniquely identifying requests.
IHttpsCompressionFeature Access to request and response compression.
IFormFeature Access to request form data.

ISessionFeature Supplies the session functionality. Needs to be added by the
session middleware; not available otherwise.

IQueryFeature Access query string.
ITlsConnectionFeature Retrieving client certificates.
ITlsTokenBindingFeature Working with TLS tokens.
IStatusCodePagesFeature Redirecting to errors based on the HTTP status code.

https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42
https://tools.ietf.org/html/rfc2616.html#section-14.42

Getting Started with ASP.NET Core Chapter 1

[41]

This is by no means the full list, as it may change, depending on your exact configuration
(your choice of host, and so on). There is no base interface for features. All of these features
can be obtained through the Features property of the Server or from the
HttpContext by requesting its interface:

var con = HttpContext.Features.Get<IHttpConnectionFeature>();

This is one way to obtain access to the functionality that the feature supplies, but for some
features, there are workarounds. For example, the ASP.NET Session object can be
obtained directly from the HttpContext. Features are essentially how the HttpContext
class gets the behavior it exposes; for example, request and response objects, sessions, and
more. Middleware classes can provide their own features so that they are available
downstream by adding them directly to the Features collection:

HttpContext.Features.Set(new MyFeature());

There can be only one feature per type—for example, one per IMyFeature1, one per
IMyFeature2, and so on.

Launch configuration
Visual Studio can have more than one configuration per project, meaning that it can launch
your project in several ways, and there's a toolbar button that shows just this fact:

Getting Started with ASP.NET Core Chapter 1

[42]

In particular, we can choose whether to launch our web application using IIS (or IIS
Express) as the host, or use whatever is specified in the code (Kestrel or HTTP.sys). The
launch settings are stored in the PropertieslaunchSettings.json file, which is created
by default by Visual Studio. This file has the following (or similar) contents:

{
 "iisSettings": {
 "windowsAuthentication": true,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:24896/",
 "sslPort": 0
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "Web": {
 "commandName": "Project",
 "launchBrowser": true,
 "launchUrl": "http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

Where I have "Web", you should have the name of your application.

Here, we can see the default ports plus the environment name to be used (to be discussed
shortly). This file does not need to be changed by hand (although it can be); you can see it
in visual form using the project properties:

Getting Started with ASP.NET Core Chapter 1

[43]

Let's now look at a special case in which the port needs to be set dynamically.

Setting the listen port and address
There may be a need for setting the listen port—for example, you already have one or more
servers running on the same machine. When this happens, you can either pick one port that
you are sure is not being used or you can let ASP.NET Core pick one for you. Setting the
listen address is also relevant if you want to restrict where you want to accept requests
from. There are many ways to achieve this; let's go through them one by one.

By default, ASP.NET Core accepts requests at the following locations:

http://localhost:5000

https://localhost:5001 (when using a local certificate)

Using the command line
When you start your application using dotnet, you can pass the --urls parameter to
specify the URLs to which it should listen:

dotnet run --urls "http://localhost:5000;https://localhost:5001"

Getting Started with ASP.NET Core Chapter 1

[44]

This, of course, is static. Here you specify that you are binding HTTP to localhost only,
on port 5000 and HTTPS to localhost too, on port 5001. If you want to bind to any host,
you should use 0.0.0.0 instead of localhost.

This approach is a good one for Docker deployments. Let's now see how to do this, using
environment variables.

Using environment variables
Another alternative is to use the ASPNETCORE_URLS environment variables. It is basically
the same as the previous approach:

//Linux, MacOS
export ASPNETCORE_URLS="http://localhost:5000;https://localhost:5001"

//Windows
set ASPNETCORE_URLS="http://localhost:5000;https://localhost:5001"

This is also OK for Docker.

Next, let's look at how to use the configuration file for Visual Studio.

Using launchSettings.json
The launchSettings.json is where Visual Studio keeps the configuration details for
running a web solution. Its structure looks like this:

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:7788",
 "sslPort": 44399
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },

Getting Started with ASP.NET Core Chapter 1

[45]

 "Web": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "applicationUrl": "https://localhost:5001;http://localhost:5000"
 }
 }
}

You can see where the URLs, address, and port are specified in bold, and where you can
change them. For IIS Express, you need to edit
the .vs\config\applicationhost.config, located inside the root solution folder.

This approach is, of course, only for local development.

Using code
We can also specify the listen addresses in code, which is more useful for dynamic cases,
where we want to build the address dynamically:

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host
 .CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder
 .UseStartup<Startup>()
 .UseUrls("http://localhost:5000",
 "https://localhost.5001");
 });

Setting ports dynamically
What if we need to use a dynamically assigned port? This may occur when the port that
we'd like to use is already taken. ASP.NET Core fully supports this by setting the port to 0,
but this needs to be done at the actual host level. This only works with Kestrel; HTTP.sys
does not support this. Let's see how we can do this:

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host
 .CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {

Getting Started with ASP.NET Core Chapter 1

[46]

 webBuilder
 .UseStartup<Startup>()
 .UseKestrel(options =>
 {
 options.ListenAnyIP(0);
 });
 });

If you want to find out which addresses we are using, you must make use of a feature
called IServerAddressesFeature. One way to do this is to have a look at it in the
Configure method, but only after the application starts:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env,
IHostApplicationLifetime events)
{
 events.ApplicationStarted.Register(() =>
 {
 var feature = app.ServerFeatures.Get<IServerAddressesFeature>();
 var addresses = feature.Addresses;
 });

 //rest goes here
}

This example illustrates two concepts: server features and host application events. I register
a handler to the ApplicationStarted event, and when it is raised, I ask for a server
feature, IServerAddressesFeature, that contains all the addresses, including ports, that
my application is currently bound to. From here, I can see the port that was chosen.

We read about server features in this chapter. Application events are
discussed in Chapter 18, gRPC and Other Topics.

Now that we've learned the basics of hosting, let's now focus on another key aspect of
ASP.NET Core: the inversion of control and the DI framework pattern.

Inversion of control and dependency
injection
Inversion of control (IoC) and dependency injection (DI) are two related but different
patterns. The first tells us that we should not depend on actual, concrete classes, but instead
on abstract base classes or interfaces that specify the functionality we're interested in.

Getting Started with ASP.NET Core Chapter 1

[47]

Depending on its registrations, the IoC framework will return a concrete class that matches
our desired interface or abstract base class. DI, on the other hand, is the process by which,
when a concrete class is built, the dependencies it needs are then passed to its constructor
(constructor injection, although there are other options). These two patterns go very well
together, and throughout the book, I will use the terms IoC or DI container/framework to
mean the same thing.

.NET always had support for a limited form of IoC; Windows Forms designers used it at
design time to get access to the current designer's services, for example, and Windows
Workflow Foundation also used it to get registered extensions at runtime. But in .NET
Core, Microsoft centralized it and made it a first-class citizen of the ecosystem. Now,
virtually everything is dependent on the IoC and DI framework. It is made available in the
Microsoft.Extensions.DependencyInjection NuGet package.

An IoC and DI container allow services (classes) to be registered and accessed by their
abstract base class or an interface that they implement. Application code does not need to
care about the actual class that implements the contract, and this makes it very easy to
switch the actual dependencies in the configuration or at runtime. Other than that, it also
injects dependencies into the actual classes that it is building. Say, for example, you have
this scenario:

public interface IMyService
{
 void MyOperation();
}

public interface IMyOtherService
{
 void MyOtherOperation();
}

public class MyService : IMyService
{
 private readonly IMyOtherService _other;

 public MyService(IMyOtherService other)
 {
 this._other = other;
 }
 public void Operation()
 {
 //do something
 }
}

Getting Started with ASP.NET Core Chapter 1

[48]

If you register a MyService class with the DI container, then when it builds an actual
instance, it will know that it will also need to build an instance of IMyOtherService to
pass to the MyService constructor, and this will cascade for every dependency in the
actual IMyOtherService implementation.

The Host, when it is building the host, initializes an IServiceCollection instance, which
is then passed to the Startup class's ConfigureServices method. This is a conventional
method that should be used for our own registrations.

Now, a service registration has three components:

The type under which it will be registered (the unique key of the registration)
Its lifetime
The actual instance factory

A lifetime can be one of the following:

Scoped: A new instance of the service will be created for each web request (or
scope), and the same instance will always be returned for the same request
(scope) whenever we ask the DI framework for it.
Singleton: The instance to be created will be kept in memory, and it will always
be returned.
Transient: A new instance will be created whenever it is requested.

The instance factory can be one of the following:

An actual instance, which is always regarded as a Singleton; of course, this
cannot be used with the Transient or Scoped lifetimes
A concrete Type, which will then be instantiated as needed
A Func<IServiceProvider, object> delegate that knows how to create
instances of the concrete type after receiving a reference to the DI container

You register services and their implementations through
the ConfigureServices method's services parameter, which is an
IServiceCollection implementation:

//for a scoped registration
services.Add(new ServiceDescriptor(typeof(IMyService), typeof(MyService),
ServiceLifetime.Scoped);

//for singleton, both work
services.Add(new ServiceDescriptor(typeof(IMyService), typeof(MyService),
 ServiceLifetime.Singleton);

Getting Started with ASP.NET Core Chapter 1

[49]

services.Add(new ServiceDescriptor(typeof(IMyService), newMyService());

//with a factory that provides the service provider as a parameter, from
//which you can retrieve //other services
services.Add(new ServiceDescriptor(typeof(IMyService), (serviceProvider) =>
 new MyService(), ServiceLifetime.Transient);

There are several extension methods that allow us to do registrations; all of the following
are identical:

services.AddScoped<IMyService, MyService>();
services.AddScoped<IMyService>(sp =>
 new MyService((IMyOtherService) sp.GetService
 (typeof(IMyOtherService))));
services.AddScoped(typeof(IMyService), typeof(MyService));
services.Add(new ServiceDescriptor(typeof(IMyService), typeof(MyService),
ServiceLifetime.Scoped));

The same goes for all other lifetimes.

The DI container also supports generic types—for example, if you register an open generic
type, such as MyGenericService<T>, you can ask for a specific instance, such as
MyGenericService<ServiceProviderOptions>:

//register an open generic type
services.AddScoped(typeof(MyGenericService<>));

//build the service provider
var serviceProvider = services.BuildServiceProvider();

//retrieve a constructed generic type
var myGenericService = serviceProvider.GetService
<MyGenericService<string>>();

It is possible to traverse an IServiceCollection object to see what's already registered. It
is nothing but a collection of ServiceDescriptor instances. If we want, we can access
individual registrations and even replace one for another.

It is also possible to remove all registrations for a certain base type or interface:

services.RemoveAll<IMyService>();

The RemoveAll extension method is available on
the Microsoft.Extensions.DependencyInjection.Extensions namespace.

Getting Started with ASP.NET Core Chapter 1

[50]

One very important thing to bear in mind is that any services that
implement IDisposable and are registered for either the Scoped or the
Transient lifetimes will be disposed of at the end of the request.

The DI framework has the concept of scopes, to which scoped registrations are bound. We
can create new scopes and have our services associated with them. We can use the
IServiceScopeFactory interface, which is automatically registered and it allows us to do
things like this:

var serviceProvider = services.BuildServiceProvider();
var factory = serviceProvider.GetService<IServiceScopeFactory>();

using (var scope = factory.CreateScope())
{
 var svc = scope.ServiceProvider.GetService<IMyService>();
}

Any scope-bound service returned from the service provider inside the CreateScope inner
scope is destroyed with the scope. Interestingly, if any scope-registered service implements
IDisposable, then its Dispose method will be called at the end of the scope.

You need to keep a few things in mind:

The same Type can be registered multiple times, but only for the same lifetime.
You can have several implementations registered for the same Type, and they
will be returned in a call to GetServices.
Only the last registered implementation for a given Type is returned
by GetService.
You cannot register a Singleton service that takes a dependency that is Scoped,
as it wouldn't make sense; by definition Scoped changes every time.
You cannot pass a concrete instance to a Scoped or Transient registration.
You can only resolve, from the factory delegate, services that have themselves
been registered; the factory delegate, however, will only be called after all
services have been registered, so you do not need to worry about the registration
order.
The resolution will return null if no service from the given Type is registered;
no exception will be thrown.
An exception will be thrown if a registered type has on its constructor a
nonresolvable type—that is, a type that is not registered on the DI provider.

Getting Started with ASP.NET Core Chapter 1

[51]

Several .NET Core APIs supply extension methods that perform their registrations—for
example, AddMvc , AddDbContext or AddSession. By default, ASP.NET Core's bootstrap
automatically registers the following services:

Service Type
Microsoft.AspNetCore.Hosting.Builder.IApplicationBuilderFactory

Microsoft.AspNetCore.Hosting.IWebHostEnvironment

Microsoft.AspNetCore.Hosting.IStartup

Microsoft.AspNetCore.Hosting.IStartupFilter

Microsoft.AspNetCore.Hosting.Server.IServer

Microsoft.AspNetCore.Http.IHttpContextFactory

Microsoft.Extensions.Configuration.IConfiguration

Microsoft.Extensions.Hosting.IHostApplicationLifetime

Microsoft.Extensions.Logging.ILogger<T>

Microsoft.Extensions.Logging.ILoggerFactory

Microsoft.Extensions.Logging.ILoggerFactory

Microsoft.Extensions.ObjectPool.ObjectPoolProvider

Microsoft.Extensions.Options.IConfigureOptions<T>

Microsoft.Extensions.Options.IOptions<T>

Microsoft.Extensions.Options.IConfigureOptions<T>

Microsoft.Extensions.Options.IOptionsSnapshot<T>

Microsoft.Extensions.Options.IOptionsMonitor<T>

Microsoft.Extensions.Options.IOptionsChangeTokenSource<T>

Microsoft.Extensions.Options.IOptionsFactory<T>

System.Diagnostics.DiagnosticListener

System.Diagnostics.DiagnosticListener

System.Diagnostics.DiagnosticSource

After all the registrations are done, eventually, the actual dependency framework will be
built from the IServiceCollection instance. Its public interface is none other than the
venerable IServiceProvider, which has been around since .NET 1.0. It exposes a single
method, GetService, which takes a Type as its single parameter to resolve.

Getting Started with ASP.NET Core Chapter 1

[52]

There are, however, a few useful generic extension methods available in the
Microsoft.Extensions.DependencyInjection package and namespace:

GetService<T>(): Returns an instance of the service type that has already been
cast appropriately, if one is registered, or null otherwise
GetRequiredService<T>(): Tries to retrieve a registration for the given service
type, and throws an exception if none is found
GetServices<T>(): Returns all of the services whose registration keys match (is
identical, implements, or is a subclass) to the given service key

You can register multiple services for the same Type, but only the last that is registered will
be retrievable using GetService(). Interestingly, all of them will be returned using
GetServices()!

Keep in mind that the latest registration for a Type overrides any previous
one, meaning that you will get the latest item when you use a
GetService, but all of the registrations are returnable by GetServices.

Although the most common usage will probably be constructor injection, where the DI
framework creates a concrete type passing it all of its dependencies in the constructor, it is
also possible to request at any given time an instance of the service we want, by using a
reference to a IServiceProvider, like the one available in the following context:

var urlFactory = this.HttpContext.RequestServices.
GetService<IUrlHelperFactory>();

This is called the service locator pattern and some people consider it an antipattern. I won't
go over it here, as I believe this discussion is pointless.

The IServiceProvider instance itself is registered on the DI provider, making it a
possible candidate for injection!

If, by any chance, you want to build an instance of a type that takes on its constructor
services that should come from the DI provider, you can use the
ActivatorUtilities.CreateInstance method:

var instance = ActivatorUtilities.CreateInstance<MyType>(serviceProvider);

Or, if we have a reference to a Type, you can use the following:

MyType instance = (MyType)
ActivatorUtilities.CreateInstance(serviceProvider, typeof(MyType));

Getting Started with ASP.NET Core Chapter 1

[53]

Finally, I need to talk about something else. People have been using third-party DI and IoC
frameworks for ages. .NET Core, being as flexible as it is, certainly allows us to use our
own, which may offer additional features to what the built-in one provides. All we need is
for our DI provider of choice to also expose an IServiceProvider implementation; if it
does, we just need to return it from the ConfigureServices method:

public IServiceProvider ConfigureServices(IServiceCollection services)
{
 //AutoFac
 var builder = new ContainerBuilder();
 //add registrations from services
 builder.Populate(services);
 return new AutofacServiceProvider(builder.Build());
}

AutofacServiceProvider also implements IServiceProvider, and therefore we can
return it from ConfigureServices and have it as replacement for the out-of-the-box DI
container.

All in all, it's very good to see IoC and DI. This is just the basics; we will talk about DI in
pretty much all of the rest of this book.

Validating dependencies
Normally, you inject dependencies to controllers (and other components) through their
constructors. The problem is, we may not know that a service that we depend upon is
missing its registration until it's too late—we try to access a controller that depends upon it
and it crashes.

When running in the Development environment, this is checked for us. We register all
controllers as services:

services
 .AddControllers()
 .AddControllersAsServices();

Getting Started with ASP.NET Core Chapter 1

[54]

Then, when accessing a controller, the web app—any web app, not one that has a specific
dependency—ASP.NET Core will try to validate all of the dependencies that it has
registered, and, if it finds one for which a dependency is not found, an exception is thrown.
This exception will tell you exactly what service is missing. ASP.NET Core also checks the
validity of scoped services—for example, you cannot have a service registered as
Scoped be retrieved from outside of a scope (usually a web request).

You can actually control this behavior for environments other than Development by
adding the following to the bootstrap code in Program:

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host
 .CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseStartup<Startup>();
 builder.UseDefaultServiceProvider(options =>
 {
 options.ValidateOnBuild = true;
 options.ValidateScopes = true;
 });
 });

Note the ValidateOnBuild and ValidateScopes properties. ValidateOnBuild is for
doing what we just saw—testing that the dependency graph is valid—and
ValidateScopes is for testing that services that require a scope are retrieved from inside
one. By default, both are false, except in the Development environment.

So next, let's move on to understand the environments in which we work.

Knowing the environments
.NET Core has the concept of the environment. An environment is basically a runtime
setting in the form of an environment variable called ASPNETCORE_ENVIRONMENT. This
variable can take one of the following values (note that these are case sensitive):

Development: A development environment, which probably does not need
much explaining
Staging: A preproduction environment used for testing
Production: An environment (or as similar as possible) in which the application
will live once it is released

Getting Started with ASP.NET Core Chapter 1

[55]

To be specific, you can pass any value, but these have particular significance to .NET Core.
There are several ways by which you can access the current environment, but you're most
likely to use one of the following methods, extension methods and properties of the
IWebHostEnvironment interface (add a using reference to the
Microsoft.Extensions.Hosting namespace):

IsDevelopment()

IsProduction()

IsStaging()

IsEnvironment("SomeEnvironment")

EnvironmentName

The IsDevelopment, IsProduction, and IsStaging extension methods are just
convenience methods using the IsEnvironment method. Based on the actual environment,
you can make decisions about the code, such as picking a different connection string, web
service URL, and so on. It is important to point out that this has nothing to do with debug
or release compiler configurations.

You normally get an instance of IWebHostEnvironment from the arguments to
the Configure method of the Startup class:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env) {
... }

But you also get it from the DI container, which is available from the HttpContext class,
among other places, as the RequestServices property:

var env = HttpContext.RequestServices.GetService<IWebHostEnvironment>();

Or you can just inject IWebHostEnvironment into your controller as the following:

public IActionResult Index([FromServices] IWebHostEnvironment env) { ... }

This allows you to check your current environment any time, so that you have conditional
logic.

The IWebHostEnvironment replaces the old IHostingEnvironment
interface available in pre-3 .NET Core, now deprecated.

Getting Started with ASP.NET Core Chapter 1

[56]

A final note: service configuration plays well with environments. Instead of a single
ConfigureServices method, we can have multiple methods, named
ConfigureDevelopmentServices, ConfigureStagingServices, and
ConfigureProductionServices. To be clear, any environment name can be added after
the Configure prefix and before Services. The environment-specific method (for
example, ConfigureDevelopmentServices) will be called instead of the generic one
(ConfigureServices):

public void ConfigureDevelopmentServices(IServiceCollection services)
{
 //WILL be called for environment Development
}

public void ConfigureServices(IServiceCollection services)
{
 //will NOT be called for environment Development
}

And, if we want to take it a bit further, we can even do the same for the Startup class: we
can create one class per environment, with it as the suffix:

public class StartupDevelopment
{
 public StartupDevelopment(IConfiguration configuration) { ... }

 public void ConfigureServices(IServiceCollection services) { ... }

 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{ ... }
}

Or, if we want to dynamically specify a class that resides in a different assembly, we'll have
to slightly change the code in the Program class, so as to bootstrap from an assembly:

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host
 .CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseStartup(typeof(Startup).Assembly.FullName);
 });

We can do it from an assembly instead of from a specific class:

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host
 .CreateDefaultBuilder(args)

Getting Started with ASP.NET Core Chapter 1

[57]

 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseStartup<Startup>();
 });

A nice feature that can help us better organize our code! Let's now have a look at the
standard project templates that we can use to start creating our projects.

Understanding the project templates
The Visual Studio template for creating an ASP.NET Core project, since version 3.x, adds
the following (or very similar) contents to the Program class:

public static void Main(string[] args)
{
 CreateHostBuilder(args).Build().Run();
}

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host
 .CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseStartup<Startup>();
 });

This has changed a bit since previous versions and is now more opinionated; I already
showed this when talking about OWIN earlier in this chapter.

The Host class exposes the static CreateDefaultBuilder, which returns a fully built
IHostBuilder instance. The CreateDefaultBuilder method is actually doing a lot of
things behind our backs:

Creates a ConfigurationBuilder and adds the environment variables provider
to it (see Chapter 2, Configuration, for more details)
Adds the appsettings.json (mandatory) and
appsettings.<environment>.json (optional) JSON files and provider to the
configuration builder
Configures the user secrets configuration, if running in development mode
Configures command-line configuration, if command-line arguments were
passed
Sets Kestrel as the host to use and loads Kestrel-related configurations

Getting Started with ASP.NET Core Chapter 1

[58]

Sets the content root to be the current directory
Sets the host to use the URLs passed as the ASPNETCORE_SERVER.URLS
environment variable, if it exists
Configures logging to the console, debug, EventSource, and EventLog (if in
Windows)
Adds IIS integration
Sets the default host lifetime as ConsoleHostLifetime
Configures service provider parameters to validate the scope of registered
services and lifetimes if running in the Development environment
Registers some services, such as IConfiguration

These are the defaults you get, but you can override any of them by using some extension
methods over the IHostBuilder interface:

Host
 .CreateDefaultBuilder(args)
 .ConfigureAppConfiguration((context, builder) =>
 {
 //add or remove from the configuration builder
 })
 .ConfigureContainer<MyContainer>((context, container) =>
 {
 //configure container
 })
 .ConfigureLogging((context, builder) =>
 {
 //add or remove from the logging builder
 });
 .ConfigureServices(services =>
 {
 //register services
 })
 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseStartup<Startup>();
 });

After the default builder is instantiated, we ask it to use the Startup class, which is where
we can configure the exact stuff we want, such as registered services, middleware
components, and so on

IHostBuilder then builds an IHost and then we ask it to run. This is what actually gets
our application working.

Getting Started with ASP.NET Core Chapter 1

[59]

We have talked about the Startup class before. Basically, it exposes two methods,
named ConfigureServices and Configure by convention; the first is used to register
services and their implementations with the default DI provider (and possibly use a
different one), and the second one is used to add middleware components to the ASP.NET
Core pipeline.

The main things you need to remember here are as follows:

Kestrel is the default host server.
Configuration providers for JSON and the environment are added automatically;
user secrets are added if running in Development environment. There should be
one appsettings.json file and possibly one
appsettings.<environment>.json file, with overrides per environment.
Logging is enabled for the console and debug pane of Visual Studio.

Now that we have looked at these templates, let's see what has changed since version 2.0
and how the different tools, templates, features, and so on are affected by it.

What's new since version 2.0?
Let's see what is new in version 2.0 by going through the following sections.

ASP.NET Core 2.1
ASP.NET Core 2.1 was released on the web on May 30 2018. It doesn't contain a large
number of breaking changes or fantastic new features, but I would highlight the following
ones.

SignalR
SignalR, the real-time communication library for ASP.NET Core, finally made it out of
prerelease. It has lots of goodies that didn't exist in pre-Core versions, and we will cover it
in its own chapter.

Getting Started with ASP.NET Core Chapter 1

[60]

Razor class libraries
It is now possible to package Razor UI files (.cshtml) as NuGet packages. This opens the
door to lots of interesting possibilities. There will be more on this in the chapter about
component reuse.

Razor pages improvements
Razor pages, introduced in ASP.NET Core 2.0, now also support areas and have a couple of
additional features. We will go through them in the chapter on views.

New partial tag helper
There's a new <partial> tag helper that provides a somewhat cleaner alternative to
RenderPartial. Again, it will be discussed in the chapter about component reuse.

Top-level parameter validation
In previous versions of ASP.NET Core, you had to explicitly check the validation status of
your model, usually through a call to ModelState.IsValid. Now, this is no longer the
case, and the validation of parameters using any validator is configured is done
automatically. We'll talk more about this in the chapter dedicated to forms and models.

Identity UI library and scaffolding
Together with the new Razor UI class libraries, Visual Studio now has support for
scaffolding, and ASP.NET Core Identity is a good candidate for this. What this means is
that if we select ASP.NET Core Identity as the authentication provider, we can cherry pick
the UI components we're interested in (login page, login status, and so on) and provide the
rest. This will be covered in the chapter dedicated to security.

Virtual authentication schemes
There's a new mechanism by which we can abstract (and possibly combine) different
authentication providers: it's called virtual authentication schemes, and we will talk about
it in the chapter on security.

Getting Started with ASP.NET Core Chapter 1

[61]

HTTPS by default
What else can I say? HTTPS is now the default, but configurable through the Visual Studio
wizard. Hopefully, it will both make your applications more secure and prevent some
subtle problems that only arise when deploying to production. It will be covered in the
chapter on security.

GDPR-related template changes
The Global Data Protection Regulation (GDPR) imposed a number of constraints when it
comes to tracking users and storing their data. The new Visual Studio templates and the
ASP.NET Core 2.1 APIs introduced some changes related to cookie tracking and explicit
user consent. We will talk about all these in the security chapter.

If you want to know more about GDPR, please visit https:/ ​/​eugdpr. ​org.

MVC functional test improvements
Functional (or integration) tests are now easier to set up because .NET Core 2.1 makes some
assumptions that are generally ok. There will be more on this in the chapter on testing.

API conventions and supporting types
There have been some improvements in regards to providing metadata and discoverability
for API endpoints, all of which will be covered in a new chapter about API controllers and
actions.

Generic host builder
This may not be too important for ASP.NET Core developers, but there's a new host builder
that can be used to build non-HTTP endpoints. Because this is too specific, we won't talk
about it in this book.

https://eugdpr.org
https://eugdpr.org
https://eugdpr.org
https://eugdpr.org
https://eugdpr.org
https://eugdpr.org
https://eugdpr.org

Getting Started with ASP.NET Core Chapter 1

[62]

Updated SPA templates
There are new templates for single-page applications (SPAs) available for some of the
most popular JavaScript frameworks: Angular, React, and React with Redux. I will (briefly)
cover these in the chapter about client-side development.

ASP.NET Core 2.2
ASP.NET Core 2.2 was released in December 2018. Some of the changes are outlined in the
following sections.

API code analyzers
Visual Studio can now automatically add attributes that describe the return types and
codes for API actions based on conventions.

Health check API
Health check APIs were previously available as prerelease code, but are now available as
stable and fully supported checks for multiple conditions.

Endpoint routing
There is now a faster routing mechanism that also allows the inferring of the current route
much earlier in the pipeline. It also includes parameter transformers.

Problem details (RFC 7807) support
There is new support for the implementation of RFC 7807 problem details for representing
API errors.

ASP.NET Core 3.0
ASP.NET Core 3.0 was released in September 2019. Here are some of its biggest changes.

Getting Started with ASP.NET Core Chapter 1

[63]

C# 8.0
Together with .NET Core 3.0, Visual Studio 2019 was updated to support the new language
features of C# 8.0.

.NET Standard 2.1
The new .NET Standard was also released, with a much greater API surface.

Blazor
Blazor (server hosting model) is now included with .NET Core 3.

Built-in JSON support
.NET now features its own JSON library, System.Text.Json.

HTTP/2 support
HttpClient now supports HTTP/2 and is enabled by default in Kestrel.

gRPC
gRPC for .NET has been released. Visual Studio and dotnet now have templates for gRPC.

IdentityServer integration
Authentication is now capable of integrating with IdentityServer out of the box.

Endpoint routing
Endpoint routing is now the default.

Getting Started with ASP.NET Core Chapter 1

[64]

Migrating to ASP.NET Core 3.x
Updating a project to version 3 should be as simple as updating the TargetFramework
property of the .csproj files to contain netcoreapp3.0 (or netcoreapp3.1, for .NET
Core 3.1) instead of netcoreapp2.0 and removing any references to
Microsoft.AspNetCore.App. It is also mandatory to
remove DotNetCliToolReference, as it is deprecated and its purpose replaced by global
tools. Of course, when Visual Studio asks you to update the NuGet packages of your
solution, you should do it to use the latest features.

For a detailed, step-by-step tutorial, please go to https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​aspnet/ ​core/ ​migration/ ​20_​21.

Version set
Some features of ASP.NET Core will only be available if you explicitly ask for them. This is
done by calling the SetCompatibilityVersion extension method:

services .AddMvc() .SetCompatibilityVersion
(CompatibilityVersion.Version_3_0);

The values you can pass to the SetCompatibilityVersion method are as follows:

Latest: Use the latest features (at the time of the writing of this book, version 3)
Version_2_0: Use only the subset supported as of ASP.NET Core 2.0
Version_2_1: Use the features introduced in version 2.1
Version_3_0: Use the features of version 3

Because we want to explore all features available to ASP.NET Core, let's call it with
either Latest or Version_3_0. If you don't specify a value, it will default to the latest
major version: 3.

There is no flag for version 3.1 because this release does not contain
breaking changes from version 3.

https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21

Getting Started with ASP.NET Core Chapter 1

[65]

Let's now move on to look at some tools that will be covered in more depth in the two
appendices at the end of the book.

The NuGet and dotnet tools
There are two tools that are closely related to the .NET Core SDK:

dotnet

nuget

These tools are must-haves for .NET development: the first, dotnet, is what, NuGet
ecosystem of libraries and installs, publishes, and otherwise manages sets of NuGet
packages. This one is

dotnet always executes with the most recent .NET Core version available on the system. In
Appendix 1, you will find a good description of this tool and its usages.

You can get the nuget tool from https:/ ​/​www. ​nuget. ​org/ ​packages/ ​NuGet. ​CommandLine.

Summary
In this first chapter, we went through some of the biggest changes in ASP.NET Core and
.NET Core. You are introduced to some of the key concepts in .NET Core: the NuGet
distribution mode, the OWIN pipeline, the hosting model, environments, the improved
context, and the built-in dependency framework, which are new in ASP.NET Core 3. We
also had a look at the nuget and dotnet tools, the Swiss army knife of command-line .NET
development, which will be covered in more detail in Appendix 1.

In the next chapter, we will start our .NET Core journey by exploring the configuration of
an application.

https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine
https://www.nuget.org/packages/NuGet.CommandLine

Getting Started with ASP.NET Core Chapter 1

[66]

Questions
By now you should be able to answer the following questions:

What are the benefits of DI?1.
What are environments?2.
What does MVC mean?3.
What are the supported lifetimes in the built-in DI container?4.
What is the difference between .NET Core and the .NET Standard?5.
What is a metapackage?6.
What is OWIN?7.

2
Configuration

This chapter covers the configuration of an ASP.NET Core application. Every application
needs configuration in one form or another because it makes it much easier to change the
underlying behavior should anything happen—think about connection strings, credentials,
Internet Protocol (IP) addresses, or any other kind of data that can change over time and is
therefore not appropriate to be hardcoded.

Configuration can be done in many ways, some of which don't even require redeploying
your application, which is a huge benefit. Luckily, .NET Core was conceived with this in
mind and is also very extensible, so it can cover most scenarios, basic and advanced. It also
plays nicely with other aspects, such as security and dependency injection.

Also, a very typical configuration just features switching or toggling: something is either
enabled or not. .NET Core 3 introduced a new feature toggling library that is outside the
main configuration framework, but it will be covered here.

After reading this chapter, you should be able to understand the following:

How the configuration works on the .NET Core framework
Which configuration sources we have available
How to extend it to be more helpful and match your necessities
Runtime host configuration
The new feature toggle mechanism introduced in .NET Core 3

Configuration Chapter 2

[68]

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 software development kit (SDK) and some kind of text editor. Of course, Visual
Studio 2019 (any edition) meets all the requirements, but you can also use Visual Studio
Code, for example.

The source code can be retrieved from GitHub here: https:/ ​/​github. ​com/
PacktPublishing/​Modern- ​Web- ​Development- ​with- ​ASP. ​NET- ​Core- ​3-​Second- ​Edition.

Getting started
Previous versions of .NET had a relatively simple configuration system, where all settings
went into Extensible Markup Language (XML) files with the .config extension. There
was a basic schema that could handle both system settings and untyped key-value pairs,
but they were all strings. There was also some degree of inheritance, as some of the settings
could be defined machine-wide and then overridden per application, and even in virtual
applications underneath an Internet Information Services (IIS) application. It was possible
to define custom sections with typed settings and complex structures by writing and
registering .NET classes.

However, as convenient as this would seem, it turns out it had its limitations—namely, the
following:

Only XML files were supported; it was not possible to have other configuration
sources out of the box.
It was difficult to have different configuration files/configuration sections per
environment (staging, quality assurance (QA), production, and more).
It was not possible to receive notifications when the configuration changed.
It was tricky to save changes.

Moreover, as dependency injection was not part of the core .NET infrastructure, there was
no way to have configuration values injected into its services automatically. Let's see how
.NET Core 3 helps us overcome these limitations.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Configuration Chapter 2

[69]

Configurations in .NET Core
Realizing this, Microsoft made configuration a first-order concept in .NET Core and did so
in quite a flexible, extensible way. It all starts with a builder instance; we add providers to
it, and when we've finished, we just ask it to build a configuration object that will hold all
the values loaded from each provider in memory.

This configuration object will be capable of returning configuration settings from any of the
added providers transparently, which means that regardless of the source, we use the same
syntax for querying configuration options. It will hold an in-memory representation of all
the values loaded from all registered providers, and will allow you to change them, or add
new entries.

The base class model for the configuration application programming interface (API) in
.NET Core looks like this:

Configuration Chapter 2

[70]

So, the provider mechanism is split into two base interfaces and their implementations, as
follows:

IConfigurationSource is responsible for creating a concrete instance of an
IConfigurationProvider; each of the available providers (coming next)
implements this interface.
IConfigurationProvider specifies the contract for actually retrieving values,
reloading, and more; the root class that implements this is
ConfigurationProvider, and there's also a particular implementation that
serves as the root for all file-based providers, FileConfigurationProvider.

ConfigurationBuilder itself is just a specific implementation of the
IConfigurationBuilder interface, and there are no other implementations. Its contract
specifies how we can add providers and build the configuration from them, as illustrated in
the following code block:

var builder = new ConfigurationBuilder() .Add(source1)
 .Add(source2);

var cfg = builder.Build();

As for the configuration itself, there are three base interfaces, as follows:

IConfiguration: This specifies the methods for retrieving and setting
configuration sections and values, monitoring changes, and more.
IConfigurationRoot: This adds a method for reloading the configuration to
IConfiguration and the list of providers used to build the configuration.
IConfigurationSection: This is a configuration section, meaning that it can be
located somewhere beneath the configuration root in a location identified by a
path (the keys of all of the parent sections, up to and including its own key) and a
key that uniquely identifies that section in its parent.

We will shortly see the ways by which we can use the configuration values, but for now, it
is worth mentioning that we can retrieve and set individual settings through the
overloaded [] operator in IConfiguration, like this:

cfg["key"] = "value";
string value = cfg["key"];

This takes a string as key and returns a string as the value, and in the next sections, we
will see how we can circumvent this limitation. If no entry for the given key exists, it
returns null.

Configuration Chapter 2

[71]

All keys are case-insensitive. A path is composed of a colon (:)-combined
set of keys and subkeys that can be used to get to a specific value.

The .NET Core configuration has the concept of sections. We can get hold of a particular
section, or even check whether it exists altogether, by running the following code:

var section = cfg.GetSection("ConnectionStrings");
var exists = section.Exists();

By convention, sections are separated by :. Getting a value from a section with a section-
specific key is the same as retrieving it from the configuration root with a fully qualified
key. For example, if you have a key of A:B:C, this is the same as having a key of C inside
section B of section A, as illustrated in the following screenshot:

var valueFromRoot = cfg["A:B:C"];
var aSection = cfg.GetSection("A");
var bSection = aSection.GetSection("B");
var valueFromSection = bSection["C"];

For the record, the core configuration API is implemented in the
Microsoft.Extensions.Configuration and
Microsoft.Extensions.Configuration.Binder NuGet packages, which are
automatically included by other packages, such as those of the specific providers. Let's now
have a look at the available providers.

ASP.NET Core 2 and later automatically registers the IConfiguration
instance in the dependency injection framework; for previous versions,
you need to do this manually.

Providers
The available Microsoft configuration providers (and their NuGet packages) are as follows:

JavaScript Object Notation (JSON) files:
Microsoft.Extensions.Configuration.Json

XML files: Microsoft.Extensions.Configuration.Xml
Initialization (INI) files: Microsoft.Extensions.Configuration.Ini
User secrets: Microsoft.Extensions.Configuration.UserSecrets
Azure Key Vault: Microsoft.Extensions.Configuration.AzureKeyVault

Configuration Chapter 2

[72]

Environment variables:
Microsoft.Extensions.Configuration.EnvironmentVariables

Command line: Microsoft.Extensions.Configuration.CommandLine
Memory: Microsoft.Extensions.Configuration
Docker secrets: Microsoft.Extensions.Configuration.DockerSecrets

Some of these are based upon the FileConfigurationProvider class:
JSON, XML, and INI.

When you reference these packages, you automatically make their extensions available. So,
for example, if you want to add the JSON provider, you have two options, detailed next.

You can add a JsonConfigurationSource directly, like this:

var jsonSource = new JsonConfigurationSource {
 Path = "appsettings.json" };
builder.Add(jsonSource);

Alternatively, you can use the AddJsonFile extension method, like this:

builder.AddJsonFile("appsettings.json");

Most likely, the extension methods are what you need. As I said, you can have any number
of providers at the same time, as illustrated in the following code snippet:

builder
 .AddJsonFile("appsettings.json")
 .AddEnvironmentVariables()
 .AddXmlFile("web.config");

You just need to keep in mind that if two providers return the same configuration setting,
the order by which they were added matters; the result you get will come from the last
provider added, as it will override the previous ones. So, for example, imagine you are
adding two JSON configuration files, one that is common across all environments
(development, staging, and production), and another for a specific environment; in this
case, you would likely have the following:

builder
 .AddJsonFile("appsettings.json")
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json");

Configuration Chapter 2

[73]

This is so the environment-specific configuration file takes precedence.

Each provider will, of course, feature different properties for setting up; all file-based
providers will require, for instance, a file path, but that doesn't make sense when we're
talking about environment variables.

File-based providers
Both JSON, XML, and INI configuration sources are based on files. Therefore, their classes
inherit from the FileConfigurationSource abstract base class. This class offers the
following configuration properties:

Path: The actual, fully qualified physical path where the file is to be found; this is
a required setting.
Optional: A Boolean flag for specifying whether the absence of the file causes a
runtime error (false) or not (true); the default is false.
ReloadOnChange: Here, you decide whether to automatically detect changes to
the source file (true) or not (false); the default is false.
ReloadDelay: The delay, in milliseconds, before reloading the file in the event
that a change was detected (ReloadOnChange set to true); the default is 250
milliseconds.
OnLoadException: A delegate to be called should an error occur while parsing
the source file; this is empty by default.
FileProvider: The file provider that actually retrieves the file; the default is an
instance of PhysicalFileProvider, set with the folder of the Path property.

All of the extension methods allow you to supply values for each of these properties, except
OnLoadException. You are also free to specify your own concrete implementation of
IFileProvider, which you should do if you have specific needs, such as getting files from
inside a ZIP file. ConfigurationBuilder has an extension method, SetBasePath, that
sets a default PhysicalFileProvider pointing to a folder on your filesystem so that you
can pass relative file paths to the configuration source's Path property.

If you set ReloadOnChange to true, .NET Core will start an operating system-specific file
that monitors a watch on the source file; because these things come with a cost, try not to
have many watches.

Configuration Chapter 2

[74]

A typical example would be as follows:

builder
 .SetBasePath(@"C:\Configuration")
 .AddJsonFile(path: "appsettings.json", optional: false,
 reloadOnChange: true)
 .AddJsonFile(path: $"appsettings.{env.EnvironmentName}.json",
 optional: true, reloadOnChange: true);

This would result in the appsettings.json file being loaded from the
C:\Configuration folder (and throwing an exception if it is not present), and then
loading appsettings.Development.json (this time, ignoring it if the file doesn't exist).
Whenever there's a change in either file, they are reloaded and the configuration is
updated.

Very important: in operating systems or filesystems where the case
matters, such as Linux, make sure that the name of the file that takes the
environment name (for example, appsettings.Development.json) is
in the right case—otherwise, it won't be found!

If, however, we wanted to add an error handler, we need to add the configuration source
manually, as follows:

var jsonSource = new JsonConfigurationSource { Path = "filename.json" };
jsonSource.OnLoadException = (x) =>
{
 if (x.Exception is FileNotFoundException ex)
 {
 Console.Out.WriteLine($"File {ex.FileName} not found");
 x.Ignore = true;
 }
};
builder.Add(jsonSource);

This way, we can prevent certain errors from crashing our application.

All file-based providers are added by an extension method with the name AddxxxFile,
where xxx is the actual type—Json, Xml, or Ini—and always takes the same parameters
(path, optional, and reloadOnChange).

Configuration Chapter 2

[75]

JSON provider
We typically add a JSON configuration file using the AddJsonFile extension method. The
JSON provider will load a file containing JSON contents and make its structure available
for configuration, using dotted notation. A typical example is shown in the following code
snippet:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)mssqllocaldb;
 Database=aspnetcore"
 }
}

Any valid JSON content will work. As of now, it is not possible to specify a schema.
Sections are just sub-elements of the JSON content.

An example of code used to load a configuration value would be as follows:

var defaultConnection = cfg["ConnectionStrings:DefaultConnection"];

XML provider
XML is becoming less and less common, with JSON, inversely, becoming increasingly
popular; however, there are still good reasons to use XML. So, we add an XML file using
the AddXmlFile extension method, and as far as configuration is concerned, we need to
wrap our XML contents in a settings node; the XML declaration is optional. Refer to the
following example:

<settings Flag="2">
 <MySettings>
 <Option>10</Option>
 </MySettings>
</settings>

Again, as of now, it is not possible to specify a validating schema. With this provider,
sections are implemented as sub-elements.

Two examples of this are as follows:

var flag = cfg["Flag"];
var option = cfg["MySettings:Option"];

Configuration Chapter 2

[76]

INI provider
INI files are a thing of the past, but, for historical reasons, Microsoft is still supporting them
(actually, Linux also makes use of INI files too). In case you're not familiar with its syntax,
this is what it looks like:

[SectionA]
Option1=Value1
Option2=Value2

[SectionB]
Option1=Value3

You add INI files to the configuration through the AddIniFile extension method.

One word of advice: both XML and JSON file formats support anything
that INI files do, so unless you have a very specific requirement, you're
better off with either JSON or XML.

Sections in INI files just map to the intrinsic sections provided by the INI file specification.

A single example is as follows:

var optionB2 = cfg["SectionB:Option1"];

Other providers
Besides file-based providers, there are other ways to store and retrieve configuration
information. Here, we list the currently available options in .NET Core.

User secrets
.NET Core introduced user secrets as a means of storing sensitive information per user. The
benefit of this is that it is kept in a secure manner, out of configuration files, and is not
visible by other users. A user secrets store is identified (for a given user)
by userSecretsId, which the Visual Studio template initializes as a mix of a string and a
globally unique identifier (GUID), such as aspnet-Web-f22b64ea-be5e-432d-
abc6-0275a9c00377.

Configuration Chapter 2

[77]

Secrets in a store can be listed, added, or removed through the dotnet executable, as
illustrated in the following code snippet:

dotnet user-secrets list --lists all the values in the
 store
dotnet user-secrets set "key" "value" --set "key" to be "value"
dotnet user-secrets remove "key" --remove entry for "key"
dotnet user-secrets clear --remove all entries

You will need the Microsoft.Extensions.SecretManager.Tools package.
The dotnet user-secrets command will only work when in the presence of a project
file that specifies the userSecretsId store ID. The AddUserSecrets extension method is
what we use to add user secrets to the configuration, and it will either pick up this
userSecretsId setting automatically, or you can provide your own at runtime, as follows:

builder.AddUserSecrets(userSecretdId: "[User Secrets Id]");

Another option is to get the user secrets ID from an assembly, in which case this needs to be
decorated with the UserSecretsIdAttribute attribute, as follows:

[assembly: UserSecretsId("aspnet-Web-f22b64ea-be5e-432d-abc6-0275a9c00377")

In this case, the way to load it is demonstrated in the following code snippet:

builder.AddUserSecrets<Startup>();

Be warned: if you have more than one assembly with the same user secret
ID (by mistake), the application will throw an exception when loading
them.

Yet another way to specify user secrets (in ASP.NET Core 2.x) is through the .csproj file,
by using a UserSecretsId element, as illustrated in the following code snippet:

<PropertyGroup>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 <UserSecretsId>9094c8e7-0000-0000-0000-c26798dc18d2</UserSecretsId>
</PropertyGroup>

Regardless of how you specify the user secrets ID, as with all the other providers, the way
to load a value is as follows:

var value = cfg["key"];

In case you are interested, you can read more about .NET Core user secrets here: https:/ ​/
docs.​microsoft.​com/ ​en- ​us/ ​aspnet/ ​core/ ​security/ ​app- ​secrets

https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets

Configuration Chapter 2

[78]

Azure Key Vault
Azure Key Vault is an Azure service that you can leverage for enterprise-level secure key-
value storage. The full description is outside the scope of this book, but you can read about
it here: https:/​/​azure. ​microsoft. ​com/ ​en- ​us/​services/ ​key- ​vault. Suffice to say that you
add the Azure Key Vault provider through the AddAzureKeyVault extension method, as
depicted in this line of code:

builder.AddAzureKeyVault(vault: "https://[Vault].vault.azure.net/",
 clientId: "[Client ID]", clientSecret: "[Client Secret]");

After this, all are added to the configuration object, and you can retrieve them in the usual
way.

Command line
Another very popular way to get configuration settings is the command line. Executables
regularly expect information to be passed in the command line, so as to dictate what should
be done or to control how it should happen.

The extension method to use is AddCommandLine, and it expects a required and an optional
parameter, as follows:

builder.AddCommandLine(args:
Environment.GetCommandLineArgs().Skip(1).ToArray());

The args parameter will typically come from Environment.GetCommandLineArgs(),
and we take the first parameter out, as this is the entry assembly's name. If we are building
our configuration object in Program.Main, we can use its args parameter too.

Now, there are several ways to specify parameters. One way is illustrated in the following
code snippet:

 Key1=Value1
 --Key2=Value2
 /Key3=Value3
 --Key4 Value4
 /Key5 Value5

Here is another example:

dotnet run MyProject Key1=Value1 --Key2=Value2 /Key3=Value3 --Key4 Value4
/Key5 Value5

https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault
https://azure.microsoft.com/en-us/services/key-vault

Configuration Chapter 2

[79]

If the value has spaces in it, you need to wrap it in quotes ("). You can't use - (single dash),
as this would be interpreted as a parameter to dotnet instead.

The optional parameter to AddCommandLine, switchMappings, is a dictionary that can be
used to create new keys that will duplicate those from the command line, as follows:

var switchMappings = new Dictionary<string,
string>(StringComparer.OrdinalIgnoreCase)
 { { "--Key1", "AnotherKey" } };

builder.AddCommandLine(
 args: Environment.GetCommandLineArgs().Skip(1).ToArray(),
 switchMappings: switchMappings);

These keys can even have special characters in them—for example, --a:key and
/some.key are valid keys.

Again, use the same syntax to retrieve their values.

Environment variables
Environment variables exist in all operating systems and can also be regarded as a source of
configuration. Many tools out there, such as Docker, rely on environment variables for
getting their operating context.

Adding environment variables to a .NET Core configuration is straightforward; you just
need to call AddEnvironmentVariables. By default, this will bring all the existing
environment variables into the configuration, but we can also specify a prefix, and filter out
all variables that do not start with it, as follows:

builder.AddEnvironmentVariables(prefix: "ASPNET_");

So, this will add both ASPNET_TargetHost and ASPNET_TargetPort, but not PATH or
COMPUTERNAME.

Sections are supported if you separate names with double underscores (for example, __).
For example, say you have this environment variable:

ASPNETCORE__ADMINGROUP__USERS=rjperes,pm

Configuration Chapter 2

[80]

You could access the ADMINGROUP section like this:

var group = cfg
 .GetSection("ASPNETCORE")
 .GetSection("ADMINGROUP");
var users = group["USERS"];

Memory
The memory provider is a convenient way of specifying values dynamically at runtime and
for using dictionary objects. We add the provider with the AddInMemoryCollection
extension method, as follows:

var properties = new Dictionary<string, string> { { "key", "value" } };
builder.AddInMemoryCollection(properties);

The advantage of this approach is that it is easy to populate a dictionary with whatever
values we want, particularly in unit tests.

Docker
The ability to have secrets coming from Docker-stored files is relatively new in .NET Core.
Basically, it will try to load text files in a specific directory inside a Docker instance as the
values where the key is the filename itself. This is an actual feature of Docker, about which
you can read more here: https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​swarm/ ​secrets

The AddDockerSecrets extension method takes two optional parameters—the user
secrets directory and whether or not this directory itself is optional; in other words, just
ignore it if it's not there. This is illustrated in the following code snippet:

builder.AddDockerSecrets(secretsPath: "/var/lib/secrets", optional: true);

It is possible to specify these two parameters plus an ignore prefix and a delegate for
filtering out files by their names if we use the overload that takes a configuration object, as
illustrated in the following code block:

builder.AddDockerSecrets(opt =>
{
 opt.SecretsDirectory = "/var/lib/secrets";
 opt.Optional = true;
 opt.IgnorePrefix = "ignore.";
 opt.IgnoreCondition = (filename) =>
!filename.Contains($".{env.EnvironmentName}.");
});

https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets
https://docs.docker.com/engine/swarm/secrets

Configuration Chapter 2

[81]

Here, we are filtering out both files starting with ignore., as well as those that do not
contain the current environment name (for example, .Development.). Pretty cool!

Default providers
The ASP.NET Core code included in the default application templates
(WebHostBuilder.CreateDefaultBuilder) registers the following providers:

JSON
Environment
Command line
User secrets

Of course, you can add new providers to the configuration builder to match your
needs. Next, we will see how we can create a custom provider for specific configuration
needs.

Creating a custom provider
Although we have several options for storing configuration values, you may have your
own specific needs. For example, if you are using Windows, you might want to store your
configuration settings in the Registry. For that, you need a custom provider. Let's see how
we can build one.

First, you need to add the Microsoft.Win32.Registry NuGet package to your project.
Then, we start by implementing IConfigurationSource, as follows:

public sealed class RegistryConfigurationSource : IConfigurationSource
{
 public RegistryHive Hive { get; set; } = RegistryHive.CurrentUser;

 public IConfigurationProvider Build(IConfigurationBuilder builder)
 {
 return new RegistryConfigurationProvider(this);
 }
}

Configuration Chapter 2

[82]

As you can see from the preceding code block, the only configurable property is Hive, by
means of which you can specify a specific Registry hive, with CurrentUser
(HKEY_CURRENT_USER) being the default.

Next, we need an IConfigurationProvider implementation. Let's inherit from the
ConfigurationProvider class, as this takes care of some of the basic implementations,
such as reloading (which we do not support as we go directly to the source). The code can
be seen here:

public sealed class RegistryConfigurationProvider : ConfigurationProvider
{
 private readonly RegistryConfigurationSource _configurationSource;

 public RegistryConfigurationProvider(
 RegistryConfigurationSource configurationSource)
 {
 _configurationSource = configurationSource;
 }

 private RegistryKey GetRegistryKey(string key)
 {
 RegistryKey regKey;
 switch (_configurationSource.Hive)
 {
 case RegistryHive.ClassesRoot:
 regKey = Registry.ClassesRoot;
 break;

 case RegistryHive.CurrentConfig:
 regKey = Registry.CurrentConfig;
 break;

 case RegistryHive.CurrentUser:
 regKey = Registry.CurrentUser;
 break;

 case RegistryHive.LocalMachine:
 regKey = Registry.LocalMachine;
 break;

 case RegistryHive.PerformanceData:
 regKey = Registry.PerformanceData;
 break;

 case RegistryHive.Users:
 regKey = Registry.Users;
 break;

Configuration Chapter 2

[83]

 default:
 throw new InvalidOperationException($"Supplied hive
 {_configurationSource.Hive} is invalid.");
 }

 var parts = key.Split('\\');
 var subKey = string.Join("", parts.Where(
 (x, i) => i < parts.Length - 1));

 return regKey.OpenSubKey(subKey);
 }

 public override bool TryGet(string key, out string value)
 {
 var regKey = this.GetRegistryKey(key);
 var parts = key.Split('\\');
 var name = parts.Last();
 var regValue = regKey.GetValue(name);

 value = regValue?.ToString();

 return regValue != null;
 }

 public override void Set(string key, string value)
 {
 var regKey = this.GetRegistryKey(key);
 var parts = key.Split('');
 var name = parts.Last();

 regKey.SetValue(name, value);
 }
}

This provider class leverages the Registry API to retrieve values from the Windows
Registry, which, of course, will not work on non-Windows machines. The TryGet and Set
methods, defined in the ConfigurationProvider class, both delegate to the private
GetRegistryKey method, which retrieves a key-value pair from the Registry.

Finally, let's add a friendly extension method to make registration simpler, as follows:

public static class RegistryConfigurationExtensions
{
 public static IConfigurationBuilder AddRegistry(
 this IConfigurationBuilder builder,
 RegistryHive hive = RegistryHive.CurrentUser)
 {

Configuration Chapter 2

[84]

 return builder.Add(new RegistryConfigurationSource { Hive = hive
});
 }
}

Now, you can use this provider, as follows:

builder
 .AddJsonFile("appsettings.json")
 .AddRegistry(RegistryHive.LocalMachine);

Nice and easy, don't you think? Now, let's see how we can use the configuration files for
the providers that we registered.

Using configuration values
So, we've now seen how to set up configuration providers, but how exactly can we use
these configuration values? Let's see in the following sections.

Getting and setting values explicitly
Remember that the .NET configuration allows you to set both reading and writing, both
using the [] notation, as illustrated in the following code snippet:

var value = cfg["key"];
cfg["another.key"] = "another value";

Of course, setting a value in the configuration object does not mean that it will get persisted
into any provider; the configuration is kept in memory only.

It is also possible to try to have the value converted to a specific type, as follows:

cfg["count"] = "0";
var count = cfg.GetValue<int>("count");

Don't forget that the value that you want to convert needs to be
convertible from a string; in particular, it needs to have TypeConverter
defined for that purpose, which all .NET Core primitive types do. The
conversion will take place using the current culture.

Configuration Chapter 2

[85]

Configuration sections
It is also possible to use configuration sections. A configuration section is specified
through a colon (:), as in section:subsection. An infinite nesting of sections can be
specified. But—I hear you ask—what is a configuration section, and how do we define one?
Well, that depends on the configuration source you're using.

In the case of JSON, a configuration section will basically map to a complex property. Have
a look at the following code snippet to view an example of this:

{
 "section-1": {
 "section-2": {
 "section-3": {
 "a-key": "value"
 }
 }
 }
}

Not all providers are capable of handling configuration sections or handle
them in the same way. In XML, each section corresponds to a node; for
INI files, there is a direct mapping; and for the Azure Key Vault, user
secrets, memory (dictionaries), and providers, sections are specified as
keys separated by colons (for example, ASPNET:Variable,
MyApp:Variable, Data:Blog:ConnectionString, and more). For
environment variables, they are separated by double underscores (__).
The example Registry provider I showed earlier does not, however,
support them.

We have a couple of sections here, as follows:

The root section
section-1

section-2

section-3

So, if we wanted to access a value for the a-key key, we would do so using the following
syntax:

var aKey = cfg["section-1:section-2:section-3:a-key"];

Configuration Chapter 2

[86]

Alternatively, we could ask for the section-3 section and get the a-key value directly
from it, as illustrated in the following code snippet:

var section3 = cfg.GetSection("section-1:section-2:section-3");
var aKey = section3["a-key"];
var key = section3.Key; //section-3
var path = section3.Path; //section-1:section-2:section-3

A section will contain the path from where it was obtained. This is defined in the
IConfigurationSection interface, which inherits from IConfiguration, thus making
all of its extension methods available too.

By the way, you can ask for any configuration section and a value will always be returned,
but this doesn't mean that it exists. You can use the Exists extension method to check for
that possibility, as follows:

var fairyLandSection = cfg.GetSection("fairy:land");
var exists = fairyLandSection.Exists(); //false

A configuration section may have children, and we can list them using GetChildren, like
this:

var section1 = cfg.GetSection("section-1");
var subSections = section1.GetChildren(); //section-2

.NET Core includes a shorthand for a typical configuration section and connection strings.
This is the GetConnectionString extension method, and it basically looks for a
connection string named ConnectionStrings and returns a named value from it. You can
use the JSON schema introduced when we discussed the JSON provider as a reference, as
follows:

var blogConnectionString = cfg.GetConnectionString("DefaultConnection");

Getting all values
It may not be that useful, but it is possible to get a list of all configuration values (together
with their keys) present in a configuration object. We do this using the AsEnumerable
extension method, illustrated in the following code snippet:

var keysAndValues = cfg.AsEnumerable().ToDictionary(kv => kv.Key, kv =>
kv.Value);

Configuration Chapter 2

[87]

There's also a makePathsRelative parameter, which, by default, is false and can be
used in a configuration section to strip out the section's key from the returned entries' keys.
Say, for example, that you are working on the section-3 section. If you call
AsEnumerable with makePathsRelative set to true, then the entry for a-key will
appear as a-key instead of section-1:section-2:section-3:a-key.

Binding to classes
Another interesting option is to bind the current configuration to a class. The binding
process will pick up any sections and their properties present in the configuration and try
to map them to a .NET class. Let's say we have the following JSON configuration:

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
}

We also have a couple of classes, such as these ones:

public class LoggingSettings
{
 public bool IncludeScopes { get; set; }
 public LogLevelSettings LogLevel { get; set; }
}

public class LogLevelSettings
{
 public LogLevel Default { get; set; }
 public LogLevel System { get; set; }
 public LogLevel Microsoft { get; set; }
}

LogLevel comes from the Microsoft.Extensions.Logging
namespace.

Configuration Chapter 2

[88]

You can bind the two together, like this:

var settings = new LoggingSettings { LogLevel = new LogLevelSettings() };
cfg.GetSection("Logging").Bind(settings);

The values of LoggingSettings will be automatically populated from the current
configuration, leaving untouched any properties of the target instance for which there are
no values in the configuration. Of course, this can be done for any configuration section, so
if your settings are not stored at the root level, it will still work.

Mind you, these won't be automatically refreshed whenever the underlying data changes.
We will see in a moment how we can do that.

Another option is to have the configuration build and return a self-instantiated instance, as
follows:

var settings = cfg.GetSection("Logging").Get<LoggingSettings>();

For this to work, the template class cannot be abstract and needs to have a public
parameterless constructor defined.

Don't forget that an error will occur if—and only if—a configuration value
cannot be bound, either directly as a string or through TypeConverter to
the target property in the Plain Old CLR Object (POCO) class. If no such
property exists, it will be silently ignored. The TypeConverter class
comes from the System.ComponentModel NuGet package and
namespace.

Since when using a file-based configuration, all properties are stored as strings, the
providers need to know how to convert these into the target types. Fortunately, the
included providers know how to do this for most types, such as the following:

Strings
Integers
Floating points (provided the decimal character is the same as per the current
culture)
Booleans (true or false in any casing)
Dates (the format must match the current culture or be compliant Request for
Comments (RFC) 3339/International Organization for Standardization (ISO)
8601)
Time (hh:mm:ss or RFC 3339/ISO 8601)
GUIDs
Enumerations

Configuration Chapter 2

[89]

Injecting values
OK—so, we now know how to load configuration values from several sources, and we also
know a couple of ways to ask for them explicitly. However, .NET Core relies heavily on
dependency injection, so we might want to use that for configuration settings as well.

First, it should be fairly obvious that we can register the configuration object itself with the
dependency injection framework, as follows:

var cfg = builder.Build();
services.AddSingleton(cfg);

Wherever we ask for an IConfigurationRoot object, we will get this one. We can also
register it as the base IConfiguration, which is safe as well, although we miss the ability
to reload the configuration (we will cover this in more detail later on). This is illustrated
here:

services.AddSingleton<IConfiguration>(cfg);

Since version 2.0, ASP.NET Core automatically registers the configuration
object (IConfiguration) with the dependency injection framework.

We might also be interested in injecting a POCO class with configuration settings. In that
case, we use Configure, as follows:

services.Configure<LoggingSettings>(settings =>
{
 settings.IncludeScopes = true;
 settings.Default = LogLevel.Debug;
});

Here, we are using the Configure extension method, which allows us to specify values for
a POCO class to be created at runtime whenever it is requested. Rather than doing this
manually, we can ask the configuration object to do it, as follows:

services.Configure<LoggingSettings>(settings =>
{
 cfg.GetSection("Logging").Bind(settings);
});

Configuration Chapter 2

[90]

Even better, we can pass named configuration options, as follows:

services.Configure<LoggingSettings>("Elasticsearch", settings =>
{
 this.Configuration.GetSection("Logging:Elasticsearch").Bind(settings);
});

services.Configure<LoggingSettings>("Console", settings =>
{
 this.Configuration.GetSection("Logging:Console").Bind(settings);
});

In a minute, we will see how we can use these named configuration options.

We can even pass in the configuration root itself, or a sub-section of it, which is way
simpler, as illustrated in the following code snippet:

services.Configure<LoggingSettings>(cfg.GetSection("Logging"));

Of course, we might as well register our POCO class with the dependency injection
framework, as follows:

var cfg = builder.Build();
var settings = builder.GetSection("Logging").Get<LoggingSettings>();
services.AddSingleton(settings);

If we use the Configure method, the configuration instances will be available from the
dependency injection framework as instances of IOptions<T>, where T is a template
parameter of the type passed to Configure— as per this example,
IOptions<LoggingSettings>.

The IOptions<T> interface specifies a Value property by which we can access the
underlying instance that was passed or set in Configure. The good thing is that this is
dynamically executed at runtime if—and only if—it is actually requested, meaning no
binding from configuration to the POCO class will occur unless we explicitly want it.

A final note: before using Configure, we need to add support for it to the services
collection as follows:

services.AddOptions();

For this, the Microsoft.Extensions.Options NuGet package will need to be added
first, which will ensure that all required services are properly registered.

Configuration Chapter 2

[91]

Retrieving named configuration options
When we register a POCO configuration by means of the Configure family of methods,
essentially we are registering it to the dependency injection container as IOption<T>. This
means that whenever we want to have it injected, we can just declare IOption<T>, such
as IOption<LoggingSettings>. But if we want to use named configuration values, we
need to use IOptionsSnapshot<T> instead. This interface exposes a nice Get method that
takes as its sole parameter the named configuration setting, as follows:

public HomeController(IOptionsSnapshot<LoggingSettings> settings)
{
 var elasticsearchSettings = settings.Get("Elasticsearch");
 var consoleSettings = settings.Get("Console");
}

You must remember that we registered the LoggingSettings class through a call to the
Configure method, which takes a name parameter.

Reloading and handling change notifications
You may remember that when we talked about the file-based providers, we mentioned the
reloadOnChange parameter. This sets up a file-monitoring operation by which the
operating system notifies .NET when the file's contents have changed. Even if we don't
enable that, it is possible to ask the providers to reload their configuration. The
IConfigurationRoot interface exposes a Reload method for just that purpose, as
illustrated in the following code snippet:

var cfg = builder.Build();
cfg.Reload();

So, if we reload explicitly the configuration, we're pretty confident that when we ask for a
configuration key, we will get the updated value in case the configuration has changed in
the meantime. If we don't, however, the APIs we've already seen don't ensure that we get
the updated version every time. For that, we can do either of the following:

Register a change notification callback, so as to be notified whenever the
underlying file content changes
Inject a live snapshot of the data, whose value changes whenever the source
changes too

Configuration Chapter 2

[92]

For the first option, we need to get a handle to the reload token, and then register our
callback actions in it, as follows:

var token = cfg.GetReloadToken();
token.RegisterChangeCallback(callback: (state) =>
{
 //state will be someData
 //push the changes to whoever needs it
}, state: "SomeData");

For the latter option, instead of injecting IOptions<T>, we need to use
IOptionsSnapshot<T>. Just by changing this, we can be sure that the injected value will
come from the current, up-to-date configuration source, and not the one that was there
when the configuration object was created. Have a look at the following code snippet for an
example of this:

public class HomeController : Controller
{
 private readonly LoggingSettings _settings;

 public HomeController(IOptionsSnapshot<LoggingSettings> settings)
 {
 _settings = settings.Value;
 }
}

It is safe to always use IOptionsSnapshot<T> instead of IOptions<T> as the overhead is
minimal.

Running pre- and post-configuration actions
There's a new feature since ASP.NET Core 2.0: running pre- and post-configuration actions
for configured types. What this means is, after all the configuration is done, and before a
configured type is retrieved from dependency injection, all instances of registered classes
are given a chance to execute and make modifications to the configuration. This is true for
both unnamed as well as named configuration options.

For unnamed configuration options (Configure with no name parameter), there is an
interface called IConfigureOptions<T>, illustrated in the following code snippet:

public class PreConfigureLoggingSettings :
IConfigureOptions<LoggingSettings>
{
 public void Configure(LoggingSettings options)

Configuration Chapter 2

[93]

 {
 //act upon the configured instance
 }
}

And, for named configuration options (Configure with the name parameter), we have
IConfigureNamedOptions<T>, as illustrated in the following code snippet:

public class PreConfigureNamedLoggingSettings :
IConfigureNamedOptions<LoggingSettings>
{
 public void Configure(string name, LoggingSettings options)
 {
 //act upon the configured instance
 }

 public void Configure(LoggingSettings options)
 {
 }
}

These classes, when registered, will be fired before the delegate passed to the Configure
method. The configuration is simple, as can be seen in the following code snippet:

services.ConfigureOptions<PreConfigureLoggingSettings>();
services.ConfigureOptions<PreConfigureNamedLoggingSettings>();

But there's more: besides running actions before the configuration delegate, we can also run
afterward. Enter IPostConfigureOptions<T>—this time, there are no different interfaces
for named versus unnamed configuration options' registrations, as illustrated in the
following code snippet:

public class PostConfigureLoggingSettings :
IPostConfigureOptions<LoggingSettings>
{
 public void PostConfigure(string name, LoggingSettings options) { ... }
}

To finalize, each of these classes is instantiated by the dependency injection container,
which means that we can use constructor injection! This works like a charm, and can be
seen in the following code snippet:

public PreConfigureLoggingSettings(IConfiguration configuration) { ... }

Configuration Chapter 2

[94]

This is true for IConfigureOptions<T>, IConfigureNamedOptions<T>, and
IPostConfigureOptions<T> as well.

And now, let's see some of the changes from previous versions.

Changes from version 2.x
The big change from version 2.0 was that, as of 2.1, the configuration is done by
convention—that is, the process of adding appsettings.json JSON files (generic and
optional per environment) and all that is hidden from the users.

This is defined in the WebHost.CreateDefaultBuilder method. You can, however, still
build your own ConfigurationBuilder and add whatever you like to it. To do this, you
call the ConfigureAppConfiguration method, as described in Chapter 1, Getting Started
with ASP.NET Core, and illustrated in the following code block:

Host
 .CreateDefaultBuilder(args)
 .ConfigureAppConfiguration(builder =>
 {
 var jsonSource = new JsonConfigurationSource { Path =
 "appsettings.json" };
 builder.Add(jsonSource);
 })
 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseStartup<Startup>();
 });

Or, if you just want to add a single entry to the configuration that is built by default (or, to
the one you're modifying), you call the UseSettings extension method, as follows:

Host
 .CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseSetting("key", "value");
 builder.UseStartup<Startup>();
 });

So, when the Startup class is instantiated, it will get passed an IConfiguration object
that is built from the code that you put in here.

Configuration Chapter 2

[95]

Warning: when using UseSetting, the value will be written to all
registered configuration providers.

After seeing how the application configuration is done, let's see how we can do the same
for the host.

Configuring the runtime host
.NET Core 3 introduced a not-so-well-known configuration mechanism that still has some
use: a runtime host configuration. The idea here is that you provide configuration settings,
as key-value pairs, in the .csproj file. You can retrieve them programmatically from the
AppContext class. Here is an example project file:

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <RuntimeHostConfigurationOption Include="Foo" Value="Bar" />
 </ItemGroup>
</Project>

The "Foo" setting is retrievable through a call to the GetData method of the AppContext
class, as illustrated in the following code snippet:

var bar = AppContext.GetData("Foo");

If the named entry does not exist, GetData just returns null. Mind you, GetData is
prototyped as returning an object, but in this case, it will return a string.

Normally, you wouldn't want to do that, but should you ever want to create or modify one
entry of a runtime host configuration setting, you can do that through the application
domain, as follows:

AppDomain.CurrentDomain.SetData("Foo", "ReBar");

Configuration Chapter 2

[96]

Mind you, this is not a replacement for a well-structured and properly defined
configuration. What .NET Core does is, at run and deployment time, it copies the contents
of the RuntimeHostConfigurationOption sections (and some more) to a
generated ${project}.runtimeconfig.json file that is placed together with the
generated binary.

We'll now see a new feature of ASP.NET Core: feature toggles.

Understanding feature toggling
.NET Core 3 introduced the Microsoft.FeatureManagement.AspNetCore library,
which is very handy for doing feature toggling. In a nutshell, a feature is either enabled or
not, and this is configured through the configuration (any source) by a Boolean switch.

For more complex scenarios, you can define a configuration to be made available for a
particular feature; this can be taken into consideration to determine whether or not it is
enabled.

Feature toggling can be applied to an action method by applying the [FeatureGate]
attribute with any number of feature names, as follows:

[FeatureGate("MyFeature1", "MyFeature2")]
public IActionResult FeactureEnabledAction() { ... }

When the [FeatureGate] attribute is applied to an action method and the feature is
disabled, any attempts to access it will result in an HTTP 404 Not Found result. It can take
any number of feature names and as well as an optional requirement type, which can be
either All or Any, meaning that either all features need to be enabled or at least one has to
be enabled. This is illustrated in the following code snippet:

[FeatureGate(RequirementType.All, "MyFeature1", "MyFeature2")]
public IActionResult FeactureEnabledAction() { ... }

Alternatively, this can be asked for explicitly, through an instance of an injected
IFeatureManager, as follows:

public HomeController(IFeatureManager featureManager)
{
 _featureManager = featureManager;
}

public async Task<IActionResult> Index()
{

Configuration Chapter 2

[97]

 var isEnabled = await _featureManager.IsEnabledAsync("MyFeature");
}

Of course, you can inject IFeatureManager anywhere. An example of this can be seen in
the following code snippet:

@inject IFeatureManager FeatureManager

@if (await FeatureManager.IsEnabledAsync("MyFeature")) {
 <p>MyFeature is enabled!</p>
}

But another option, on a view, would be to use the <feature> tag helper, like this:

<feature name="MyFeature">
 <p>MyFeature is enabled!</p>
</feature>

Similar to the [FeatureGate] attribute, you can specify multiple feature names in the
name attribute, and you can also specify one of Any or All in requirement. You can also
negate the value, as follows:

<feature name="MyFeature">
 <p>MyFeature is enabled!</p>
</feature>
<feature name="MyFeature" negate="true">
 <p>MyFeature is disabled!</p>
</feature>

This is useful—as you can see—because you can provide content for both when the feature
is enabled and when it is not.

Tag helpers need to be registered—this normally happens on the _ViewImports.cshtml
file, as follows:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

At the very least, we need to have the following configuration—for example—on an
appsettings.json file, for a feature named MyFeature:

{
 "FeatureManagement": {
 "MyFeature": true
 }
}

Configuration Chapter 2

[98]

The default is always false, meaning that the feature is disabled. Any changes done at
runtime to the configuration file are detected by the feature management library.

Setup is pretty straightforward—in the ConfigureServices method, just call the
AddFeatureManagement extension method. This is what registers the IFeatureManager
interface (plus a few others that we will see later), as follows:

services
 .AddFeatureManagement()
 .AddFeatureFilter<MyFeatureFilter>();

And there is another overload of AddFeatureManagement that takes as a parameter an
IConfiguration object, should you wish to build your own. Next, you need to register as
many feature filters as you want to use, with consecutive calls to AddFeatureFilter.

Included feature filters
The feature filters package includes the following filters:

PercentageFilter: This allows a certain defined percentage of items to pass.
TimeWindowFilter: A feature is enabled only during the defined date-and-time
window.

Each of these filters has its own configuration schema—let's have a look at each.

Percentage filter
The percentage filter takes as its sole parameter—well, the percentage we're interested in.
Every time it is invoked, it will return enabled approximately that percentage of times. The
configuration in the appsettings.json file should look like this:

"FeatureManagement": {
 "HalfTime": {
 "EnabledFor": [
 {
 "Name": "Microsoft.Percentage",
 "Parameters": {
 "Value": 50
 }
 }
]
 }
}

Configuration Chapter 2

[99]

You can see that you declare the name of the feature gate, "HalfTime", and the percentage
parameter—50, in this example.

You also declare the attribute, as follows:

[FeatureGate("HalfTime")]
public IActionResult Action() { ... }

Time window filter
This one allows a feature to be made available automatically when a certain date and time
comes. A configuration for Christmas Day looks like this:

"FeatureManagement": {
 "Christmas": {
 "EnabledFor": [
 {
 "Name": "Microsoft.TimeWindow",
 "Parameters": {
 "Start": "25 Dec 2019 00:00:00 +00:00",
 "End": "26 Dec 2019 00:00:00 +00:00"
 }
 }
]
 }
}

Notice the format of the date and time—this is culture-agnostic. You need to declare both
the start and end time, together with the name of the feature gate: "Christmas".

The feature gate declaration is illustrated in the following code snippet:

[FeatureGate("Christmas")]
public IActionResult Action() { ... }

Custom feature filters
Building a simple feature filter is straightforward—just implement IFeatureFilter,
which only has a single method, as follows:

[FilterAlias("MyFeature")]
public class MyFeatureFilter : IFeatureFilter
{
 public bool Evaluate(FeatureFilterEvaluationContext context)

Configuration Chapter 2

[100]

 {
 //return true or false
 }
}

Then, register it on ConfigureServices, like this:

services
 .AddFeatureManagement()
 .AddFeatureFilter<MyFeatureFilter>();

The FeatureFilterEvaluationContext class provides only two properties, as follows:

FeatureName (string): The name of the current feature
Parameters (IConfiguration): The configuration object that is used to feed
the feature filter

However, we can leverage the built-in dependency injection mechanism of .NET Core and
have it inject into our feature filter something such as IHttpContextAccessor, from
which we can gain access to the current HTTP context, and from it to pretty much anything
you need. This can be achieved as follows:

private readonly HttpContext _httpContext;

public MyFeatureFilter(IHttpContextAccessor httpContextAccessor)
{
 this._httpContext = httpContextAccessor.HttpContext;
}

You are also not limited to a yes/no value from the configuration—you can have rich
configuration settings. For example, let's see how we can have our own model in the
configuration file— although, for the sake of simplicity, we will make this a simple one.
Imagine the following simple class:

public class MySettings
{
 public string A { get; set; }
 public int B { get; set; }
}

We want to persist this class in a configuration file, like this:

{
 "FeatureManagement": {
 "MyFeature": {
 "EnabledFor": [
 {

Configuration Chapter 2

[101]

 "Name": "MyFeature",
 "Parameters": {
 "A": "AAAAA",
 "B": 10
 }
 }
]
 }
}

This configuration can be read from a custom feature inside the Evaluate method, like
this:

var settings = context.Parameters.Get<MySettings>();

The MySettings class is automatically deserialized from the configuration setting and
made available to a .NET class.

Consistency between checks
You may notice that for some features—such as the percentage feature—if you call it twice
during the same request, you may get different values, as illustrated in the following code
snippet:

var isEnabled1 = await _featureManager.IsEnabledAsync("HalfTime");
var isEnabled2 = await _featureManager.IsEnabledAsync("Halftime");

In general, you want to avoid this whenever your feature either does complex calculations
or some random operations, and you want to get consistent results for the duration of a
request. In this case, you want to use IFeatureManagerSnapshot instead of
IFeatureManager. IFeatureManagerSnapshot inherits from IFeatureManager but its
implementations cache the results in the request, which means that you always get the
same result. And IFeatureManagerSnapshot is also registered on the dependency
injection framework, so you can use it whenever you would use IFeatureManager.

Disabled features handler
When you try to access an action method that is decorated with a feature gate that targets a
feature (or features) that is disabled, then the action method is not reachable and, by
default, we will get an HTTP 403 Forbidden error. However, this can be changed by
applying a custom disabled features handler.

Configuration Chapter 2

[102]

A disabled features handler is a concrete class that implements
IDisabledFeaturesHandler, such as this one:

public sealed class RedirectDisabledFeatureHandler :
IDisabledFeaturesHandler
{
 public RedirectDisabledFeatureHandler(string url)
 {
 this.Url = url;
 }

 public string Url { get; }

 public Task HandleDisabledFeatures(IEnumerable<string> features,
 ActionExecutingContext context)
 {
 context.Result = new RedirectResult(this.Url);
 return Task.CompletedTask;
 }
}

This class redirects to a Uniform Resource Locator (URL) that is passed as a parameter.
You register it through a call to UseDisabledFeaturesHandler, as follows:

services
 .AddFeatureManagement()
 .AddFeatureFilter<MyFeatureFilter>()
 .UseDisabledFeaturesHandler(new
 RedirectDisabledFeatureHandler("/Home/FeatureDisabled"));

You can only register one handler, and that's all it takes. Whenever we try to access an
action method for which there is a feature gate defined that evaluates to false, it will be
called, and the most obvious response will be to redirect to some page, as we can see in the
example I gave.

In this section, we learned about a new feature of ASP.NET Core: feature toggling. This is a
streamlined version of configuration that is more suitable for on/off switches and has some
nice functionality associated. May you find it useful!

Configuration Chapter 2

[103]

Summary
Because JSON is the standard nowadays, we should stick with the JSON provider and
enable the reloading of the configuration upon changes. We should add the common file
first, and then optional overrides for each of the different environments (beware the order
in which you add each source). We learned how the default configuration of ASP.NET Core
already loads JSON files, including different ones for the different environments.

We then saw how to use configuration sections to better organize the settings, and we also
looked at using POCO wrappers for them.

So, this made us ponder whether we should use IOptions<T> or our own POCO classes to
inject configuration values. Well, if you don't want to pollute your classes or assemblies
with references to .NET Core configuration packages, you should stick to your POCO
classes. We're not too worried about this, so we recommend keeping the interface
wrappers.

We will use IOptionsSnapshot<T> instead of IOptions<T> so that we always get the
latest version of the configuration settings.

After this, we looked at feature toggling, to quickly enable or disable features that are just
on or off.

In this chapter, we saw the many ways in which we can provide configuration to an
ASP.NET Core application. We learned how to build a simple provider that takes
configuration from the Windows Registry. We then discussed the many ways in which we
can inject configuration settings using the built-in dependency injection framework, and
how to be notified of changes in the configuration sources.

Configuration Chapter 2

[104]

Questions
After reading the chapter, you should now be able to answer the following questions:

What is the root interface for retrieving configuration values?1.
What are the built-in file-based configuration providers in .NET Core?2.
Is it possible to bind configurations to POCO classes out of the box?3.
What is the difference between the IOptions<T> and IOptionsSnapshot<T>4.
interfaces?
Do we need to register the configuration object explicitly in the dependency5.
injection container?
How can we have optional configuration files?6.
Is it possible to get notifications whenever a configuration changes?7.

3
Routing

This chapter talks about routing, that is, the process by which ASP.NET Core translates a
user request into an MVC controller and action. This can be a complex process because
subtle changes in a request can lead to different endpoints (controller/action pairs) being
called. Several aspects need to be taken into account: the protocol (HTTP or HTTPS),
whether the user issuing the request is authenticated or not, the HTTP verbs, the path of the
request, the query string, and the actual types of the path and query string parameter
values.

Routing also defines what happens when a route is not matched, that is, the catch-all route,
and it can be used for complex situations where we need to define custom route constraints.

ASP.NET Core offers different ways by which we can configure routing, which can be
divided into convention-based and explicit configuration.

By the end of this chapter, you will be able to define routing tables and apply routing
configuration in all of the different ways made available by ASP.NET Core for MVC
applications.

The objectives of this chapter are listed here:

Understanding endpoint routing
Configuring routing
Understanding routing tables
Using route templates
Matching route parameters
Using dynamic routing
Learning route selection through attributes
Forcing host selection from attributes
Setting route defaults
Routing to inline handlers
Applying route constraints

Routing Chapter 3

[106]

Using route data tokens
Routing to areas
Using attributes for routing
Using routes for error handling

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all the
requirements, but you can also use Visual Studio Code, for example.

The source code can be retrieved from GitHub here: https:/ ​/​github. ​com/
PacktPublishing/​Modern- ​Web- ​Development- ​with- ​ASP. ​NET- ​Core- ​3-​Second- ​Edition

Getting started
In the old days of web applications, things were simple—if you wanted a page, you had to
have a physical one. However, things have since evolved and ASP.NET Core is now an
MVC framework. What does that mean? Well, in MVC, there are no such thing as physical
pages (although this is not exactly true); instead, it uses routing to direct requests to
route handlers. The most common route handlers in MVC are controller actions. After this
chapter, you will learn how to use routing to access your controller actions.

A request is just some relative URL, such as this:

/Search/Mastering%ASP.NET%Core
/Admin/Books
/Book/1

This results in more readable URLs, and is also advantageous for search engines such as
Google. The subject of optimizing a site—including its public URLs—for search engines is
called Search Engine Optimization (SEO).

When ASP.NET Core receives a request, one of the following two things can happen:

There is a physical file that matches the request.
There is a route that accepts the request.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Routing Chapter 3

[107]

In order for ASP.NET Core to serve physical files, it needs to be configured—for that, we
use the UseStaticFiles extension method in Configure, which adds the static files,
processing middleware to the pipeline; the call to UseStaticFiles is included in the
Visual Studio template for ASP.NET Core web applications. If we don't enable static file
serving, or if no file exists, the requests need to be handled by a route handler. The most
common route handler in MVC is a controller action.

A controller is a class that exposes an action that knows how to process a request. An
action is a method that may take parameters and returns an action result. A routing table
is what we use to direct requests to controller actions.

There are two APIs that we can use to register routes:

Fluent API (code)
Attributes

In previous versions, we had to explicitly add support for routing attributes, but they are
now first-class citizens of .NET Core. Let's go through them, starting with the routing table
concept.

Endpoint routing
Endpoint routing was introduced in ASP.NET Core 2.2 and is now the default mechanism
as of 3.0. The main advantage is that it supports many different mechanisms that, although
leveraging routing and middleware, are very different—MVC, Razor Pages, gRPC, Blazor,
SignalR, and whatnot. You still register the services you want in ConfigureServices and
then add the middleware to the pipeline using extension methods in the Configure
method. Endpoint routing makes the framework more flexible because it decouples route
matching and resolution from endpoint dispatching, which used to be all part of the MVC
functionality.

There are three required method calls:

AddRouting: Where we register the required services and optionally configure
some of its options (ConfigureServices)
UseRouting: Where we actually add the routing middleware (Configure); this
matches requests to an endpoint
UseEndpoints: Where we configure the endpoints to be made available
(Configure); this executes the matched endpoint

Routing Chapter 3

[108]

Now, on a Razor view (or page), if you want to generate a hyperlink on the fly that points
to an addressable resource, regardless of what it is (an action method, a Razor page, or
whatever else), you can just use the Url.RouteUrl overloaded method:

<!-- a Razor page -->
Admin

<!-- an action method on a controller -->
<a href="@Url.RouteUrl(new { action = "Contact", controller = "Home"
})">Contact

If, for any reason, you need to generate a link on a middleware component, you can inject a
LinkGenerator class. It exposes discrete methods that allow you to retrieve many
different types of URL information:

Get{Path,Uri}ByAction: Returns the full path (URL) to a controller's action
method
Get{Path,Uri}ByAddress: Returns the full path (URL) from a base path and
specified route values
Get{Path,Uri}ByName: Returns the full path (URL) from an endpoint name
and specified route values
Get{Path,Uri}ByPage: Returns the full path (URL) from a Razor page name
Get{Path,Uri}ByRouteValues: Returns the full path (URL) from a named
endpoint route and route values

The difference between the *Path and *Uri versions is that the former returns absolute
paths (for example, /controller/action) and the latter returns protocol-qualified full
paths (for example, http://host:8080/controller/action).

If you need to get the current endpoint, there is a new extension method, GetEndpoint
over HttpContext, which you can use for just that:

var endpoint = this.HttpContext.GetEndpoint();
var displayName = endpoint.DisplayName;
var metadata = endpoint.Metadata.ToArray();

The endpoint does not offer much, other than DisplayName and the Metadata collection.
DisplayName is the fully qualified name of the action method, including the class and the
assembly, unless a display name was set, and the Metadata collection contains all of the
metadata, including attributes and conventions, that was applied to the current action
method.

Routing Chapter 3

[109]

You can ask for a specific metadata interface using the Get<T> generic method; the
metadata-specific interfaces are as follows:

IDataTokensMetadata: This is used to get access for the data tokens (see the
next section for more on this).
IEndpointNameMetadata: This is used to get the optional endpoint name.
IHostMetadata: This is used to get host restrictions for the endpoint.
IHttpMethodMetadata: This is used to get method restrictions for the endpoint.
IRouteNameMetadata: This is used to get the route name specified when the
route table was defined.
ISuppressLinkGenerationMetadata: If this
interface's SuppressLinkGeneration property is set to true, then this
endpoint will not be considered when generating links, using
the LinkGenerator class.
ISuppressMatchingMetadata: If this interface's SuppressMatching property
is true, then the URL for this endpoint will not be considered for URL matching.

For example, say we want to get the current route name:

var routeName =
HttpContext.GetEndpoint().Metadata.Get<IRouteNameMetadata>();

Keep in mind that Get<> returns the first occurrence of any registered
metadata that implements the passed type.

We can add custom metadata and set the display name on an endpoint upon construction
like this:

app.UseEndpoints(endpoints =>
{
 endpoints
 .MapControllerRoute
 (
 name: "Default",
 pattern: "{controller=Home}/{action=Index}/{id?}",
)
 .WithDisplayName("Foo")
 .WithMetadata(new MyMetadata1(), new MyMetadata2());
});

Routing Chapter 3

[110]

This example shows a typical controller route with a display name set
(WithDisplayName) and also custom metadata (MyMetadata1 and MyMetadata2); these
classes are just for demo purposes.

Having seen how endpoint routing works, let's now see how we can configure the routing
table.

Route configuration
There are a few options we can configure for route generation, all of which are configured
through the AddRouting extension method over the services definition:

services.AddRouting(options =>
{
 options.LowercaseUrls = true;
 options.AppendTrailingSlash = true;
 options.ConstraintMap.Add("evenint", typeof(EvenIntRouteConstraint));
});

The RouteOptions class supports the following properties:

AppendTrailingSlash: Determines whether or not a trailing slash (/) should be
appended to all generated URLs; the default is false (meaning it shouldn't)
LowercaseUrls: Determines whether or not the generated URLs should be
lowercase; the default is false
ConstraintMap: Determines where constraints are mapped; more on this when
we talk about route constraints

But route configuration does not end here—the next section is actually the most important
one: Creating routing tables.

Creating routing tables
In Chapter 1, Getting Started with ASP.NET Core, we talked about the OWIN pipeline,
explaining that we use middleware to build this pipeline. It turns out that there is an MVC
middleware that is responsible for interpreting requests and translating them into
controller actions. To do this, we need a routing table.

Routing Chapter 3

[111]

There is only one routing table, as can be seen in this example from the default Visual
Studio template:

app.UseRouting();
app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

What do we see here? The UseEndpoints extension method of IApplicationBuilder
has a parameter that is an instance of IEndpointRouteBuilder, which lets us add routes
to it. A route essentially comprises the following components:

A name (default)
A template pattern ({controller=Home}/{action=Index}/{id?})
Optional default values for each routing parameter (Home, Index)

Also, we have some defaults:

If no controller is supplied for the URL, then Home is used as the default.
If no action is supplied, for any controller, then Index is used as the default.

There are some optional parameters that weren't shown in this example:

Optional routing parameter constraints
Optional data tokens
A route handler
A route constraints resolver

We will go through all of these in this chapter. This is the default MVC template, and this
call is identical to having this:

endpoints.MapDefaultControllerRoute();

As for the actual route, the name is just something that has meaning for us, and it is not
used in any way. More interesting is the template, which we will see in a moment.

For the record, if you wish to map only controllers, you should include the following call:

endpoints.MapControllers();

Routing Chapter 3

[112]

This will not include support for Razor Pages; for that, you need this:

endpoints.MapRazorPages();

Having said this, we can have multiple routes defined:

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");

 endpoints.MapControllerRoute(
 name: "admin",
 pattern: "admin/{controller}/{action=Index}");
});

In this example, we have two routes: the second maps a request starting with admin, and it
requires an explicit controller name, as it does not have a default. The action does have one
(Index).

Routes are searched in order; the first one that matches the request is
used.

Here we've seen how to map requests to resources that do exist. The following section
explains what to do when the requested resource does not exist!

Fallback endpoints
To define a fallback route—a route that is matched if no other route matches—we can have
a fallback to a page (any relative URL), with or without an area:

endpoints.MapFallbackToPage("/Admin");
endpoints.MapFallbackToAreaPage("/", "Admin");

Alternatively, we can have a fallback page with a file:

endpoints.MapFallbackToFile("index.html");

We can have a controller action, with or without an area:

endpoints.MapFallbackToController("Index", "Home");
endpoints.MapFallbackToAreaController("Index", "Home", "Admin");

Routing Chapter 3

[113]

Or, finally, we can have a delegate, which receives as its sole parameter the request context
(HttpContext), from which you can make a decision:

endpoints.MapFallback(ctx =>
{
 ctx.Response.Redirect("/Login");
 return Task.CompletedTask;
});

Each of these MapFallback* extension methods has an overload that has the first
parameter of type string that is called pattern. If this overload is used, the pattern
parameter can be used to restrict the fallback to requests that match this pattern. See this,
for example:

endpoints.MapFallbackToPage("/spa/{**path:nonfile}", "/Missing");

A fallback route should be the last entry on the endpoints routing table.

Let's now see how we can enhance the route by using special tokens in the route templates.

Using route templates
A template is a relative URL, so it mustn't start with a slash (/). In it, you define the
structure of your site, or, more accurately, the structure that you intend to make available.
As ASP.NET Core is an MVC framework, the template should describe how to map the
request to an action method in a controller. The following is the template:

{controller=Home}/{action=Index}/{id?}

It consists of sections separated by slashes, where each section has some tokens (inside
curly braces).

Another example would be this:

sample/page

Here it is not clear what we want, as there are no mentions of controller or action.
However, this is a perfectly valid template, and the required information needs to come
from elsewhere.

Routing Chapter 3

[114]

A template can have the following elements:

Alphanumeric literals
String fragments inside curly braces ({}), which are named tokens and can be
mapped to action method parameters
Named tokens with equal assignments (=) have default values, in case the token
is not supplied in the URL; it doesn't make sense to have a token with a default
value followed by a required token without
Tokens that end with a question mark (?), which are optional, meaning they are
not required; optional tokens cannot be followed by required tokens
Tokens that start with a star (*), which are entirely optional and match anything;
they need to be the last element in the template

Tokens are always alphanumeric character segments and can be separated by separator
symbols (/, ?, -, (,), and so on). However, you don't need to use separators; the following
is perfectly valid—notice the lack of a slash between the action and id tokens:

{controller=Admin}/{action=Process}{id}

Another slightly more complex example follows, which involves adding a catch-all token
querystring:

{controller=Admin}/{action=Process}/{?id}?{*querystring}

This template will match the following URLs:

URL Parameters

/

controller: Admin
action: Process
id: N/A
querystring: N/A

/Account

controller: Account
action: Process
id: N/A
querystring: N/A

/Admin/Process

controller: Admin
action: Process
id: N/A
querystring: N/A

Routing Chapter 3

[115]

/Admin/Process/1212

controller: Admin
action: Process
id: 1212

/Admin/Process/1212?force=true

controller: Admin
action: Process
id: 1212
querystring: force=true

Yet another perfectly valid example would be this:

api/{controller=Search}/{action=Query}?term={term}

That would match the following:

api?term=.net+core
api/Search?term=java
api/Search/Query?term=php

Note that any literals must be present exactly the same way as shown, in the URL,
regardless of the casing.

Now, let's see how the route parameters specified in templates are matched.

Matching route parameters
Remember that a template needs to have a controller token and an action token; these
are the only required tokens and have special meaning. A controller will match a controller
class and an action will match one of its public methods. Any other template parameter will
match the parameter of the same name in the action method. For example, take a route with
the following template:

{controller=Search}/{action=Query}/{phrase}

That route will map to this Query method in a class called SearchController:

public IActionResult Query(string phrase) { ... }

By convention, the name of the controller in a template does not take the
Controller suffix.

Routing Chapter 3

[116]

If a route token is optional, then it must map to a parameter that has a default value:

{controller=Account}/{action=List}/{page?}

A matching method would have the following signature:

public IActionResult List(int page = 0)

Notice that the page parameter is an int instance that has a default value of 0. This might
be used, for example, for paging, where the default page is the first one (zero-based). This
would be the same as having a token with a default of 0 and mapping it to a parameter
without a default value.

So far, we've only seen how we can map simple values of strings or basic types; we will
soon see how we can use other types.

We've mentioned that the action parameter is required, but, although this is true in a way,
its value may be skipped. In this case, ASP.NET Core will use a value from the HTTP action
header, such as GET, POST, PUT, DELETE, and so on. This is particularly useful in the case of
web APIs and is often very intuitive. So, for example, take a route with a template such as
this:

api/{controller}/{id}

Say it has a request of this:

GET /api/Values/12

It can be mapped to a method such as this, in a controller named ValuesController:

public IActionResult Get(int id) { ... }

So, we just learned how template parameters are matched from templates to controller
classes' methods. Now we will learn about dynamic routing, where the mapping is not pre-
defined.

Using dynamic routing
Up until now, we've seen routing tables that statically map route templates to controller
actions, but there is another kind: dynamic routes. In this case, we are still using route
templates, but the thing is, we can change them dynamically.

Routing Chapter 3

[117]

A dynamic route handler is registered through a call to MapDynamicControllerRoute. I
will provide an example that uses a translation service to translate the controller and action
names supplied by the user, in any language to plain English, as they exist in the project.

Let's start from the beginning. We define the interface for the translation service:

public interface ITranslator
{
 Task<string> Translate(string sourceLanguage, string term);
}

As you can see, this has a single asynchronous method, Translate, that takes two
parameters: the source language and the term to translate. Let's not waste much time with
this.

The core dynamic routing functionality is implemented as a class inheriting
from DynamicRouteValueTransformer. Here is an example of one such class, followed
by its explanation:

public sealed class TranslateRouteValueTransformer :
DynamicRouteValueTransformer
{
 private const string _languageKey = "language";
 private const string _actionKey = "action";
 private const string _controllerKey = "controller";

 private readonly ITranslator _translator;

 public TranslateRouteValueTransformer(ITranslator translator)
 {
 this._translator = translator;
 }

 public override async ValueTask<RouteValueDictionary> TransformAsync(
 HttpContext httpContext, RouteValueDictionary values)
 {
 var language = values[_languageKey] as string;
 var controller = values[_controllerKey] as string;
 var action = values[_actionKey] as string;

 controller = await this._translator.Translate(
 language, controller) ?? controller;
 action = await this._translator.Translate(language, action)
 ?? action;

 values[_controllerKey] = controller;
 values[_actionKey] = action;

Routing Chapter 3

[118]

 return values;
 }
}

The TranslateRouteValueTransformer class receives on its constructor an instance of
ITranslator, which it saves as a local field. On the TransformAsync method, it retrieves
the values for the route template values, language, controller, and action;
for controller and action, it has them translated by ITranslator. The resulting
values are then stored again in the route values dictionary, which is returned in the end.

To make this work, we need three things:

We need to register ITranslator as a service in ConfigureServices:1.

services.AddSingleton<ITranslator, MyTranslator>();
//MyTranslator is just for demo purposes, you need to roll out your
own dictionary implementation

We need to register TranslateRouteValueTransformer as a service too:2.

services.AddSingleton<TranslateRouteValueTransformer>();

And finally, we need to register a dynamic route:3.

app.UseEndpoints(endpoints =>
{
endpoints.MapDynamicControllerRoute<TranslateRouteValueTransformer>
(
 pattern: "{language}/{controller}/{action}/{id?}");
 //now adding the default route
 endpoints.MapDefaultControllerRoute();
});

As you can see, our dynamic route looks for a pattern of
language/controller/action/id, where the id part is optional. Any request that can
be mapped to this pattern will fall into this dynamic route.

Keep in mind that the purpose of dynamic routes is not to change the route pattern, but just
to change the route template tokens. This will not cause any redirect, but will actually
determine how the request is to be processed, the action method and the controller, and any
other route parameters.

Routing Chapter 3

[119]

To bring this section to a close, this example allows the resolution of these routes, provided
that the dictionary supports French (fr), German (de), and Portuguese (pt):

/fr/Maison/Index to /Home/Index
/pt/Casa/Indice to /Home/Index
/de/Zuhause/Index to /Home/Index

You can have multiple dynamic routes with different patterns; this is
perfectly OK.

Having learned about dynamic routes, let's go back to static routes, this time using
attributes in classes and methods to define the routes.

Selecting routes from attributes
ASP.NET Core, or rather, the routing middleware, will take the request URL and check for
all the routes it knows about, to see whether any match the request. It will do so while
respecting the route insertion order, so be aware that your request may accidentally fall into
a route that isn't the one you were expecting. Always add the most specific ones first, and
then the generic ones.

After a template is found that matches the request, ASP.NET Core will check whether there
is an available action method on the target controller that does not have a
NonActionAttribute instance that forbids a method to be used as an action, or has an
attribute inheriting from HttpMethodAttribute that matches the current HTTP verb.
These are listed here:

HttpGetAttribute

HttpPostAttribute

HttpPutAttribute

HttpDeleteAttribute

HttpOptionsAttribute

HttpPatchAttribute

HttpHeadAttribute

All of them inherit from HttpMethodAttribute: this is the root class to use for filtering
based on the HTTP verb.

Routing Chapter 3

[120]

If any of these is found, then the route will only be selected if the HTTP verb matches one of
the verbs specified. There can be many attributes, meaning the action method will be
callable using any of the HTTP verbs specified.

There are other HTTP verbs, but ASP.NET Core only supports these out of
the box. If you wish to support others, you need to subclass
HttpMethodAttribute and supply your list or use
ActionVerbsAttribute. Interestingly, ASP.NET Core—as before in the
ASP.NET web API—offers an alternative way of locating an action
method: if the action token is not supplied, it will look for an action
method whose name matches the current HTTP verb, regardless of the
casing.

You can use these attributes to supply different action names, which allows you to use
method overloading. For example, if you have two methods with the same name that take
different parameters, the only way to differentiate between them is by using different
action names:

public class CalculatorController
{
 //Calculator/CalculateDirectly
 [HttpGet(Name = "CalculateDirectly")]
 public IActionResult Calculate(int a, int b) { ... }

 //Calculator/CalculateByKey
 [HttpGet(Name = "CalculateById")]
 public IActionResult Calculate(Guid calculationId) { ... }
}

If that's not possible, then you can use different target HTTP verbs:

//GET Calculator/Calculate
[HttpGet]
public IActionResult Calculate(int a, int b) { ... }

//POST Calculator/Calculate
[HttpPost]
public IActionResult Calculate([FromBody] Calculation calculation) { ... }

Of course, you can limit an action method—or the whole controller—so that it can only be
accessed if the request is authenticated by using AuthorizeAttribute. We won't go over
that here, as it will be discussed in Chapter 11, Security.

Routing Chapter 3

[121]

It is worth noting, however, that even if the whole controller is marked with
AuthorizeAttribute, individual actions can still be accessible if they bear
AllowAnonymousAttribute:

[Authorize]
public class PrivateController
{
 [AllowAnonymous]
 public IActionResult Backdoor() { ... }
}

Another option is to constrain an action based on the content type of the request. You use
ConsumesAttribute for that purpose, and you can apply it as follows:

[HttpPost]
[Consumes("application/json")]
public IActionResult Process(string payload) { ... }

For an explanation of what content types are, please see https:/ ​/​www. ​w3.
org/​Protocols/ ​rfc1341/ ​4_​Content- ​Type. ​html.

Another attribute that contributes to the route selection is RequireHttpsAttribute. If it's
present in a method or controller class, a request is only accepted if it comes through
HTTPS.

Finally, there are route constraints. These are generally used to validate the tokens passed
in the request, but they can be used to validate the request as a whole. We will discuss them
shortly.

So, the sequence is as follows:

Find the first template that matches the request.1.
Check that a valid controller exists.2.
Check that a valid action method exists in the controller, either by action name or3.
by verb matching.
Check that any constraints present are valid.4.
Check that any attributes that contribute to the route selection5.
(AuthorizeAttribute, NonActionAttribute, ConsumesAttribute,
ActionVerbsAttribute, RequireHttpsAttribute, and
HttpMethodAttribute) all are valid.

We will see how constraints can affect route selection shortly.

https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html

Routing Chapter 3

[122]

Using special routes
The following routes are special because they have a particular meaning to ASP.NET Core:

[HttpGet("")]: This is the controller's default action; only one can be defined.
If applied on a method without required parameters, it will be the default action
for the whole app.
[HttpGet("~/")]: This is the application's default action for the default
controller: it maps to the root of the application (for example, /).

So, if you set [HttpGet("")] on a controller's action method and do not define any other
route, then it will be the default action for that controller, and if you set
[HttpGet("~/")] with no routing table, then it will be the default action and the default
controller.

The next section explains how to restrict a route based on the calling host and/or the
server's port.

Host selection from attributes
Starting in ASP.NET 3, it is also possible to restrict a route based on the host header and
port. You can either do that through attributes or by using fluent (code-based)
configuration.

Here's an example of using attributes:

[Host("localhost", "127.0.0.1")]
public IActionResult Local() { ... }

[Host("localhost:80")]
public IActionResult LocalPort80() { ... }

[Host(":8080")]
public IActionResult Port8080() { ... }

We have three examples of using the [Host] attribute here:

The first one makes the Local action method reachable only if the local header is1.
localhost or 127.0.0.1; any number of host headers can be provided.
The second example demands a combination of host header and port, in this2.
case, 80.
The final one just expects port 8080.3.

Routing Chapter 3

[123]

The [Host] attribute can, of course, be combined with any [Http*] or [Route] ones.

Here's how to do this through code:

endpoints.MapControllerRoute("Local",
"Home/Local").RequireHost("localhost", "127.0.0.1");

This example only accepts requests from either "localhost" or "127.0.0.1" (generally
these are synonyms) for the given route.

Now, the next topic will be how to specify defaults for route template parameters.

Setting route defaults
We've seen how we can specify default values for route parameters in the template, but
there's also another way: by overloading the MapControllerRoute extension method that
takes an object containing default values. Instead of supplying these defaults as strings, you
can have this:

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" });
});

This is valid even if you don't have the tokens in the route, as follows:

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "My/Route",
 defaults: new { controller = "My", action = "Route" });
});

Remember that you do have to supply controller and action; if they are not present in
the template, they need to be supplied as defaults.

The next section delves into the inner workings of routes and how we can work around
with requests.

Routing Chapter 3

[124]

Routing to inline handlers
It is possible in ASP.NET Core to handle a request directly, that is, to not route to a
controller action. We define inline handlers by using an extension method that specifies the
HTTP verb and the template to match, as follows:

MapGet: HTTP Get
MapPost: HTTP Post
MapPut: HTTP Put
MapDelete: HTTP Delete
MapVerb: Any named HTTP verb; for example, Get is the same as using MapGet

There are actually two extension methods, MapXXX and MapXXXMiddleware, the first
taking a delegate and the second a middleware class. An example follows.

These methods offer two possible signatures (except for Map<verb>, which takes the HTTP
verb) and take the following parameters:

pattern: This is a route template.
requestHandler: This is a handler that takes the current context
(HttpContext) and returns a task.

Here are two examples. In the first, we are merely setting the response content type and
writing some text to the output:

endpoints.MapGet(
 pattern: "DirectRoute",
 requestDelegate: async ctx =>
 {
 ctx.Response.ContentType = "text/plain";
 await ctx.Response.WriteAsync("Here's your response!");
 });

Here, we are adding a middleware to the response:

var newAppBuilder = endpoints.CreateApplicationBuilder();
newAppBuilder.UseMiddleware<ResponseMiddleware>();

endpoints.MapGet(
 pattern: "DirectMiddlewareRoute", newAppBuilder.Build());

Routing Chapter 3

[125]

ResponseMiddleware could be something like this:

public class ResponseMiddleware
{
 private readonly RequestDelegate _next;

 public ResponseMiddleware(RequestDelegate next)
 {
 this._next = next;
 }

 public async Task InvokeAsync(HttpContext ctx)
 {
 await ctx.Response.WriteAsync("Hello, from a middleware!");
 }
}

When using MapMiddlewareXXX, you can't return the next delegate, as it
is meant to be the only response.

The two approaches, using a handler or the application builder, are similar, as the former
gives us direct access to the request context, while the latter allows us to add steps to the
request pipeline for a particular route template. It all depends on what you want to do.

You cannot mix direct handlers with controllers: the first handler that is
picked up in the routing table will be processed, and no other. So, for
example, if you have MapGet followed by MapControllerRoute for the
same template, the handler or action specified in MapGet will be
processed, but not the controller in MapControllerRoute.

Now that we understand how to handle routing requests, next we'll learn how to constrain
the applicability of a route.

Routing Chapter 3

[126]

Applying route constraints
When we define a route template or pattern, we may also want to specify how that route
shall be matched, which is constraining it. We can constrain a route in a number of ways,
such as these:

The request needs to match a given HTTP method.
The request needs to match a given content type.
Its parameters need to match certain rules.

A constraint can be expressed in the route template or as a discrete object, using the
MapControllerRoute method. If you choose to use the route template, you need to
specify its name next to the token to which it applies:

{controller=Home}/{action=Index}/{id:int}

Notice {id:int}: this constrains the id parameter to an integer, and is one of the provided
constraints that we will talk about in a moment. Another option is to make use of the
defaults parameter:

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" },
 constraints: new { id = new IntRouteConstraint() });
});

You should be able to guess that the anonymous class that is passed in the constraints
parameter must have properties that match the route parameters.

Following on from this example, you can also pass constraints that are not bound to any
route parameter, but instead perform some kind of bespoke validation, as follows:

endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" },
 constraints: new { foo = new BarRouteConstraint() });

In this case, the BarRouteConstraint constraint class will still be called and can be used
to invalidate a route selection.

Routing Chapter 3

[127]

HTTP methods
As we said earlier, in order to make an action method available to only some HTTP verbs or
a specific content type, you can use one of the following:

HttpGetAttribute

HttpPostAttribute

HttpPutAttribute

HttpDeleteAttribute

HttpOptionsAttribute

HttpPatchAttribute

HttpHeadAttribute

ActionVerbsAttribute

ConsumesAttribute

The names should be self-explanatory. You can add attributes for different verbs, and if any
of them is present, the route will only match if its verb matches one of these attributes.
ActionVerbsAttribute lets you pass a single method, or a list of methods, that you wish
to support. ConsumesAttribute takes a valid content type.

Default constraints
ASP.NET Core includes the following constraints:

Constraint Purpose Example
alpha
(AlphaRouteConstraint)

Limits the text to alphanumeric
characters, that is, excluding symbols {term:alpha}

bool (BoolRouteConstraint) Is only true or false {force:bool}

datetime
(DateTimeRouteConstraint)

Gives a date or date and time pattern {lower:datetime}

decimal
(DecimalRouteConstraint)

Includes decimal values {lat:decimal}

double
(DoubleRouteConstraint)

Includes double precision floating
point values {precision:double}

exists
(KnownValueRouteConstraint)

Forces a route token to be present {action:exists}

float
(FloatRouteConstraint)

Includes single precision floating
point values {accuracy:float}

guid (GuidRouteConstraint) Includes GUIDs {id:guid}

int (IntRouteConstraint) Includes integer values {id:int}

Routing Chapter 3

[128]

length
(LengthRouteConstraint)

Includes a constrained string {term:length(5,10)

long (LongRouteConstraint) Includes a long integer {id:long}

max (MaxRouteConstraint) This is the maximum value for an
integer {page:max(100)}

min (MinRouteConstraint) This is the minimum value for an
integer {page:min(1)}

maxlength
(MaxLengthRouteConstraint)

Includes any alphanumeric string up
to a maximum length {term:maxlength(10)}

minlength
(MinLengthRouteConstraint)

Includes any alphanumeric string
with a minimum length {term:minlength(10)}

range
(RangeRouteConstraint)

Includes an integer range {page:range(1,100)}

regex
(RegexRouteConstraint)

A regular expression {isbn:regex(^d{9}[d|X]$)}

required
(RequiredRouteConstraint)

Includes a required value, that must
physically exist {term:required}

A route parameter can take many constraints at once, separated by :, as here:

Calculator/Calculate({a:int:max(10)},{b:int:max(10)})

In this example, the a and b parameters need to be integers and have a maximum value of
10, at the same time. Another example follows:

Book/Find({isbn:regex(^d{9}[d|X]$)])

This will match an ISBN string starting with nine digits and followed by either a trailing
digit or the X character.

It is also possible to provide your own custom constraints, which we will see next.

Creating custom constraints
A constraint is any class that implements IRouteConstraint. If it is meant to be used
inline in a route template, then it must be registered. Here's an example of a route
constraint for validating even numbers:

public class EvenIntRouteConstraint : IRouteConstraint
{
 public bool Match(
 HttpContext httpContext,
 IRouter route,
 string routeKey,

Routing Chapter 3

[129]

 RouteValueDictionary values,
 RouteDirection routeDirection)
 {
 if ((!values.ContainsKey(routeKey)) || (values[routeKey] == null))
 {
 return false;
 }

 var value = values[routeKey].ToString();

 if (!int.TryParse(value, out var intValue))
 {
 return false;
 }

 return (intValue % 2) == 0;
 }
}

You should be able to tell that all route parameters are provided in the values collection
and that the route parameter name is in routeKey. If no route parameter is actually
supplied, it will just return false, as it will if the parameter cannot be parsed into an
integer. Now, to register your constraint, you need to use the AddRouting method shown
earlier this chapter:

services.AddRouting(options =>
{
 options.ConstraintMap.Add("evenint", typeof(EvenIntRouteConstraint));
});

This is actually the same as retrieving RouteOptions from the registered configuration:

services.Configure<RouteOptions>(options =>
{
 //do the same
});

That's all there is to it.

If you wish to use a route constraint to validate a URL—or any of the request
parameters—you can use a route constraint not bound to a route key:

public class IsAuthenticatedRouteConstraint : IRouteConstraint
{
 public bool Match(
 HttpContext httpContext,
 IRouter route,

Routing Chapter 3

[130]

 string routeKey,
 RouteValueDictionary values,
 RouteDirection routeDirection)
 {
 return httpContext.Request.Cookies.ContainsKey("auth");
 }
}

Granted, there are other (even better) ways to do this; this was only included as an
example.

Now we can use it like this, in a route:

Calculator/Calculate({a:evenint},{b:evenint})

If, on the other hand, you prefer to use the constraint classes directly in your
MapControllerRoute calls, you do not need to register them. Regardless, the route
constraint collection is available as the IInlineConstraintResolver service:

var inlineConstraintResolver = routes
 .ServiceProvider
 .GetRequiredService<IInlineConstraintResolver>();

If you wish to specify custom route constraints in routing attributes, you
will need to register them.

In this chapter, we've seen how to define constraints for route tokens, including creating
our own, which can be very useful for validating URLs upfront. The next section explains
what data tokens are.

Route data tokens
A route data token, as opposed to a route token or route parameter, is just some arbitrary
data that you supply in a routing table entry and is available for use in the route handling
pipeline, including the MVC action method. Unlike route tokens, route data tokens can be
any kind of object, not just strings. They have absolutely no meaning for MVC, and will just
be ignored, but they can be useful, because you can have multiple routes pointing to the
same action method, and you may want to use data tokens to find out which route
triggered the call.

Routing Chapter 3

[131]

You can pass a data token as follows:

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" },
 constraints: null,
 dataTokens: new { foo = "bar" });
});

You can also retrieve them from the IDataTokensMetatata metadata item, as from inside
a controller action:

public class HomeController : Controller
{
 public IActionResult Index()
 {
 var metadata = this.HttpContext.GetEndpoint().Metadata.
 GetMetadata<IDataTokensMetadata>();
 var foo = metadata?.DataTokens["foo"] as string;
 return this.View();
 }
}

Because the DataTokens values are prototyped as object, you need to know what you
will be retrieving. Also, be aware, the GetMetadata<IDataTokensMetadata>() method
may return null if no data tokens were set!

There is no way to change the values of data tokens. Plus, the old RouteData property of
the ControllerBase class and the GetRouteData extension method over HttpContext
are now obsolete and may be removed in a future version of ASP.NET Core.

Finally, let's move on and see how we can configure routing to areas.

Routing to areas
MVC has supported the concept of areas for a long time. Essentially, areas are for
segregating and organizing controllers and views, so that, for example, you can have
identically named controllers in different areas.

Visual Studio lets you create folders in a project and then add controllers and views to
them. You can mark these folders as areas.

Routing Chapter 3

[132]

Where routing is concerned, areas add another route token, appropriately named area, to
controller and action. If you are to use areas, you will likely have another segment in
your template, such as this:

Products/Phones/Index
Reporting/Sales/Index

Here, Products and Reporting are areas. You need to map them to routes so that they are
recognized by MVC. You can use the MapControllerRoute extension method, but you
will need to supply the area token as follows:

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{area:exists}/{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" });
});

You can also use the MapAreaControllerRoute extension method, which takes care of
adding the area parameter:

endpoints.MapAreaControllerRoute(
 name: "default",
 areaName: "Products",
 pattern: "List/{controller}/{action}/{id?}",
 defaults: new { controller = "Phones", action = "Index" });

This route will map a request of List/Phones/Index to an Index action method of a
PhonesController controller inside the Products area.

That's it for areas. Let's now have a look at routing attributes.

Using routing attributes
An alternative to adding routes to a routing table is using routing attributes. Routing
attributes existed before ASP.NET Core and were even around in ASP.NET MVC and Web
API. If we want to have routing attributes automatically recognized by ASP.NET Core, we
need to do this:

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllers();
});

Routing Chapter 3

[133]

In the following sections, we will learn about a few routing attributes and see how to apply
them.

Let's see how we can define routes with attributes.

Defining routes
These attributes are used to define routes and can be composed together; if we add a
routing attribute to a class and another to one of its methods, the actual route will result
from both of them.

The most obvious use of routing attributes would be to decorate an action method, as
follows:

[Route("Home/Index")]
public IActionResult Index() { ... }

If, for example, you have many actions in the same controller and you wish to map them all
using the same prefix (Home), you can do the following:

[Route("Home")]
public class HomeController
{
 [Route("Index")]
 public IActionResult Index() { ... }

 [Route("About")]
 public IActionResult About() { ... }
}

In previous (non-Core) versions of MVC and Web API, you could use
RoutePrefixAttribute for this purpose. Now, RouteAttribute takes
care of both cases.

Routes are additive, which means if you specify a route in a controller and then on an
action method, you will get both, as in Home/Index or Home/About.

As you can see, the route parameter in the HomeController class matches the
conventional name for the controller (Home). Because of this, we can also use the
[controller] special token:

[Route("[controller]")]
public class HomeController { ... }

Routing Chapter 3

[134]

For an API controller, we can use this:

[Route("api/[controller]")]
public class ServicesController { ... }

In addition, each of the actions is mapped with a name that exactly matches the method's
name. Likewise, we can use [action]:

[Route("[action]")]
public IActionResult Index() { ... }

[Route("[action]")]
public IActionResult About() { ... }

Multiple route attributes can be passed, so that the action method will respond to different
requests:

[Route("[action]")]
[Route("")]
[Route("Default")]
public IActionResult Index() { ... }

The Index method will be callable by any one of the following requests:

/Home
/Home/Index
/Home/Default

Notice that the Home part comes from the route attribute applied at the class level. If, on the
other hand, you specify a slash in the template, you make the template absolute; this
template will look as follows:

[Route("Default/Index")]
public IActionResult Index() { ... }

This can only be accessed as follows:

/Default/Index

If you want to take the controller into consideration, you should either name it explicitly in
the template or use the [controller] special token:

[Route("[controller]/Default/Index")]
public IActionResult Index() { ... }

This will be accessible as follows:

/Home/Default/Index

Routing Chapter 3

[135]

The [controller] and [action] tokens are for when we want to use
constants for routes. These constants have the potential to be used in lots
of places, as they are not stuck to specific actions and controllers. They
were not available in previous versions of ASP.NET MVC or Web API.

Default routes
With routing attributes, you can specify the default controller by applying
RouteAttribute with a blank template:

[Route("")]
public class HomeController { ... }

The default action in a controller will also be the one with an empty template, as follows:

[Route("")]
public IActionResult Index() { ... }

If there is no method with an empty route template, ASP.NET Core will try to find one with
a name matching the current HTTP method.

Constraining routes
You can also specify route constraints, and the syntax is identical to what we've seen before:

[Route("Calculate({a:int},{b:int})")]
public IActionResult Calculate(int a, int b) { ... }

Defining areas
You can define routes that include areas too, by applying AreaAttribute to a controller:

[Area("Products")]
[Route("[controller]")
public class ReportingController { ... }

Similar to [controller] and [action], there is also the special [area] token that you
can use in your templates to indicate the current area, as inferred from the filesystem:

[Route("[area]/Default")]
public IActionResult Index() { ... }

Routing Chapter 3

[136]

Specifying action names
You can specify an action name for a controller method, through ActionNameAttribute,
as follows:

[ActionName("Default")]
public IActionResult Index() { ... }

You can also do this through any one of the HTTP verb selection attributes
(HttpGetAttribute, HttpPostAttribute, HttpPutAttribute,
HttpOptionsAttribute, HttpPatchAttribute, HttpDeleteAttribute or
HttpHeadAttribute):

[HttpGet(Name = "Default")]
public IActionResult Index() { ... }

Please do remember that you cannot specify a route template and an
action name at the same time, as this will result in an exception being
thrown at startup time when ASP.NET Core scans the routing attributes.
Also, do not specify ActionNameAttribute and a verb selection
attribute at the same time as specifying the action name.

Defining non-actions
If you want to prevent a public method in a controller class from being used as an action,
you can decorate it with NonActionAttribute:

[NonAction]
public IActionResult Process() { ... }

Restricting routes
When we talked about route constraints, we saw that we can restrict an action method so
that it is only callable if one or more the following conditions are met:

It matches a given HTTP verb (ActionVerbsAttribute, Http*Attribute).
It is called using HTTPS (RequireHttpsAttribute).
It is called with a given content type (ConsumesAttribute).

We won't go into this in any further detail, as this has been explained before.

Routing Chapter 3

[137]

Setting route values
It is possible to supply arbitrary route values in an action method. This is the purpose of
the RouteValueAttribute abstract class. You need to inherit from it:

public class CustomRouteValueAttribute : RouteValueAttribute
{
 public CustomRouteValueAttribute(string value) : base("custom", value)
{ }
}

Then, apply and use it as follows:

[CustomRouteValue("foo")]
public IActionResult Index()
{
 var foo = this.ControllerContext.RouteData.Values["foo"];
 return this.View();
}

AreaAttribute is an example of a class inheriting from
RouteValueAttribute. There is no way to pass arbitrary route data
tokens through attributes.

As you can see, quite a lot can be achieved through attributes. That also includes error
handling; let's see more about that now.

Error handling in routing
What do we do with errors—exceptions caught during the processing of a request, for
example, when a resource is not found? You can use routing for this. Here, we will present
a few strategies:

Routing
Adding a catch-all route
Showing developer error pages
Using the status code pages middleware

We will learn about these in the following sections.

Routing Chapter 3

[138]

Routing errors to controller routes
You can force a specific controller's action to be called when an error occurs by
calling UseExceptionHandler:

app.UseExceptionHandler("/Home/Error");

What you put in this view (Error) is entirely up to you, mind you.

You can even do something more interesting, that is, register middleware to execute upon
the occurrence of an error, as follows:

app.UseExceptionHandler(errorApp =>
{
 errorApp.Run(async context =>
 {
 var errorFeature = context.Features.Get<IException
 HandlerPathFeature>();
 var exception = errorFeature.Error; //you may want to check what
 //the exception is
 var path = errorFeature.Path;
 await context.Response.WriteAsync("Error: " + exception.Message);
 });
});

You will need to add a using reference for
the Microsoft.AspNetCore.Http namespace in order to use the
WriteAsync method.

The IExceptionHandlerPathFeature feature allows you to retrieve the exception that
occurred and the request path. Using this approach, you have to generate the output
yourself; that is, you do not have the benefit of having an MVC view.

Next, we will how we can show user-friendly error pages.

Using developer exception pages
For running in development mode, you are likely to want a page that shows developer-
related information, in which case, you should call UseDeveloperExceptionPage instead:

app.UseDeveloperExceptionPage();

Routing Chapter 3

[139]

This will show the exception message, including all request properties and the stack trace,
based on a default template that also contains environment variables. It is normally only
used for the Development environment, as it may contain sensitive information that could
potentially be used by an attacker.

Since .NET Core 3, it is possible to tweak the output of this, by means of
an IDeveloperPageExceptionFilter implementation. We register one in the
Dependency Injection container and either provide our own output in the
HandleExceptionAsync method or just return the default implementation:

services.AddSingleton<IDeveloperPageExceptionFilter,
CustomDeveloperPageExceptionFilter>();

This method is very simple: it receives an error context and a delegate that points to the
next exception filter in the pipeline, which is normally the one that produces the default
error page:

class CustomDeveloperPageExceptionFilter : IDeveloperPageExceptionFilter
{
 public async Task HandleExceptionAsync(ErrorContext
 errorContext, Func<ErrorContext, Task> next)
 {
 if (errorContext.Exception is DbException)
 {
 await errorContext.HttpContext.Response.WriteAsync("Error
 connecting to the DB");
 }
 else
 {
 await next(errorContext);
 }
 }
}

This simple example has conditional logic that depends on the exception and either sends a
custom text or just delegates to the default handler.

Using a catch-all route
You can add a catch-all route by adding an action method with a route that will always
match if no other does (like the fallback page in the Fallback endpoints section). For example,
we can use routing attributes as follows:

[HttpGet("{*url}", Order = int.MaxValue)]
public IActionResult CatchAll()

Routing Chapter 3

[140]

{
 this.Response.StatusCode = StatusCodes.Status404NotFound;
 return this.View();
}

The same, of course, can be achieved with fluent configuration, in the Configure method:

app.UseEndpoints(endpoints =>
{
 //default routes go here
 endpoints.MapControllerRoute(
 name: "CatchAll",
 pattern: "{*url}",
 defaults: new { controller = "CatchAll", action = "CatchAll" }
);
});

Here, all you need to do is add a nice view with a friendly error message! Be aware that the
other actions in the same controller also need to have routes specified; otherwise, the
default route will become CatchAll!

Fallback pages are a simpler alternative to catch-all routes.

Using status code pages middleware
Let's see now how we can respond to errors with HTTP status codes, the standard way of
returning high-level responses to the client.

Status code pages
A different option is to add code in response to a particular HTTP status code between
400 Bad Request and 599 Network Connect Time Out that does not have a body (has not
been handled), and we do that through UseStatusCodePages:

app.UseStatusCodePages(async context => {
context.HttpContext.Response.ContentType = "text/plain";
 var statusCode = context.HttpContext.Response.StatusCode;
 await context.HttpContext.Response.WriteAsync("HTTP status code: " +
statusCode); });

Routing Chapter 3

[141]

The method adds a middleware component to the pipeline that is responsible for, after an
exception occurs, doing two things:

Filling the Error property on the IStatusCodePagesFeature feature
Handling the execution from there

Here's a different overload, doing essentially the same as the last one:

app.UseStatusCodePages("text/plain", "Error status code: {0}");

Here's something for automatically redirecting to a route (with an HTTP code
of 302 Found) with a particular status code as a route value:

app.UseStatusCodePagesWithRedirects("/error/{0}");

This one, instead, re-executes the pipeline without issuing a redirect, thus making it faster:

app.UseStatusCodePagesWithReExecute("/error/{0}");

All of the execution associated with specific status codes can be disabled through
the IStatusCodePagesFeature feature:

var statusCodePagesFeature =
HttpContext.Features.Get<IStatusCodePagesFeature>();
statusCodePagesFeature.Enabled = false;

Routing to specific status code pages
You can add an action such as this to a controller to have it respond to a request of
"error/404" (just replace the error code with whatever you want):

[Route("error/404")]
public IActionResult Error404()
{
 this.Response.StatusCode = StatusCodes.Status404NotFound;
 return this.View();
}

Routing Chapter 3

[142]

Now, either add an Error404 view or instead call a generic view, passing it the 404 status
code, perhaps through the view bag. Again, this route can be configured fluently, as
follows:

endpoints.MapControllerRoute(
 name: "Error404",
 pattern: "error/404",
 defaults: new { controller = "CatchAll", action = "Error404" }
);

This, of course, needs to be used either with UseStatusCodePagesWithRedirects
or UseStatusCodePagesWithReExecute.

Any status code
To catch all errors in a single method, do the following:

[Route("error/{statusCode:int}")]
public IActionResult Error(int statusCode)
{
 this.Response.StatusCode = statusCode;
 this.ViewBag.StatusCode = statusCode;
 return this.View();
}

Here, we are calling a generic view called Error (inferred from the action name), so we
need to pass it the originating status code, which we do through the view bag, as follows:

endpoints.MapControllerRoute(
 name: "Error",
 pattern: "error/{statusCode:int}",
 defaults: new { controller = "CatchAll", action = "Error" }
);

For a request of /error/<statusCode>, we are directed to the CatchAllController
controller and Error action. Again, this requires UseStatusCodePagesWithRedirects
or UseStatusCodePagesWithReExecute.

Here we presented different ways to handle errors, either based on an exception or on a
status code. Pick the one that suits you best!

Routing Chapter 3

[143]

Summary
In real life, chances are you will mix code-based routing configuration and attributes. In our
example, we will be using localization features, which require a lot of configuration,
typically code-based configuration. Attribute routing also has its place, because we can
directly define accessible endpoints that do not need to be restricted by general routing
templates. Route constraints are very powerful and should be used.

It is always good to start with the included default route template and go from there. It
should be sufficient for around 80% of your needs. Others will either be defined through a
custom route or routing attributes.

We saw in this chapter that security is something that needs to be taken into account, and
using routing attributes for this purpose seems ideal, as we can immediately see what the
security restrictions are by looking at controller methods.

We've seen the different ways in which we can configure routing, in other words, turning
browser requests into actions. We looked at code-based and attribute-based routing and
learned about some of their strengths and limitations. We found out how we can restrict
URL parameters to be of certain types or match certain requirements, as well as how to
prevent an action method from being called unless it matches a specific verb, HTTPS
requirement, or request content type. Finally, we looked at how to use routes to direct to
status code or error specific actions so as to return friendly error pages.

Quite a few of the topics covered in this chapter will surface again in later chapters. In the
next chapter, we will be talking about probably the most important pieces of MVC, which
were also the main subject of this chapter: controllers and actions.

Routing Chapter 3

[144]

Questions
So, now that you're at the end of this chapter, you should be able to answer the following
questions:

What are the special route tokens?1.
How can we prevent a route from being selected depending on the request's2.
HTTP verb?
How can we prevent a route from being selected unless the request uses HTTPS?3.
How can we serve different views depending on the occurred HTTP error code?4.
How can we prevent methods in controllers from being called?5.
How can we force a route value to be of a particular type (for example, a6.
number)?
What is a route handler?7.

4
Controllers and Actions

This chapter talks about arguably the most important feature of MVC: where the logic is
stored. This is where you implement the stuff that your application does, where a
substantial part of your business logic is.

Controllers and actions are found by convention and are called as the result of routing
rules, which were introduced in the previous chapter. But things can get very
complex—there are many ways by which an action can retrieve data from the request; it
can be asynchronous or synchronous and it can return many different kinds of data. This
data can be cached so that essentially there is no performance penalty in repeating the
request.

As we know, HTTP is stateless, but that does not really play well with modern applications
like the ones we're interested in, so we need to maintain the state between requests. We
would also like to return data, numbers, and text according to the culture and language of
the person that is issuing the request. We will look at all of these topics in the course of this
chapter.

In this chapter, we will learn about the following topics:

How to use controllers
How controllers are found
What is the controller life cycle?
What are controller actions?
How to do error handling
How to cache responses
How to maintain the state between requests
Using dependency injection
Applying globalization and localization

Controllers and Actions Chapter 4

[146]

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all the
requirements, but you can also use Visual Studio Code, for example.

The source code can be retrieved from GitHub at https:/ ​/ ​github. ​com/ ​PacktPublishing/
Modern-​Web-​Development- ​with- ​ASP. ​NET- ​Core-​3- ​Second- ​Edition.

Getting started
We will be working where the actual code is, where you get things done and where you
process the requests from the browser. We will talk about MVC controllers returning views,
but also about persisting data across requests, injecting dependencies into our controllers
and actions, and how to add localization support to the code. All in all, it's a very important
chapter, so I ask for your full attention.

In this chapter, we will be talking about the most important aspects of an MVC application:

Controllers
Actions

We will study each of these in the coming sections.

Using controllers
In MVC, a controller is responsible for handling requests. It is where the business logic is
located, where data is retrieved, request parameters validated, and so on. In object-oriented
languages, such as those that support .NET Framework, this is implemented in classes.
Keep in mind that the MVC pattern advocates a strong separation of responsibilities, which
makes all of its components particularly important; even given this fact, a controller is
really the only required part of ASP.NET Core, as you can live without views. Just think of
web services that do not return any user interface or models. This is a very important aspect
of ASP.NET Core.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Controllers and Actions Chapter 4

[147]

Controller base classes
ASP.NET Core (as with its predecessors) offers a base class called ControllerBase that
you can inherit from, although it is not strictly necessary. We will discuss this in more
detail later on in this chapter. However, inheriting from ControllerBase has a few
advantages:

Easy access to model validation

Helper methods to return different results (redirect, JSON, views, text, and more)

Direct access to the request and response infrastructure objects, including
headers, cookies, and more

Ability to intercept/override action events

In reality, there is another class, Controller, that in turn inherits from ControllerBase,
which you should inherit from in case you want to work with views. A case where you
wouldn't need to work with views would be if you are writing a web service (web API).

The templates in Visual Studio always generate controllers that inherit from the
Controller class, but you can change them to POCOs if you like. The only real
requirement, unless you want to change the convention, is to add the Controller suffix to
all your controllers. The namespace or physical location is irrelevant—for example, you can
create controllers in different folders or namespaces.

The ControllerBase class, among others, makes the following properties available:

ControllerContext (ControllerContext): The execution context for the
current controller and request, which includes the action descriptor (used to
guess which action should be called) and value provider factories, from which
the action parameters are obtained; it's an instance of the class.
HttpContext (HttpContext): The HTTP context, which includes the request
and response objects, from which we can obtain and set all headers, cookies,
status codes, authentication information, certificates, and more; also provides
access to the dependency injection (DI) framework, framework features, the
session state (if it's enabled), and the underlying connection properties.
MetadataProvider (IModelMetadataProvider): This is used to extract
metadata—validators, textual descriptors, and editing information—for the class
model.

Controllers and Actions Chapter 4

[148]

ModelBinderFactory (IModelBinderFactory): This is an object that is used to
create the binders that, in turn, are used to bind submitted request properties to a
given class model.
ModelState (ModelStateDictionary): This is the submitted model's values
and validation results.
ObjectValidator (IObjectModelValidator): This is an instance that is used
to validate the submitted model.
Request (HttpRequest): This handles the convenience pointer to the same
object inside the HttpContext.
Response (HttpResponse): This handles the convenience pointer to the same
object inside the HttpContext.
Url (IUrlHelper): This is an instance that enables convenience methods to
generate URL links to specific controller actions.
User (ClaimsPrincipal): This holds a reference to the current ASP.NET Core
user; depending on the actual authentication mechanism in use, it will hold
different values and claims, and even if it is not authenticated, this will never be
null.

The Controller class offers all of the preceding properties plus view-specific properties:

RouteData (RouteData): This contains the MVC route data parameters.
ViewBag (dynamic): This is a dynamic collection of data to be made available in
a view.
ViewData (ViewDataDictionary): This is identical to ViewBag, but is strongly
typed in the form of a key–value dictionary.
TempData (ITempDataDictionary): This is a strongly typed dictionary for data
to maintain until the next form submission.

It's safe and convenient to inherit from Controller, even if you do not
use views; it won't cause any problems.

Of course, your controller needs to offer at least one action method that can be used to
perform an action and return something meaningful to the caller, be it an HTML view,
some JSON content, or just an HTTP status code.

Controllers and Actions Chapter 4

[149]

You also have a number of virtual methods that you can override so as to perform actions
before, after, or instead of an action method being called. These are defined in the interfaces
IActionFilter and IAsyncActionFilter, which are implemented by Controller:

OnActionExecuted is called after an action is called.
OnActionExecuting is called synchronously just before an action is called.
OnActionExecutingAsync is called asynchronously before an action is called.

These interfaces are the bases of filters, which we will discuss in more detail later on.

I almost forgot: if a controller class has the [NonController] attribute
applied to it, then it is not considered and cannot be used as a controller.

POCO controllers
In ASP.NET Core, your controllers do not need to inherit from any base class or implement
a particular interface. As we mentioned earlier, all they need is the Controller suffix, by
convention, and to avoid the [NonController] attribute. The problem with this approach
is that you lose all helper methods and context properties (HttpContext,
ControllerContext, ViewBag, and Url), but you can have them injected. Let's see how
this works.

If you add the [Controller] attribute to any POCO class, you can turn it
into a controller, regardless of its name.

Adding context to POCO controllers
Say for example, that you have a POCO controller, HomeController. You don't have the
various context and view bag-related properties, but with a couple of attributes applied to
appropriately typed properties, you can have the infrastructure inject them, as shown in the
following example:

public class HomeController
{
 private readonly IUrlHelperFactory _url;

 public HomeController(IHttpContextAccessor ctx, IUrlHelperFactory url)

Controllers and Actions Chapter 4

[150]

 {
 this.HttpContext = ctx.HttpContext;
 this._url = url;
 }

 [ControllerContext]
 public ControllerContext { get; set; }

 public HttpContext HttpContext { get; set; }

 [ActionContext]
 public ActionContext ActionContext { get; set; }

 [ViewDataDictionary]
 public ViewDataDictionary ViewBag { get; set; }

 public IUrlHelper Url { get; set; }

 public string Index()
 {
 this.Url = this.Url ?? this._url.GetUrlHelper(this.ActionContext);
 return "Hello, World!";
 }
}

You will notice a few interesting things here:

ActionContext, ControllerContext, and ViewBag are automatically injected
just by adding the [ActionContext], [ControllerContext], and
[ViewDataDictionary] attributes to properties of any name, and with the
ActionContext, ControllerContext and ViewDataDictionary types,
respectively.
When the controller is instantiated by the ASP.NET Core infrastructure, the
dependency injection framework injects the IHttpContextAccessor and
IUrlHelperFactory objects.
The HttpContext object needs to be obtained from the passed
IHttpContextAccessor instance.
In order to build an IUrlHelper, the IUrlHelperFactory needs an instance of
ActionContext; because we don't have that at constructor time, we need to
build it later on, for example, in an action method (in this example, Index).

Controllers and Actions Chapter 4

[151]

However, to make this work, we need to tell ASP.NET Core to register the default
implementations of IHttpContextAccessor and IUrlHelperFactory. This is normally
done in the ConfigureServices method of the Startup class:

services.AddScoped<IHttpContextAccessor, HttpContextAccessor>();
//or, since version 2.1:
services.AddHttpContextAccessor();
services.AddScoped<IUrlHelperFactory, UrlHelperFactory>();

These properties will behave in exactly the same way as their non-POCO counterparts that
are inherited from ControllerBase and Controller.

Intercepting actions in POCO controllers
If you want, you can also implement one of the filter interfaces so that you can interact with
the request before or after an action is called, such as IActionFilter:

public class HomeController : IActionFilter
{
 public void OnActionExecuting(ActionExecutingContext context)
 {
 //before the action is called
 }

 public void OnActionExecuted(ActionExecutedContext context)
 {
 //after the action is called
 }
}

If you prefer to have an asynchronous handler, implement the asynchronous version
(IAsyncXXXFilter) instead. We will talk more about filters in Chapter 10,
Understanding Filters.

Let's now see how controllers are discovered by the framework.

Controllers and Actions Chapter 4

[152]

Finding controllers
Regardless of whether you go for POCO or non-POCO controllers, ASP.NET Core will
apply the same rules for discovering controllers, which are as follows:

They need to have the Controller suffix (strictly speaking, this can be changed,
but we will leave this for now).
They need to be instantiable classes (nonabstract, nongeneric, and nonstatic).
They cannot have the [NonController] attribute applied to them.
If they are POCO and do not have the Controller suffix, you can decorate them
with the [Controller] attribute.

By convention, the files that contain the controller classes are stored in a
folder called Controllers, and also in a Controllers namespace, but
this is just ignored.

Controller classes are looked up by the name in the route—the controller parameter—and
they are searched in the assemblies registered for that purpose. By default, the currently
executing assembly is included in the search, but all assemblies registered as application
parts are too. You can register additional application parts when you add the MVC features
to the dependency injection framework (ConfigureServices method) as follows:

services.AddMvc()
 .AddApplicationPart(typeof(MyCustomComponent).GetTypeInfo().Assembly);

Here, we are adding a reference to the assembly that contains a hypothetical class,
MyCustomComponent. After we do this, any controllers that are located in it are available
for use. In order to get the full list of found controllers, we can use ControllerFeature
and populate it through ApplicationPartManager:

services.AddMvc()
 .AddApplicationPart(typeof(MyCustomComponent).GetTypeInfo().Assembly)
 .ConfigureApplicationPartManager(parts =>
 {
 var controllerFeature = new ControllerFeature();
 parts.PopulateFeature(controllerFeature);
 //controllerFeature.Controllers contains the list of discovered
 //controllers' types
 });

Controllers are only discovered once, at startup time, which is a good thing performance-
wise.

Controllers and Actions Chapter 4

[153]

If there are two controllers with the same name but that are in different namespaces, and
they both expose an action method that matches the current request, then ASP.NET won't
know which one to pick and will throw an exception. If this happens, we need to give one
of the classes a new controller name by applying a [ControllerName] attribute, as shown
in the following code:

namespace Controllers
{
 public class HomeController
 {
 }

 namespace Admin
 {
 [ControllerName("AdminHome")]
 public class HomeController
 {
 }
 }
}

We could also change the action name, as we will see in a moment. Now, let's see what
happens once the controller type has been found.

Controller life cycle
After a controller's type is located, ASP.NET Core starts a process to instantiate it. The
process is as follows:

The default controller factory (IControllerFactory) is obtained from the1.
dependency injection (DI) framework and its CreateController method is
called.
The controller factory uses the registered controller activator2.
(IControllerActivator), also obtained from the DI, to obtain an instance to
the controller (IControllerActivator.Create).
The action method is located using the IActionSelector from the DI.3.
If the controller implements any filter interfaces (IActionFilter,4.
IResourceFilter, and more), or if the action has any filter attributes, then the
appropriate methods are called upon it and on global filters.
The action method is called by the IActionInvoker from the5.
IActionInvokerProvider, also obtained from the DI.

Controllers and Actions Chapter 4

[154]

Any filter methods are called upon the controller, the action method's filter6.
attributes, and the global filters.
The controller factory releases the controller7.
(IControllerFactory.ReleaseController).
The controller activator releases the controller8.
(IControllerActivator.Release).
If the controller implements IDisposable, then the Dispose method is called9.
upon it.

Most of these components can be registered through the built-in DI framework—for
example, if you want to replace the default IControllerFactory implementation, then
you could do this in the ConfigureServices method:

services.AddSingleton<IControllerFactory, CustomControllerFactory>();

Now, imagine that you wanted to write an action selector that would redirect all calls to a
specific method of a class. You could write a redirect action selector as follows:

public class RedirectActionSelector : IActionSelector
{
 public ActionDescriptor SelectBestCandidate(
 RouteContext context,
 IReadOnlyList<ActionDescriptor> candidates)
 {
 var descriptor = new ControllerActionDescriptor();
 descriptor.ControllerName = typeof(MyController).Name;
 descriptor.MethodInfo = typeof(MyController).
 GetMethod("MyAction");
 descriptor.ActionName = descriptor.MethodInfo.Name;
 return descriptor;
 }

 public IReadOnlyList<ActionDescriptor> SelectCandidates(
 RouteContext context)
 {
 return new List<ActionDescriptor>();
 }
}

This will redirect any request to the MyAction method of the MyController class. Hey, it's
just for fun, remember?

Now let's have a look at actions.

Controllers and Actions Chapter 4

[155]

Actions
The action method is where all the action happens (pun intended). It is the entry point to
the code that handles your request. The found action method is called from the
IActionInvoker implementation; it must be a physical, nongeneric, public instance
method of a controller class. The action selection mechanism is quite complex and relies on
the route action parameter.

The name of the action method should be the same as this parameter, but that doesn't mean
that it is the physical method name; you can also apply the [ActionName] attribute to set it
to something different, and this is of particular use if we have overloaded methods:

[ActionName("BinaryOperation")]
public IActionResult Operation(int a, int b) { ... }

[ActionName("UnaryOperation")]
public IActionResult Operation(int a) { ... }

In the following sections, we will see how actions work and how they work in the context
of the controller.

Finding actions
After discovering a set of candidate controllers for handling the request, ASP.NET Core
will check them all to see if they offer a method that matches the current route (see Chapter
3, Routing):

It must be public, nonstatic, and nongeneric.
Its name must match the route's action (the physical name may be different as
long as it has an [ActionName] attribute).
Its parameters must match the nonoptional parameters specified in the route
(those not marked as optional and without default values); if the route specifies
an id value, then there must be an id parameter and type, and if the id has a
route constraint of int, like in {id:int}, then it must be of the int type.
The action method can have a parameter of the IFormCollection, IFormFile,
or IFormFileCollection type, as these are always accepted.
It cannot have a [NonAction] attribute applied to it.

Controllers and Actions Chapter 4

[156]

The actual rules for getting the applicable action are as follows:

If the action name was supplied in the URL, then it is tentatively used.
If there is a default action specified in a route—based on fluent configuration or
attributes—then it is tentatively used.

When I mean tentatively, I mean to say that there may be constraint attributes (more on this
in a minute) or mandatory attributes that need to be checked—for example, if an action
method requires a mandatory parameter and it cannot be found in the request or in any of
the sources, then the action cannot be used to serve the current request.

Synchronous and asynchronous actions
An action method can be synchronous or asynchronous. For the asynchronous version, it
should be prototyped as follows:

public async Task<IActionResult> Index() { ... }

Of course, you can add any number of parameters you like, as with a synchronous action
method. The key here, however, is to mark the method as async and to return
Task<IActionResult> instead of just IActionResult (or another inherited type).

Why should you use asynchronous actions? Well, you need to understand the following
facts:

Web servers have a number of threads that they use to handle incoming requests.
When a request is accepted, one of these threads is blocked while it is waiting to
process it.
If the request takes too long, then this thread is unavailable to answer other
requests.

Enter asynchronous actions. With asynchronous actions, as soon as a thread accepts an
incoming request, it immediately passes it along to a background thread that will take care
of it, releasing the main thread. This is very handy, because it will be available to accept
other requests. This is not related to performance, but scalability; using asynchronous
actions allows your application to always be responsive, even if it is still processing
requests in the background.

Controllers and Actions Chapter 4

[157]

Getting the context
We've seen how you can access the context in both POCO and controller-based controllers.
By context, we're talking about three things concerning action methods:

The HTTP context, represented by the HttpContext class, from which you can
gain access to the current user, the low-level request and response properties,
such as cookies, headers, and so on.
The controller context, an instance of ControllerContext, which gives you
access to the current model state, route data, action descriptor, and so on.
The action context, of the ActionContext type, which gives you pretty much
the same information that you get from ControllerContext, but used in
different places; so if, in the future, a new feature is added to only one, it will not
show up on the other.

Having access to the context is important because you may need to make decisions based
on the information you can obtain from it, or, for example, set response headers or cookies
directly. You can see that ASP.NET Core has dropped the HttpContext.Current
property that had been around since the beginning of ASP.NET, so you don't have
immediate access to it; however, you can get it from either ControllerContext or
ActionContext, or have it injected into your dependency-injection-build component by
having your constructor take an instance of IHttpContextAccessor.

Action constraints
The following attributes and interfaces, when implemented in an attribute applied to the
action method, will possibly prevent it from being called:

[NonAction]: The action is never called.
[Consumes]: If there are many candidate methods—for example, in the case of
method overloading—then this attribute is used to check whether any of the
methods accept the currently requested content type.
[RequireHttps]: If present, the action method will only be called if the request
protocol is HTTPS.
IActionConstraint: If an attribute applied to an action method implements
this interface, then its Accept method is called to see whether the action should
be called.

Controllers and Actions Chapter 4

[158]

IActionHttpMethodProvider: This is implemented by [AcceptVerbs],
[HttpGet], [HttpPost], and other HTTP method selector attributes; if present,
the action method will only be called if the current request's HTTP verb matches
one of the values returned by the HttpMethods property.
IAuthorizeData: Any attribute that implements this interface, the most
notorious of all being [Authorize], will be checked to see whether the current
identity (as specified by ClaimsPrincipal assigned to the HttpContext's
User property) has the right policy and roles.
Filters: If a filter attribute, such as IActionFilter, is applied to the action or
if IAuthorizationFilter, for example, is invoked and possibly either throws
an exception or returns an IActionResult, which prevents the action from
being called (NotFoundObjectResult, UnauthorizedResult, and more).

This implementation of IActionConstraint will apply custom logic to decide whether a
method can be called in its Accept method:

public class CustomAuthorizationAttribute: Attribute, IActionConstraint
{
 public int Order { get; } = int.MaxValue;

 public bool Accept(ActionConstraintContext context)
 {
 return
 context.CurrentCandidate.Action.DisplayName
 .Contains("Authorized");
 }
}

The context parameter grants access to the route context, and from there, to the HTTP
context and the current candidate method. These should be more than enough to make a
decision.

The order by which a constraint is applied might be relevant, as the Order property of the
IActionConstraint interface, when used in an attribute, will determine the relative order
of execution of all the attributes applied to the same method.

Controllers and Actions Chapter 4

[159]

Action parameters
An action method can take parameters. These parameters can be, for example, submitted
form values or query string parameters. There are essentially three ways by which we can
get all submitted values:

IFormCollection, IFormFile, and IFormFileCollection: A parameter of
any of these types will contain the list of values submitted by an HTML form;
they won't be used in a GET request as it is not possible to upload files with GET.
HttpContext: Directly accessing the context and retrieving values from either
the Request.Form or Request.QueryString collections.
Adding named parameters that match values in the request that we want to
access individually.

The latter can either be of basic types, such as string, int, and more, or they can be of a
complex type. The way their values are injected is configurable and based on a provider
model. IValueProviderFactory and IValueProvider are used to obtain the values for
these attributes. ASP.NET Core offers developers a chance to inspect the collection of value
provider factories through the AddMvc method:

services.AddMvc(options =>
{
 options.ValueProviderFactories.Add(new CustomValueProviderFactory());
});

Out of the box, the following value provider factories are available and registered in the
following order:

FormValueProviderFactory: Injects values from a submitted form, such
as <input type="text" name="myParam"/>.
RouteValueProviderFactory: Route parameters—for example,
[controller]/[action]/{id?}.
QueryStringValueProviderFactory: Query string values—for example,
?id=100.
JQueryFormValueProviderFactory: jQuery form values.

The order, however, is important, because it determines the order in which the value
providers are added to the collection that ASP.NET Core uses to actually get the values.
Each value provider factory will have its CreateValueProviderAsync method called and
will typically populate a collection of value providers (for example,
QueryStringValueProviderFactory will add an instance of
QueryStringValueProvider, and so on).

Controllers and Actions Chapter 4

[160]

This means that, for example, if you submitted a form value with the name myField and
you are passing another value for myField via a query string, then the first one is going to
be used; however, many providers can be used at once—for example, if you have a route
that expects an id parameter but can also accept query string parameters:

[Route("[controller]/[action]/{id}?{*querystring}")]
public IActionResult ProcessOrder(int id, bool processed) { ... }

This will happily access a request of /Home/Process/120?processed=true, where the
id comes from the route and is processed from the query string provider.

Some methods of sending values allow them to be optional—for example, route
parameters. With that being the case, you need to make sure that the parameters in the
action method also permit the following:

Reference types, including those that can have a null value
Value types, which should have a default value, such as int a = 0

For example, if you want to have a value from a route injected into an action method
parameter, you could do it like this, if the value is mandatory:

[Route("[controller]/[action]/{id}")]
public IActionResult Process(int id) { ... }

If it is optional, you could do it like this :

[Route("[controller]/[action]/{id?}")]
public IActionResult Process(int? id = null) { ... }

Value providers are more interesting because they are the ones that actually return the
values for the action method parameters. They try to find a value from its name—the action
method parameter name. ASP.NET will iterate the list of supplied value providers, call its
ContainsPrefix method for each parameter, and if the result is true, it will then call the
GetValue method.

Even if the supplied value providers are convenient, you might want to obtain values from
other sources—for example, I can think of the following:

Cookies
Headers
Session values

Controllers and Actions Chapter 4

[161]

Say that you would like to have cookie values injected automatically into an action
method's parameters. For this, you would write a CookieValueProviderFactory, which
might well look like this:

public class CookieValueProviderFactory : IValueProviderFactory
{
 public Task CreateValueProviderAsync(
 ValueProviderFactoryContext context)
 {
 context.ValueProviders.Add(new
 CookieValueProvider(context.ActionContext));
 return Task.CompletedTask;
 }
}

Then you could write a CookieValueProvider to go along with it:

public class CookieValueProvider : IValueProvider
{
 private readonly ActionContext _actionContext;

 public CookieValueProvider(ActionContext actionContext)
 {
 this._actionContext = actionContext;
 }

 public bool ContainsPrefix(string prefix)
 {
 return this._actionContext.HttpContext.Request.Cookies
 .ContainsKey(prefix);
 }

 public ValueProviderResult GetValue(string key)
 {
 return new ValueProviderResult(this._actionContext.HttpContext
 .Request.Cookies[key]);
 }
}

After which, you would register it in the AddMvc method, in the ValueProviders
collection of MvcOptions:

services.AddMvc(options =>
{
 options.ValueProviderFactories.Add(new CookieValueProviderFactory());
}):

Controllers and Actions Chapter 4

[162]

Now you can have cookie values injected transparently into your actions without any
additional effort.

Don't forget that, because of C# limitations, you cannot have variables or
parameters that contain - or other special characters, so you cannot inject
values for parameters that have these in their names out of the box. In this
cookie example, you won't be able to have a parameter for a cookie with a
name like AUTH-COOKIE.

You can, however, in the same action method, have parameters that come from different
sources, as follows:

[HttpGet("{id}")]
public IActionResult Process(string id, Model model) { ... }

But what if the target action method parameter is not of the string type? The answer lies in
model binding.

Model binding
Model binding is the process by which ASP.NET Core translates parts of the request,
including route values, query strings, submitted forms, and more into strongly typed
parameters. As is the case in most APIs of ASP.NET Core, this is an extensible mechanism.
Do not get confused with model value providers; the responsibility of model binders is not
to supply the values, but merely to make them fit into whatever class we tell them to!

Out of the box, ASP.NET can translate to the following:

IFormCollection, IFormFile, and IFormFileCollection parameters
Primitive/base types (which handle conversion to and from strings)
Enumerations
POCO classes
Dictionaries
Collections
Cancelation tokens (more on this later on)

Controllers and Actions Chapter 4

[163]

The model binder providers are configured in the MvcOptions class, which is normally
accessible through the AddMvc call:

services.AddMvc(options =>
{
 options.ModelBinderProviders.Add(new CustomModelBinderProvider());
});

Most scenarios that you will be interested in should already be supported. What you can
also do is specify the source from which a parameter is to be obtained. So, let's see how we
can use this ability.

Body
In the case where you are calling an action using an HTTP verb that lets you pass a payload
(POST, PUT, and PATCH), you can ask for your parameter to receive a value from this
payload by applying a [FromBody] attribute:

[HttpPost]
public IActionResult Submit([FromBody] string payload) { ... }

Besides using a string value, you can provide your own POCO class, which will be
populated from the payload, if the format is supported by one of the input formatters
configured (more on this in a second).

Form
Another option is to have a parameter coming from a specific named field in a submitted
form, and for that, we use the [FromForm] attribute:

[HttpPost]
public IActionResult Submit([FromForm] string email) { ... }

There is a Name property that, if supplied, will get the value from the specified named form
field (for example, [FromForm(Name = "UserEmail")]).

Header
A header is also a good candidate for retrieving values, hence the [FromHeader] attribute:

public IActionResult Get([FromHeader] string accept) { ... }

Controllers and Actions Chapter 4

[164]

The [FromHeader] attribute allows us to specify the actual header name (for example,
[FromHeader(Name = "Content-Type")]), and if this is not specified, it will look for the
name of the parameter that it is applied to.

By default, it can only bind to strings or collections of strings, but you can force it to accept
other target types (provided the input is valid for that type). Just set
the AllowBindingHeaderValuesToNonStringModelTypes property to true when
configuring MVC:

services.AddMvc(options =>
{
 options.AllowBindingHeaderValuesToNonStringModelTypes = true;
});

Query string
We can also retrieve values via the query string, using the [FromQuery] attribute:

public IActionResult Get([FromQuery] string id) { ... }

You can also specify the query string parameter name using the Name
property, [FromQuery(Name = "Id")]. Mind you, by convention, if you don't specify
this attribute, you can still pass values from the query string and they will be passed along
to the action method parameters.

Route
The route parameters can also be a source of data—enter [FromRoute]:

[HttpGet("{id}")]
public IActionResult Get([FromRoute] string id) { ... }

Similar to most other binding attributes, you can specify a name to indicate the route
parameter that the value should come from (for example, [FromRoute(Name = "Id")]).

Dependency injection
You can also use a dependency injection, such as ([FromServices]):

public IActionResult Get([FromServices] IHttpContextAccessor accessor) {
... }

Controllers and Actions Chapter 4

[165]

Of course, the service you are injecting needs to be registered in the DI framework in
advance.

Custom binders
It is also possible to specify your own binder. To do this, you can use the [ModelBinder]
attribute, which takes an optional Type as its parameter. What's funny about this is that it
can be used in different scenarios, such as the following:

If you apply it to a property or field on your controller class, then it will be
bound to a request parameter coming from any of the supported value providers
(query string, route, form, and more):

[ModelBinder]
public string Id { get; set; }

If you pass a type of a class that implements IModelBinder, then you can use
this class for the actual binding process, but only for the parameter, property, or
field you are applying it to:

public IActionResult Process([ModelBinder(typeof(CustomModelBinder))]
Model model) { ... }

A simple model binder that does HTML formatting could be written as follows:

public class HtmlEncodeModelBinder : IModelBinder
{
 private readonly IModelBinder _fallbackBinder;

 public HtmlEncodeModelBinder(IModelBinder fallbackBinder)
 {
 if (fallbackBinder == null)
 throw new ArgumentNullException(nameof(fallbackBinder));

 _fallbackBinder = fallbackBinder;
 }
 public Task BindModelAsync(ModelBindingContext bindingContext)
 {
 if (bindingContext == null)
 throw new ArgumentNullException(nameof(bindingContext));

 var valueProviderResult = bindingContext.ValueProvider.
 GetValue(bindingContext.ModelName);
 if (valueProviderResult == ValueProviderResult.None)
 {
 return _fallbackBinder.BindModelAsync(bindingContext);

Controllers and Actions Chapter 4

[166]

 }

 var valueAsString = valueProviderResult.FirstValue;

 if (string.IsNullOrEmpty(valueAsString))
 {
 return _fallbackBinder.BindModelAsync(bindingContext);
 }

 var result = HtmlEncoder.Default.Encode(valueAsString);

 bindingContext.Result = ModelBindingResult.Success(result);
 return Task.CompletedTask;
 }
}

The code for this was written by Steve Gordon and is available at https:/
/​www. ​stevejgordon. ​co. ​uk/ ​html- ​encode- ​string- ​aspnet- ​core- ​model-
binding.

The code doesn't do much: it takes a fallback binder in its constructor and uses it if there is
no value to bind or if the value is a null or empty string; otherwise, it HTML-encodes it.

You can also add a model-binding provider to the global list. The first one that handles the
target type will be picked up. The interface for a model-binding provider is defined by the
IModelBinderProvider (who knew?), and it only specifies a single method, GetBinder.
If it returns non-null, then the binder will be used.

Let's look at a model binder provider that would apply this model binder to string
parameters that have a custom attribute:

public class HtmlEncodeAttribute : Attribute { }

public class HtmlEncodeModelBinderProvider : IModelBinderProvider
{
 public IModelBinder GetBinder(ModelBinderProviderContext context)
 {
 if (context == null) throw new
 ArgumentNullException(nameof(context));

 if ((context.Metadata.ModelType == typeof(string)) &&
 (context.Metadata.ModelType.GetTypeInfo().
 IsDefined(typeof(HtmlEncodeAttribute))))
 {
 return new HtmlEncodeModelBinder(new SimpleTypeModelBinder(
 context.Metadata.ModelType));

https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding
https://www.stevejgordon.co.uk/html-encode-string-aspnet-core-model-binding

Controllers and Actions Chapter 4

[167]

 }

 return null;
 }
}

After this, we register it in AddMvc to the ValueProviderFactories collection; this
collection is iterated until a proper model binder is returned from GetBinder, in which
case, it is used as follows:

services.AddMvc(options =>
{
 options.ValueProviderFactories.Add(new
 HtmlEncodeModelBinderProvider());
});

We have created a simple marker attribute, HtmlEncodeAttribute (as well as a model-
binder provider), that checks whether the target model is of the string type and has the
[HtmlEncode] attribute applied to it. If so, it applies the HtmlEncodeModelBinder. It's as
simple as that:

public IActionResult Process([HtmlEncode] string html) { ... }

We will be revisiting model binding later on in this chapter when we talk about HTML
forms.

Property binding
Any properties in your controller that are decorated with the [BindProperty] attribute
are also bound from the request data. You can also apply the same binding source
attributes ([FromQuery], [FromBody], and so on), but to have them populated on GET
requests, you need to tell the framework to do this explicitly:

[BindProperty(SupportsGet = true)]
public string Id { get; set; }

You can also apply this to controller-level property-validation attributes (for example,
[Required], [MaxLength], and so on), and they will be used to validate the value of each
property. [BindRequired] also works, meaning that if a value for a property is not
provided, it results in an error.

Controllers and Actions Chapter 4

[168]

Input formatters
When you are binding a POCO class from the payload by applying the [FromBody]
attribute, ASP.NET Core will try to deserialize the POCO type from the payload as a string.
For this, it uses an input formatter. Similar to output formatters, these are used to convert
to and from common formats, such as JSON or XML. Support for JSON comes out of the
box, but you will need to explicitly add support for XML. You can do so by including the
NuGet package Microsoft.AspNetCore.Mvc.Formatters.Xml and explicitly add
support to the pipeline:

services
 .AddMvc()
 .AddXmlSerializerFormatters();

If you are curious, what this does is add an instance of XmlSerializerInputFormatter
to the MvcOptions' InputFormatters collection. The list is iterated until one formatter is
capable of processing the data. The included formatters are as follows:

JsonInputFormatter, which can import from any JSON content
(application/json)
JsonPatchInputFormatter, which can import from JSON patch contents
(application/json-patch+json)

Explicit binding
You can also fine-tune which parts of your model class are bound, and how they are bound,
by applying attributes—for example, if you want to exclude a property from being bound,
you can apply the [BindNever] attribute:

public class Model
{
 [BindNever]
 public int Id { get; set; }
}

Controllers and Actions Chapter 4

[169]

Alternatively, if you want to explicitly define which properties should be bound, you can
apply [Bind] to a Model class:

[Bind("Name, Email")]
public class Model
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string Email { get; set; }
}

If you pass a value to the Prefix property, you can instruct ASP.NET Core to retrieve the
value to bind from a property with that prefix—for example, if you have several form
values with the same name (for example, option), then you can bind them all to a
collection:

[Bind(Prefix = "Option")]
public string[] Option { get; set; }

Normally, if a value for a property is not supplied in the source medium, such as the POST
payload or the query string, the property doesn't get a value. However, you can force this,
as follows:

[BindRequired]
public string Email { get; set; }

If the Email parameter is not passed, then ModelState.IsValid will be false and an
exception will be thrown.

You can also specify the default binding behavior at class level and then override it on a
property-by-property basis with a [BindingBehavior]:

[BindingBehavior(BindingBehavior.Required)]
public class Model
{
 [BindNever]
 public int Id { get; set; }
 public string Name { get; set; }
 public string Email { get; set; }
}

So, we have three situations:

If a value is present in the request, bind it to the model ([Bind]).
Ignore any value passed in the model ([BindNever]).
Demand that a value is passed in the request ([BindRequired]).

Controllers and Actions Chapter 4

[170]

We should also mention that these attributes can be applied to action method parameters as
follows:

public IActionResult Process(string id, [BindRequired] int state) { ... }

Canceling requests
Sometimes, a request is canceled by the client, such as when someone closes the browser,
navigates to another page, or refreshes the page. The problem is, you don't know that it
happened, and you continue to execute your action method not knowing that the answer
will be discarded. To help in these scenarios, ASP.NET Core lets you add a parameter of the
CancelationToken type. This is the standard way to allow the cancelation of
asynchronous tasks in .NET and .NET Core. It works as follows:

public async Task<IActionResult> Index(CancelationToken cancel) { ... }

If, for whatever reason, the ASP.NET Core host (Kestrel, WebListener) detects that the
client has disconnected, it fires the cancelation token (its IsCancelationRequested is set
to true, the same for HttpContext.RequestAborted). A benefit is that you can pass this
CancelationToken instance to any asynchronous methods you may be using (for
example, HttpClient.SendAsync(), DbSet<T>.ToListAsync(), and more) and they
will also be canceled along with the client request!

Model validation
Once your model (the parameters that are passed to the action method) are properly built
and their properties have had their values set, they can be validated. Validation itself is
configurable.

All values obtained from all value providers are available in the ModelState property,
defined in the ControllerBase class. For any given type, the IsValid property will say
whether ASP.NET considers the model valid as per its configured validators.

By default, the registered implementation relies on the registered model metadata and
model validator providers, which include the
DataAnnotationsModelValidatorProvider. This performs validation against the
System.ComponentModel.DataAnnotations API, namely, all classes derived
from ValidationAttribute (RequiredAttribute, RegularExpressionAttribute,
MaxLengthAttribute, and more), but also IValidatableObject implementations. This
is the de facto validation standard in .NET, and it is capable of handling most cases.

Controllers and Actions Chapter 4

[171]

When the model is populated, it is also automatically validated, but you can also explicitly
ask for model validation by calling the TryValidateModel method in your action—for
example, if you change anything in it:

public IActionResult Process(Model model)
{
 if (this.TryValidateModel(model))
 {
 return this.Ok();
 }
 else
 {
 return this.Error();
 }
}

Since ASP.NET Core 2.1, you can apply validation attributes to action parameters
themselves, and you get validation for them too:

public IActionResult Process([Required, EmailAddress] string email) { ... }

As we have mentioned, ModelState will have the IsValid property set according to the
validation result, but we can also force revalidation. If you want to check a specific
property, you can use the overload of TryValidateModel that takes an additional string
parameter:

if (this.TryValidateModel(model, "Email")) { ... }

Behind the scenes, all registered validators are called and the method will return a Boolean
flag with the result of all validations.

We will revisit model validation in an upcoming chapter. For now, let's see how we can
plug in a custom model validator. We do this in ConfigureServices using the AddMvc
method:

services.AddMvc(options =>
{
 options.ModelValidatorProviders.Add(new
 CustomModelValidatorProvider());
});

The CustomModelValidatorProvider looks as follows:

public class CustomModelValidatorProvider : IModelValidatorProvider
{
 public void CreateValidators(ModelValidatorProviderContext context)
 {

Controllers and Actions Chapter 4

[172]

 context.Results.Add(new ValidatorItem { Validator =
 new CustomModelValidator() });
 }
}

The main logic simply goes in CustomModelValidator:

public class CustomObjectModelValidator : IModelValidator
{
 public IEnumerable<ModelValidationResult>
 Validate(ModelValidationContext context)
 {
 if (context.Model is ICustomValidatable)
 {
 //supply custom validation logic here and return a collection
 //of ModelValidationResult
 }

 return Enumerable.Empty<ModelValidationResult>();
 }
}

The ICustomValidatable interface (and implementation) is left to you, dear reader, as an
exercise. Hopefully, it won't be too difficult to understand.

This ICustomValidatable implementation should look at the state of its class and return
one or more ModelValidationResults for any problems it finds.

Since ASP.NET Core 2.1, the [ApiController] attribute adds a convention to
controllers—typically API controllers—which triggers model validation automatically
when an action method is called. You can use it, but what it does is return a 400 HTTP
status code (https:/ ​/ ​developer. ​mozilla. ​org/​en- ​US/​docs/ ​Web/ ​HTTP/ ​Status/ ​400) and a
description of the validation errors in JSON format, which is probably not what you want
when working with views. You can use an action filter for the same purpose; let's look at
one example:

[Serializable]
[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method,
 AllowMultiple = false,
 Inherited = true)]
public sealed class ValidateModelStateAttribute : ActionFilterAttribute
{
 public ValidateModelStateAttribute(string redirectUrl)
 {
 this.RedirectUrl = redirectUrl;
 }

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400

Controllers and Actions Chapter 4

[173]

 public ValidateModelStateAttribute(
 string actionName,
 string controllerName = null,
 object routeValues = null)
 {
 this.ControllerName = controllerName;
 this.ActionName = actionName;
 this.RouteValues = routeValues;
 }

 public string RedirectUrl { get; }
 public string ActionName { get; }
 public string ControllerName { get; }
 public object RouteValues { get; }

 public override Task OnResultExecutionAsync(ResultExecutingContext
 context, ResultExecutionDelegate next)
 {
 if (!context.ModelState.IsValid)
 {
 if (!string.IsNullOrWhiteSpace(this.RedirectUrl))
 {
 context.Result = new RedirectResult(this.RedirectUrl);
 }
 else if (!string.IsNullOrWhiteSpace(this.ActionName))
 {
 context.Result = new RedirectToActionResult

 (this.ActionName, this.ControllerName,
 this.RouteValues);
 }
 else
 {
 context.Result = new BadRequestObjectResult
 (context.ModelState);
 }
 }

 return base.OnResultExecutionAsync(context, next);
 }
}

This is an action filter and it is also an attribute, which means that it can be registered
globally:

services.AddMvc(options =>
{
 options.AllowValidatingTopLevelNodes = true;

Controllers and Actions Chapter 4

[174]

 options.Filters.Add(new ValidateModelStateAttribute("/Home/Error"));
});

It can also be registered by adding the attribute to a controller class or action method. This
class offers two controllers:

One for specifying the redirection as a full URL
Another for using a controller name, action method, and possibly route
parameters

It inherits from ActionFilterAttribute, which in turn implements IActionFilter and
IAsyncActionFilter. Here, we are interested in the asynchronous version—a good
practice—which means that we override OnResultExecutionAsync. This method is called
before the control is passed to the action method, and here we check whether the model is
valid. If it is not, then redirect it to the proper location, depending on how the class was
instantiated.

By the way, controller properties are only validated if the
AllowValidatingTopLevelNodes property is set to true, as in this example; otherwise,
any errors will be ignored.

Action results
Actions process requests and typically either return content or an HTTP status code to the
calling client. In ASP.NET Core, broadly speaking, there are two possible return types:

An implementation of IActionResult
Any .NET POCO class

Implementations of IActionResult wrap the actual response, plus a content type header
and HTTP status code, and are generally useful. This interface defines only a single
method, ExecuteResultAsync, which takes a single parameter of the
ActionContexttype that wraps all properties that describe the current request:

ActionDescriptor: Describes the action method to call
HttpContext: Describes the request context
ModelState: Describes the submitted model properties and its validation state
RouteData: Describes the route parameters

Controllers and Actions Chapter 4

[175]

So you can see that IActionResult is actually an implementation of the command design
pattern (https:/​/​sourcemaking. ​com/ ​design_ ​patterns/ ​command) in the sense that it
actually executes, and doesn't just store data. A very simple implementation of
IActionResult that returns a string and the HTTP status code 200 might be as follows:

public class HelloWorldResult : IActionResult
{
 public async Task ExecuteResultAsync(ActionContext actionContext)
 {
 actionContext.HttpContext.Response.StatusCode = StatusCodes
 .Status200OK;
 await actionContext.HttpContext.Response.WriteAsync("Hello,
 World!");
 }
}

As we will see shortly, IActionResult is now the interface that describes HTML results as
well as API-style results. The ControllerBase and Controller classes offer the
following convenient methods for returning IActionResult implementations:

BadRequest (BadRequestResult, HTTP code 400): The request was not valid.
Challenge (ChallengeResult, HTTP code 401): A challenge for
authentication.
Content (ContentResult, HTTP code 200): Any content.
Created (CreatedResult, HTTP code 201): A result that indicates that a
resource was created.
CreatedAtAction (CreatedAtActionResult, HTTP code 201): A result that
indicates that a resource was created by an action.
CreatedAtRoute (CreatedAtRouteResult, HTTP code 201): A result that
indicates that a resource was created in a named route.
File (VirtualFileResult, FileStreamResult, FileContentResult, HTTP
code 200).
Forbid (ForbidResult, HTTP code 403).
LocalRedirect (LocalRedirectResult, HTTP code 302): Redirects to a local
resource.
LocalRedirectPermanent (LocalRedirectResult, HTTP code 301): A
permanent redirect to a local resource.
NoContent (NoContentResult, HTTP code 204): No content to deploy.
NotFound (NotFoundObjectResult, HTTP code 404): Resource not found.
Ok (OkResult, HTTP code 200): OK.

https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/command

Controllers and Actions Chapter 4

[176]

No method (PartialViewResult, HTTP code 200): Requested HTTP method
not supported.
PhysicalFile (PhysicalFileResult, HTTP code 200): A physical file's
content.
Redirect (RedirectResult, HTTP code 302): Redirect to an absolute URL.
RedirectPermanent (RedirectResult, HTTP code 301): Permanent redirect
to an absolute URL.
RedirectToAction (RedirectToActionResult, HTTP code 302): A redirect
to an action of a local controller.
RedirectToActionPermanent (RedirectToActionResult, HTTP code 301):
A permanent redirect to an action of a local controller.
RedirectToPage (RedirectToPageResult, HTTP code 302, from ASP.NET
Core 2): A redirect to a local Razor page.
RedirectToPagePermanent (RedirectToPageResult, HTTP code 301): A
permanent redirect to a local Razor page.
RedirectToPagePermanentPreserveMethod (RedirectToPageResult,
HTTP code 301): A permanent redirect to a local page preserving the original
requested HTTP method.
RedirectToPagePreserveMethod (RedirectToPageResult, HTTP code 302):
A redirect to a local page.
RedirectToRoute (RedirectToRouteResult, HTTP code 302): A redirect to a
named route.
RedirectToRoutePermanent (RedirectToRouteResult, HTTP code 301): A
permanent redirect to a named route.
SignIn (SignInResult): Signs in.
SignOut (SignOutResult): Signs out.
StatusCode (StatusCodeResult, ObjectResult, any HTTP code).
No method (UnsupportedMediaTypeResult, HTTP code 415): Accepted
content type does not match what can be returned.
Unauthorized (UnauthorizedResult, HTTP code 401): Not allowed to
request the resource.
View (ViewResult, HTTP code 200, declared in Controller class): A view.
ViewComponent (ViewComponentResult, HTTP code 200): The result of
invoking a view component.

Controllers and Actions Chapter 4

[177]

Some of these results also assign a content type—for example, ContentResult will return
text/plain by default (this can be changed), JsonResult will return
application/json, and so on. Some of the names are self-explanatory; others may
require some clarification:

There are always four versions of the Redirect methods—the regular one for
temporary redirects, one for permanent redirects, and two additional versions
that also preserve the original request HTTP method. It is possible to redirect to
an arbitrary URL, the URL for a specific controller action, a Razor page URL, and
a local (relative) URL.
The preserve method in a redirect means that the new request to be issued by the
browser will keep the original HTTP verb.
The File and Physical file methods offer several ways to return file contents,
either through a URL, a Stream, a byte array, or a physical file location. The
Physical method allows you to directly send a file from a filesystem location,
which may result in better performance. You also have the option to set an ETag
or a LastModified date on the content you wish to transmit.
ViewResult and PartialViewResult differ in that the latter only looks for
partial views.
Some methods may return different results, depending on the overload used
(and its parameters, of course).
SignIn, SignOut, and Challenge are related to authentication and are pointless
if not configured. SignIn will redirect to the configured login URL and SignOut
will clear the authentication cookie.
Not all of these results return contents; some of them only return a status code
and some headers (for example, SignInResult, SignOutResult,
StatusCodeResult, UnauthorizedResult, NoContentResult,
NotFoundObjectResult, ChallengeResult, BadRequestResult,
ForbidResult, OkResult, CreatedResult, CreatedAtActionResult,
CreatedAtRouteResult, and all the Redirect* results). On the other hand,
JsonResult, ContentResult, VirtualFileResult, FileStreamResult,
FileContentResult, and ViewResult all return contents.

All the action result classes that return views (ViewResult) or parts of views
(PartialViewResult) take a Model property, which is prototyped as an object. You can
use it to pass any arbitrary data to the view, but remember that the view must declare a
model of a compatible type. Alas, you cannot pass anonymous types, as the view will have
no way to locate its properties. In Chapter 6, Using Forms and Models, I will present a
solution for this.

Controllers and Actions Chapter 4

[178]

Returning an action result is probably the most typical use of a controller, but you can also
certainly return any .NET object. To do this, you must declare your method to return
whatever type you want:

public string SayHello()
{
 return "Hello, World!";
}

This is a perfectly valid action method; however, there are a few things you need to know:

The returned object is wrapped in an ObjectResult before any filters are called
(IActionFilter, IResultFilter, for example).
The object is formatted (serialized) by one of the configured output formatters, the
first that says it can handle it.
If you want to change either the status code or the content type of the response,
you will need to resort to the HttpContext.Response object.

Why return a POCO class or an ObjectResult? Well, ObjectResult gives you a couple
of extra advantages:

You can supply a collection of output formatters (Formatters collection).
You can tell it to use a selection of content types (ContentTypes).
You can specify the status code to return (StatusCode).

Let's look at output formatters in more detail with regard to API actions. For now, let's look
at an example action result, one that returns contents as an XML:

public class XmlResult : ActionResult
{
 public XmlResult(object value)
 {
 this.Value = value;
 }

 public object Value { get; }

 public override Task ExecuteResultAsync(ActionContext context)
 {
 if (this.Value != null)
 {
 var serializer = new XmlSerializer(this.Value.GetType());
 using (var stream = new MemoryStream())
 {
 serializer.Serialize(stream, this.Value);

Controllers and Actions Chapter 4

[179]

 var data = stream.ToArray();
 context.HttpContext.Response.ContentType =
 "application/xml";
 context.HttpContext.Response.ContentLength = data.Length;
 context.HttpContext.Response.Body.Write(data, 0,
 data.Length);
 }
 }

 return base.ExecuteResultAsync(context);
 }
}

In this code, we instantiate an XmlSerializer instance bound to the type of the value that
we want to return and use it to serialize this value into a string, which we then write to the
response. You will need to add a reference to the System.Xml.XmlSerializer NuGet
package for the XmlSerializer class. This further results in the redirecting and streaming
of the actions. Let's see what these are.

Redirecting
A redirect occurs when the server instructs the client (the browser) to go to another location
after receiving a request from it:

Controllers and Actions Chapter 4

[180]

There are at least 10 methods for implementing redirects. What changes here is the HTTP
status code that is returned to the client and how the redirection URL is generated. We have
redirects for the following:

A specific URL, either full or local: Redirect
A local URL: LocalRedirect
A named route: RedirectToRoute
A specific controller and action: RedirectToAction
A Razor page (more on this in Chapter 7, Implementing Razor Pages):
RedirectToPage

All of these methods return HTTP status code 302 (see https:/ ​/​developer. ​mozilla. ​org/
en-​US/​docs/​Web/​HTTP/ ​Status/ ​302), which is a temporary redirection. Then we have
alternative versions that send HTTP 301 (https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/
Web/​HTTP/​Status/ ​301), a permanent redirect, which means that browsers are instructed to
cache responses and learn that when asked to go to the original URL, they should instead
access the new one. These methods are similar to the previous ones, but end in Permanent:

A specific URL: RedirectPermanent
A local URL: LocalRedirectPermanent
A named route: RedirectToRoutePermanent
A specific controller and action: RedirectToActionPermanent
A Razor page (more on this in Chapter 7, Implementing Razor
Pages): RedirectToPagePermanent

Then there's still another variation, one that keeps the original HTTP verb and is based on
the HTTP 308 (https:/ ​/ ​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​HTTP/ ​Status/ ​308). For
example, it may be the case that the browser was trying to access a resource using HTTP
POST, the server returns an HTTP status 308, and redirects to another URL; the client must
then request this URL again using POST instead of GET, which is what happens with the
other codes. For this situation, we have other variations:

A specific URL: RedirectPermanentPreserveMethod
A local URL: LocalRedirectPreserveMethod
A named route: RedirectToRoutePermanentPreserveMethod
A specific controller and
action: RedirectToActionPermanentPreserveMethod
A Razor page (more on this in Chapter 7, Implementing Razor
pages): RedirectToPagePermanentPreserveMethod

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/301
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/308

Controllers and Actions Chapter 4

[181]

Streaming
If you ever need to stream content to the client, you should use the FileStreamResult
class. In the following example code, we are streaming an MP4 file:

[HttpGet("[action]/{name}")]
public async Task<FileStreamResult> Stream(string name)
{
 var stream = await System.IO.File.OpenRead($"{name}.mp4");
 return new FileStreamResult(stream, "video/mp4");
}

Note that there is no method in the ControllerBase or Controller class for returning a
FileStreamResult, so you need to build it yourself, passing it a stream and the desired
content type. This will keep the client connected until the transmission ends or the browser
navigates to another URL.

Now let's see what we can do to handle errors.

Error handling
In the previous chapter, we saw how to redirect to specific actions when an
error occurs. Another option could be to leverage
the IExceptionFilter and IAsyncExceptionFilter interfaces, one of the filter
classes, to have the controller itself—or some other class—implement error
handling directly.

In our controller, it's just a matter of implementing the IExceptionFilter class, which
only has one method, OnException:

public void OnException(ExceptionContext context)
{
 var ex = context.Exception;

 //do something with the exception

 //mark it as handled, so that it does not propagate
 context.ExceptionHandled = true;
}

In the asynchronous version, IAsyncExceptionFilter, the OnExceptionAsync method
takes the same parameter but must return a Task.

Controllers and Actions Chapter 4

[182]

In Chapter 10, Understanding Filters, we will learn more about the concept of filters. For
now, it is enough to say that should any exception be thrown from an action in a controller
implementing IExceptionFilter, its OnException method will be called.

Don't forget to set ExceptionHandled to true if you don't want the
exception to propagate!

The next topic is related to performance: response caching.

Response caching
An action response of any type (HTML or JSON, for example) may be cached in the client
in order to improve performance. Needless to say, this should only happen if the result that
it is returning rarely changes. This is specified in RFC 7234, HTTP/1.1 Caching (https:/ ​/
tools.​ietf.​org/​html/ ​rfc7234). Essentially, response caching is a mechanism by which the
server notifies the client (the browser or a client API) to keep the response returned
(including headers) for a URL for a certain amount of time and to use it, during that time,
for all subsequent invocations of the URL. Only the GET HTTP verb can be cached, as it is
designed to be idempotent: PUT, POST, PATCH, or DELETE cannot be cached.

We add support for resource caching in ConfigureServices as follows:

services.AddResponseCaching();

We use it in Configure, which basically adds the response caching middleware to the
ASP.NET Core pipeline:

app.UseResponseCaching();

We can also set a couple of options in the call to AddResponseCaching, such as the
following:

MaximumBodySize (int): This is the maximum size of the response that can be
stored in the client response cache; the default is 64 KB.
UseCaseSensitivePaths (bool): This enables you to configure the request
URL for the caching key as case-sensitive or not; the default is false.

https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2

Controllers and Actions Chapter 4

[183]

These can be used using an overload of the AddResponseCaching method:

services.AddResponseCaching(options =>
{
 options.MaximumBodySize *= 2;
 options.UseCaseSensitivePaths = true;
});

We can also have an action result cached by applying the [ResponseCache] attribute to
either the action or the whole controller class. Following this, we have a couple of
options—we can either specify each of the cache parameters directly in the attribute or we
can tell it to use a cache profile.

The options are as follows:

Duration (int): The number of seconds to cache; the default is 0
Location (ResponseCacheDuration): The location of the cache (Client, None,
Any); the default is Any
NoStore (bool): Whether to prevent the storing of the result; the default is
false

VaryByHeader (string): The comma-separated list of headers for which an
instance of the result is cached; the default is null
VaryByQueryKeys (string []): A list of query string parameters for which an
instance of the result is cached; the default is null
CacheProfileName (string): The cache profile name, which is incompatible
with the other options; the default is null

As we have mentioned, you either specify all of the individual options (or at least those that
you need) or you specify a cache profile name. Cache profiles are defined at Startup in the
ConfigureServices method through the AddMvc extension method, as follows:

services.AddMvc(options =>
{
 options.CacheProfiles.Add("5minutes", new CacheProfile
 {
 Duration = 5 * 60,
 Location = ResponseCacheLocation.Any,
 VaryByHeader = "Accept-Language"
 });
});

Controllers and Actions Chapter 4

[184]

This cache profile specifies that results are kept for five minutes, with different instances for
different values of the Accept-Language header. After this, you only need to specify the
name 5minutes:

[ResponseCache(CacheProfileName = "5minutes")]
public IActionResult Cache() { ... }

The VaryByHeader and VaryByQueryKeys properties, if they have values, will keep
different instances of the same cached response for each value of either the request header
or the query string parameter (or both). For example, if your application supports multiple
languages and you use the Accept-Language HTTP header to indicate which language
should be served, the results are kept in cache for each of the requested languages—one for
pt-PT, one for en-GB, and so on.

It's generally preferable to use cache profiles, rather than providing all parameters in the
attribute.

Let's now see how we can maintain the state between subsequent requests.

Maintaining the state
What if you need to maintain a state, either from one component to the other in the same
request, or across requests? Web applications have traditionally offered solutions for this.
Let's explore the options we have.

Using the request
Any object that you store in the request (in memory) will be available throughout its
duration. Items are a strongly typed dictionary in the HttpContext class:

this.HttpContext.Items["timestamp"] = DateTime.UtcNow;

You can check for the existence of the item before accessing it; it is worth noting that the
following is case sensitive:

if (this.HttpContext.Items.ContainsKey("timestamp")) { ... }

Of course, you can also remove an item:

this.HttpContext.Items.Remove("timestamp");

Controllers and Actions Chapter 4

[185]

Using form data
The Form collection keeps track of all values submitted by an HTML FORM, normally after a
POST request. To access it, you use the Form property of the Request object of
HttpContext:

var isChecked = this.HttpContext.Request.Form["isChecked"].Equals("on");

You can program defensively by first checking for the existence of the value (case
insensitive):

if (this.HttpContext.Request.Form.ContainsKey("isChecked")) { ... }

It is possible to obtain multiple values, and in this case, you can count them and get all their
values:

var count = this.HttpContext.Request.Form["isChecked"].Count;
var values = this.HttpContext.Request.Form["isChecked"].ToArray();

Using the query string
Usually, you won't store data in the query string, but will instead get data from it—for
example, http://servername.com?isChecked=true. The Query collection keeps track
of all parameters that are sent in the URL as strings:

var isChecked = this.HttpContext.Request.Query["isChecked"].Equals("true");

To check for the presence of a value, we use the following:

if (this.HttpContext.Request.Query.ContainsKey("isChecked")) { ... }

This also supports multiple values:

var count = this.HttpContext.Request.Query["isChecked"].Count;
var values = this.HttpContext.Request.Query["isChecked"].ToArray();

Using the route
As with the query string approach, you typically only get values from the route and do not
write to them; however, you do have methods in the IUrlHelper interface—which is
normally accessible through the Url property of the ControllerBase class—that generate
action URLs, from which you can pack arbitrary values.

Controllers and Actions Chapter 4

[186]

Route parameters look like http://servername.com/admin/user/121, and use a route
template of [controller]/[action]/{id}.

To get a route parameter (a string), you do the following:

var id = this.RouteData.Values["id"];

To check that it's there, use the following:

if (this.RouteData.ContainsKey("id")) { ... }

Using cookies
Cookies have been around for a long time and are the basis of a lot of functionality on the
web, such as authentication and sessions. They are specified in RFC 6265 (https:/ ​/​tools.
ietf.​org/​html/​rfc6265). Essentially, they are a way of storing small amounts of text in the
client.

You can both read and write cookies. To read a cookie value, you only need to know its
name; its value will come as a string:

var username = this.HttpContext.Request.Cookies["username"];

Of course, you can also check that the cookie exists with the following:

if (this.HttpContext.Request.Cookies.ContainsKey("username")) { ... }

To send a cookie to the client as part of the response, you need a bit more information,
namely the following:

Name (string): A name (what else?)
Value (string): A string value
Expires (DateTime): An optional expiration timestamp (the default is for the
cookie to be session-based, meaning that it will vanish once the browser closes)
Path (string): An optional path from which the cookie is to be made available
(the default is /)
Domain (string): An optional domain (the default is the current fully qualified
hostname)

https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265

Controllers and Actions Chapter 4

[187]

Secure (bool): An optional secure flag that, if present, will cause the cookie to
only be available if the request is being served using HTTPS (the default is
false)
HttpOnly (bool): Another optional flag that indicates whether the cookie will be
readable by JavaScript on the client browser (the default is also false)

We add a cookie to the request object as follows:

this.HttpContext.Response.Cookies.Append("username", "rjperes", new
CookieOptions
 {
 Domain = "packtpub.com",
 Expires = DateTimeOffset.Now.AddDays(1),
 HttpOnly = true,
 Secure = true,
 Path = "/"
 });

The third parameter, of the CookieOptions type is optional, in which case the cookie
assumes the default values.

The only way you can revoke a cookie is by adding one with the same name and an
expiration date in the past.

You mustn't forget that there is a limit to the number of cookies you can
store per domain, as well as a limit to the actual size of an individual
cookie value; these shouldn't be used for large amounts of data. For more
information, please consult RFC 6265.

Using sessions
Sessions are a way to persist data per client. Typically, sessions rely on cookies, but it's
possible (yet error prone) to use query string parameters, and ASP.NET Core does not
support this out of the box. In ASP.NET Core, sessions are opt-in; in other words, they need
to be explicitly added. We need to add the NuGet package
Microsoft.AspNetCore.Session and explicitly add support in the Configure and
ConfigureServices methods of the Startup class:

public void ConfigureServices(IServiceCollection services)
{
 services.AddSession();
 //rest goes here
}

Controllers and Actions Chapter 4

[188]

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseSession();
 //rest goes here
}

After that, the Session object is made available in the HttpContext instance:

var value = this.HttpContext.Session.Get("key"); //byte[]

A better approach is to use the GetString extension method and serialize/deserialize to
JSON:

var json = this.HttpContext.Session.GetString("key");
var model = JsonSerializer.Deserialize<Model>(json);

Here, Model is just a POCO class and JsonSerializer is a class from
System.Text.Json that has static methods for serializing and deserializing to and from
JSON strings.

To store a value in the session, we use the Set or SetString methods:

this.HttpContext.Session.Set("key", value); //value is byte[]

The JSON approach is as follows:

var json = JsonSerializer.Serialize(model);
this.HttpContext.Session.SetString("key", json);

Removal is achieved by either setting the value to null or calling Remove. Similar to
GetString and SetString, there are also the GetInt32 and SetInt32 extension
methods. Use what best suits your needs, but never forget that the data is always stored as
a byte array.

If you want to check for the existence of a value in the session, you should use the
TryGetValue method:

byte[] data;
if (this.HttpContext.Session.TryGetValue("key", out data)) { ... }

That's pretty much it for using the session as a general-purpose dictionary. Now it's,
configuration time! You can set some values, mostly around the cookie that is used to store
the session, plus the idle interval, in a SessionOptions object:

services.AddSession(options =>
{
 options.CookieDomain = "packtpub.com";

Controllers and Actions Chapter 4

[189]

 options.CookieHttpOnly = true;
 options.CookieName = ".SeSsIoN";
 options.CookiePath = "/";
 options.CookieSecure = true;
 options.IdleTimeout = TimeSpan.FromMinutes(30);
});

These can also be configured in the UseSession method in Configure:

app.UseSession(new SessionOptions { ... });

One final thing to note is that a session, by default, will use in-memory storage, which
won't make it overly resilient or useful in real-life apps; however, if a distributed cache
provider is registered before the call to AddSession, the session will use that instead! So,
let's take a look at the next topic to see how we can configure it.

Before moving on, we need to keep in mind the following:

There's a bit of a performance penalty in storing objects in the session.
An object may be evicted from the session if the idle timeout is reached.
Accessing an object in the session prolongs its lifetime—that is, its idle timeout is
reset.

Using the cache
Unlike previous versions of ASP.NET, there is no longer built-in support for the cache; like
most things in .NET Core, it is still available but as a pluggable service. There are
essentially two kinds of cache in .NET Core:

In-memory cache, which is represented by the IMemoryCache interface
Distributed cache, which uses the IDistributedCache interface

ASP .NET Core includes a default implementation of IMemoryCache as well as one for
IDistributedCache. The caveat for the distributed implementation is that it is also in-
memory—it is only meant to be used in testing, but the good thing is that there are several
implementations available, such as Redis (https:/ ​/ ​redis. ​io/​) or SQL Server.

In-memory and distributed caches can be used simultaneously, as they are
unaware of each other.

https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/

Controllers and Actions Chapter 4

[190]

Both the distributed and in-memory cache store instances as byte arrays (byte[]) but a
good workaround is to first convert your objects to JSON and then use the method
extensions that work with strings as follows:

var json = JsonSerializer.Serialize(model);
var model = JsonSerializer.Deserialize<Model>(json);

In-memory cache
In order to use the in-memory cache, you need to register its service in
ConfigureServices using the following default options:

services.AddMemoryCache();

If you prefer, you can also fine-tune them by using the overloaded extension method that
takes a MemoryCacheOptions instance:

services.AddMemoryCache(options =>
{
 options.Clock = new SystemClock();
 options.CompactOnMemoryPressure = true;
 options.ExpirationScanFrequency = TimeSpan.FromSeconds(5 * 60);
});

The purposes of these properties are as follows:

Clock (ISystemClock): This is an implementation of ISystemClock that will
be used for the expiration calculation. It is useful for unit testing and mocking;
there is no default.
CompactOnMemoryPressure (bool): This is used to remove the oldest objects
from the cache when the available memory gets too low; the default is true.
ExpirationScanFrequency (TimeSpan): This sets the interval that .NET Core
uses to determine whether to remove objects from the cache; the default is one
minute.

In order to use the in-memory cache, we need to retrieve an instance of IMemoryCache
from the dependency injection:

public IActionResult StoreInCache(Model model, [FromServices] IMemoryCache
cache)
{
 cache.Set("model", model);
 return this.Ok();
}

Controllers and Actions Chapter 4

[191]

We will look at [FromServices] in more detail in the Dependency injection section.

IMemoryCachesupports all the operations that you might expect, plus a few others:

CreateEntry: Creates an entry in the cache and gives you access to expiration
Get/GetAsync: Retrieves an item from the cache, synchronously or
asynchronously
GetOrCreate/GetOrCreateAsync: Returns an item from the cache if it exists, or
creates one, synchronously or asynchronously
Set/SetAsync: Adds or modifies an item in the cache, synchronously or
asynchronously
Remove: Removes an item from the cache
TryGetValue: Tentatively tries to get an item from the cache, synchronously

That's pretty much it! The memory cache will be available for all requests in the same
application and will go away once the application is restarted or stopped.

Distributed cache
The default out-of-the-box implementation of the distributed cache is pretty much useless
in real-life scenarios, but it might be a good starting point. Here's how to add support for it
in ConfigureServices:

services.AddDistributedMemoryCache();

There are no other options—it's just that. In order to use it, ask the Dependency Injection
container for an instance of IDistributedCache:

private readonly IDistributedCache _cache;

public CacheController(IDistributedCache cache)
{
 this._cache = cache;
}

public IActionResult Get(int id)
{
 return this.Content(this._cache.GetString(id.ToString()));
}

Controllers and Actions Chapter 4

[192]

The included implementation will behave in exactly the same ways as the in-memory
cache, but there are also some good alternatives for a more serious use case. The API it
offers does the following:

Get/GetAsync: Returns an item from the cache
Refresh/RefreshAsync: Refreshes an item in the cache, prolonging its lifetime
Remove/RemoveAsync: Removes an item from the cache
Set/SetAsync: Adds an item to the cache or modifies its current value

Be warned that because the cache is now distributed and may take some time to
synchronize, an item that you store in it may not be immediately available to all clients.

Redis
Redis is an open source distributed cache system. Its description is beyond the scope of this
book, but it's sufficient to say that Microsoft has made a client implementation available for
it in the form of the Microsoft.Extensions.Caching.Redis NuGet package. After you
add this package, you get a couple of extension methods that you need to use to register a
couple of services in ConfigureServices, which replaces the Configuration and
InstanceName properties with the proper values:

services.AddDistributedRedisCache(options =>
{
 options.Configuration = "servername";
 options.InstanceName = "Shopping";
});

And that's it! Now, whenever you ask for an instance of IDistributedCache, you will get
one that uses Redis underneath.

There is a good introduction to Redis available at https:/ ​/​redis. ​io/
topics/ ​quickstart.

SQL Server
Another option is to use the SQL Server as a distributed cache.
Microsoft.Extensions.Caching.SqlServer is the NuGet package that adds support
for it. You can add support for it in ConfigureServices as follows:

services.AddDistributedSqlServerCache(options =>
{

https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart

Controllers and Actions Chapter 4

[193]

 options.ConnectionString = @"Server=.; Database=DistCache;
 Integrated Security=SSPI;";
 options.SchemaName = "dbo";
 options.TableName = "Cache";
});

The rest is identical, so just get hold of IDistributedCache from the DI and off you go.

ASP.NET Core no longer includes the HttpApplication and
HttpApplicationState classes, which is where you could keep state
applications. This mechanism had its problems, and it's better if you rely
on either an in-memory or distributed cache instead.

Using temporary data
The Controller class offers a TempData property of the ITempDataDictionary type.
Temporary data is a way of storing an item in a request so that it is still available in the next
request. It's provider based, and there are currently two providers available:

Cookie (CookieTempDataProvider)
Session (SessionStateTempDataProvider)

For the latter, you need to enable session state support. To do this, you pick one of the
providers and register it using the dependency injection framework, normally in the
ConfigureServices method:

//only pick one of these
//for cookies
services.AddSingleton<ITempDataProvider, CookieTempDataProvider>();
//for session
services.AddSingleton<ITempDataProvider, SessionStateTempDataProvider>();

Since ASP.NET Core 2, the CookieTempDataProvider is already registered. If you use
SessionStateTempDataProvider, you also need to enable sessions.

After you have selected one of the providers, you can add data to the TempData collection:

this.TempData["key"] = "value";

Controllers and Actions Chapter 4

[194]

Retrieving and checking the existence is trivial, as you can see in the following code:

if (this.TempData.ContainsKey("key"))
{
 var value = this.TempData["key"];
}

After you have enabled temporary data by registering one of the providers, you can use the
[SaveTempData] attribute. When applied to a class that is returned by an action result, it
will automatically be kept in temporary data.

The [TempData] attribute, if applied to a property in the model class, will automatically
persist the value for that property in temporary data:

[TempData]
public OrderModel Order { get; set; }

Comparing state maintenance techniques
The following table provides a simple comparison of all the different techniques that can be
used to maintain the state among requests:

Technique Storable objects Is secure Is shared In process Expiration
Request object Yes No Yes No
Form string Yes (if using HTTPS) No Yes No
Query string string No Yes Yes No
Route string No Yes Yes No
Cookies string Yes (if set to HTTPS only) No No Yes
Session byte[] Yes No Maybe Yes
Cache object Yes Yes Maybe Yes
Temporary data string Yes No No Yes

Needless to say, not all of these techniques serve the same purpose; instead, they are used
in different scenarios.

In the next section, we will learn how to use dependency injection inside controllers.

Controllers and Actions Chapter 4

[195]

Dependency injection
ASP.NET Core instantiates the controllers through its built-in DI framework. Since it fully
supports constructor injection, you can have any registered services injected as parameters
to your constructor:

//ConfigureServices
services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>();

//HomeController
public HomeController(IHttpContextAccessor accessor) { ... }

However, you can also request a service from the DI in a service locator way by leveraging
the HttpContext.RequestServices property as follows:

var accessor =
this.HttpContext.RequestServices.GetService<IHttpContextAccessor>();

For the strongly typed GetService<T> extension method, you need to
add a reference to the Microsoft.Extensions.DependencyInjection
namespace.

In action methods, you can also inject a service by decorating its typed parameter with the
[FromServices] attribute, as follows:

public IActionResult Index([FromServices] IHttpContextAccessor accessor) {
... }

The next topic covers a very important topic, especially for those that wish to implement
multilingual sites.

Globalization and localization
If you need to build an application that will be used by people in different countries, you
may want to have all of it, or at least parts of it, translated. It's not just that, though: you
may also want to have decimal numbers and currency symbols presented in a way that
users would expect. The process by which an application is made to support different
cultures is called globalization, and localization is the process of adapting it to a specific
culture—for example, by presenting it with text in a specific language.

Controllers and Actions Chapter 4

[196]

ASP.NET Core, like previous versions, fully supports these two entwined concepts by
applying a specific culture to a request and letting it flow, and by having the ability to serve
string resources according to the language of the requester.

We first need to add support for globalization and localization, and we do this by adding
the Microsoft.AspNetCore.Localization.Routing package to the project. As far as
this chapter is concerned, we want to be able to do the following:

Set the culture for the current request
Hand resource strings that match the current culture

Let's configure localization in the ConfigureServices method with a call to
AddLocalization. We'll pick the Resources folder as the source for resource files, as
we'll see in a minute:

services.AddLocalization(options =>
{
 options.ResourcesPath = "Resources";
});

We create this Resources folder and inside it, we create a Controllers folder. Using
Visual Studio, let's also create two resource files, one called HomeController.en.resx
and the other called HomeController.pt.resx. The resx extension is a standard
extension for resource files that are basically XML files containing key–value pairs. On each
of these files, add an entry with the key Hello and the following value:

Portuguese English
Olá! Hello!

It should look like the following screenshot. Note that each file has the name of the
controller class plus a two-letter culture identifier:

Controllers and Actions Chapter 4

[197]

Now, let's define a range of cultures and languages to support. To make it simple, let's say
that we will support Portuguese (pt) and English (en):

var supportedCultures = new List<CultureInfo>
{
 new CultureInfo("pt"),
 new CultureInfo("en")
};

We are using pt and en, generic culture descriptors, but we could have
also used pt-pt and en-gb for specific cultures. Feel free to add these if
you want.

We then configure RequestLocalizationOptions in order to have a default language:

services.Configure<RequestLocalizationOptions>(options =>
{
 options.DefaultRequestCulture =
 new RequestCulture(supportedCultures.First().Name,
 supportedCultures.First().Name);
 options.SupportedCultures = supportedCultures;
 options.SupportedUICultures = supportedCultures;
 options.RequestCultureProviders = new[] {
 new AcceptLanguageHeaderRequestCultureProvider { Options =
 options } };
});

The process by which a culture is obtained from the browser is based upon a provider
model. The following providers are available:

AcceptLanguageHeaderRequestCultureProvider gets the culture from the
Accept-Language header.
CookieRequestCultureProvider gets the culture from a cookie.
QueryStringRequestCultureProvider gets the culture from a query string
parameter.
RouteDataRequestCultureProvider gets the culture from a route parameter.

Controllers and Actions Chapter 4

[198]

Just replace the RequestCultureProviders assignments in the previous code with the
ones you want. As you can see, there are many options available, each featuring the
different features that you need to set, such as the cookie name, the query string parameter,
the route parameter name, and so on:

new CookieRequestCultureProvider { CookieName = "culture" }
new QueryStringRequestCultureProvider { QueryStringKey = "culture" }
new RouteDataRequestCultureProvider { RouteDataStringKey = "culture" }

In the second chapter, we looked at route constraints, so here we will introduce the culture
route constraint:

public sealed class CultureRouteConstraint : IRouteConstraint
{
 public const string CultureKey = "culture";

 public bool Match(
 HttpContext httpContext,
 IRouter route,
 string routeKey,
 RouteValueDictionary values,
 RouteDirection routeDirection)
 {
 if ((!values.ContainsKey(CultureKey)) || (values
 [CultureKey] == null))
 {
 return false;
 }

 var lang = values[CultureKey].ToString();

 var requestLocalizationOptions = httpContext
 .RequestServices
 .GetRequiredService<IOptions<RequestLocalization
 Options>>();

 if ((requestLocalizationOptions.Value.SupportedCultures
 == null)
 || (requestLocalizationOptions.Value.SupportedCultures.
 Count == 0))
 {
 try
 {
 new System.Globalization.CultureInfo(lang);
 //if invalid, throws an exception
 return true;
 }

Controllers and Actions Chapter 4

[199]

 catch
 {
 //an invalid culture was supplied
 return false;
 }
 }

 //checks if any of the configured supported cultures matches the
 //one requested
 return requestLocalizationOptions.Value.SupportedCultures
 .Any(culture => culture.Name.Equals(lang, StringComparison
 .CurrentCultureIgnoreCase));
 }
}

The Match method only operates if there is a value specified for the culture key; if so, it
extracts its value and checks the RequestLocalizationOptions to see if it is a supported
culture or if it is a valid one. Essentially, what this does is allow the verification of route
values, such as {language:culture}, and if the value is not a valid culture, you will get
an exception. This route constraint needs to be registered before it can be used, as follows:

services.Configure<RouteOptions>(options =>
{
 options.ConstraintMap.Add(CultureRouteConstraint.CultureKey, typeof
 (CultureRouteConstraint));
});

Now, we want our controller to respond to the browser's language settings. For example, in
Chrome, we will configure this in Settings | Languages | Language and input settings:

Controllers and Actions Chapter 4

[200]

What this setting does is configure the Accept-Language HTTP header that the browser
will send upon each request. We are going to take advantage of this to decide what
language we will present.

Each controller that we wish to make localization-aware needs to be changed as follows:

Add a middleware filter attribute in order to inject a middleware component.
Inject a string localizer that we can use to fetch appropriately translated
resources.

Here is what that should look like:

[MiddlewareFilter(typeof(LocalizationPipeline))]
public class HomeController
{
 private readonly IStringLocalizer<HomeController> _localizer;

 public HomeController(IStringLocalizer<HomeController> localizer)
 {
 this._localizer = localizer;
 }
}

The LocalizationPipeline is actually an OWIN middleware component, and should
look as follows:

public class LocalizationPipeline
{
 public static void Configure(
 IApplicationBuilder app,
 IOptions<RequestLocalizationOptions> options)
 {
 app.UseRequestLocalization(options.Value);
 }
}

Now, if we want to access a specific resource in a culture-specific way, all we need to do is
the following:

var hello = this._localizer["Hello"];

The returned string will come from the right resource file, based on the current culture, as
originated from the browser. You can check this by looking at the
CultureInfo.CurrentCulture and CultureInfo.CurrentUICulture properties.

Controllers and Actions Chapter 4

[201]

There are a couple of final things to note:

You can have several resource files per language, or more accurately, per specific
(for example, en, pt) and generic language (for example, en-gb, en-us); if the
browser requests a specific language (for example, en-gb, en-us), then the
localizer will try to find a resource file with that as a suffix, and if it cannot find
one, it will try the generic language (for example, en). If this also fails, it will
return the resource key provided (for example, Hello)
The localizer never returns an error or a null value, but you can check whether
the value exists for the current language with the following:

var exists = this._localizer["Hello"].ResourceNotFound;

The topics discussed here are very important if you are going to implement sites that need
to support multiple cultures or languages, but you should also consider using it if you
would like to have the text in your site in files, such as resources, so that they can be easily
edited and replaced.

Summary
In this chapter, we saw that using POCO controllers is not really needed, and it requires
more work than whatever benefit we can take out of it, so we should have our controllers
inherit from Controller.

Then we saw that using asynchronous actions is good for improved scalability as it won't
affect performance much, but your app will be more responsive.

You can forget about XML formatting, as JSON works perfectly, and is the standard way to
send and process data on the web.

We learned that we should use POCO classes as the model for our actions. The built-in
model binders work well, as we'll see in upcoming chapters, but you can add the cookie
value provider as it may come in handy.

As far as model validation is concerned, we saw that it is better to stick to the good old data
annotations API. If necessary, you should implement IValidatableObject in your
model.

The Redis distributed cache system is very popular and is supported by both Azure and
AWS. Redis should be your choice for a distributed cache to keep reference data; in other
words, stuff that isn't changed often.

Controllers and Actions Chapter 4

[202]

Performance-wise, response caching is also useful. The products page shouldn't change that
much, so at least we can keep it in the cache for a few hours.

This was a long chapter where we covered controllers and actions, arguably the most
important aspects of ASP.NET Core. We also covered parts of the model concept, such as
binding, injection, and validation. We saw how we can maintain the state and the possible
values that we can return from an action. We also learned how to use resources for
translation purposes. Some of these concepts will be revisited in future chapters; in the next
one, we will be talking about views.

Questions
You should now be able to answer the following questions:

What is the default validation provider for the model state?1.
What is an action?2.
What is globalization and how does it differ from localization?3.
What is temporary data used for?4.
What is a cache good for?5.
What is a session?6.
What are the benefits of a controller inheriting from the Controller base class?7.

5
Views

After we've talked about how the application works from the server side, it's time to look at
the client side. In this chapter, we will cover the visual side of a Model-View-Controller
(MVC) app: the views.

A view in this context is a combination of HyperText Markup Language (HTML) and code
that executes on the server side and whose output is combined and sent to the client at the
end of the request.

To help achieve consistency and reusability, ASP.NET Core offers a couple of mechanisms,
page layouts, and partial views that can be very handy. Also, because we may want to
support different languages and cultures, we have built-in localization support, which
helps provide a better user experience.

In this chapter, we will learn the following:

What are Razor views
What are partial views
What are view layouts
What are the base Razor view classes
How Razor finds view files
How to inject services into a view
What is a location expander
How to perform view localization
How to mix code and markup on a view
How to enable view compilation upon publishing

Views Chapter 5

[204]

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 software development kit (SDK) and some form of text editor. Of course, Visual
Studio 2019 (any edition) meets all the requirements, but you can also use Visual Studio
Code, for example, or Visual Studio for Mac.

The source code can be retrieved from GitHub at https:/ ​/ ​github. ​com/ ​PacktPublishing/
Modern-​Web-​Development- ​with- ​ASP. ​NET- ​Core-​3- ​Second- ​Edition.

Getting started
Views are the V in MVC. They are the visual part of the application. Typically, a web app
renders HTML pages, meaning HTML views. A view is a template that consists of a mix of
HTML and possibly some server-side content.

ASP.NET Core uses view engines to actually render the views, an extensible mechanism.
Before the time of Core, there were several view engines available; although their purpose
was always to generate HTML, they offered subtle differences in terms of syntax and the
features they supported. Currently, ASP.NET Core only includes one view engine, called
Razor, as the other one that used to be available, Web Forms, was dropped. Razor has been
around for quite some time and has been improved in the process of adding it to ASP.NET
Core.

Razor files have the cshtml extension (for C# HTML) and, by convention, are kept in a
folder called Views underneath the application, and under a folder with the name of the
controller to which they apply, such as Home. There may be global and local views, and we
will learn the distinction in a moment.

The typical way to have a controller action returning a view is by returning the result of
executing the View method of the Controller class. This creates ViewResult, and it can
take a number of options, as follows:

ContentType (string): An optional content type to return to the client;
text/html is the default
Model (object): Just any object that we want to make available to the view
StatusCode (int): An optional status code to return; if none is provided, it will
be 200
TempData (ITempDataDictionary): Strongly typed temporary data to make
available until the next request

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Views Chapter 5

[205]

ViewData (ViewDataDictionary): A key-value collection of arbitrary data to
pass to the view
ViewName (string): The name of the view to render

The only required parameter is ViewName, and, if it's not supplied, the current action name
will be used; that is to say, if we are executing in an action method named Index, and we
want to return a view but don't supply its name, Index will be used, as illustrated in the
following code snippet:

public IActionResult Index()
{
 return this.View(); //ViewName = Index
}

There are some overloads to the View method that basically take either the viewName, the
model, or both, as illustrated in the following code snippet:

return this.View(
 viewName: "SomeView",
 model: new Model()
);

Beware—if your model is of the string type, .NET may mistakenly
choose the View overload that takes a view name!

Now, imagine you want to return a view with a specific content type or status code. You
can get the ViewResult object from the View method call and then change it, like this:

var view = this.View(new Model());
view.ContentType = "text/plain";
view.StatusCode = StatusCodes.Status201Created;
return view;

Or, if we want to set some view data, we can run the following code:

view.ViewData["result"] = "success";

One thing that you must not forget upfront is, if you have not registered your MVC services
with AddMvc, you will need to do so with AddControllersWithViews, like this:

services.AddControllersWithViews();

Views Chapter 5

[206]

This will result in slightly less memory pressure than AddMvc because it will not, for
example, register the services that are needed for Razor pages (do not confuse them with
Razor views, the scope of this chapter!).

Razor Pages and Razor views are not the same thing: Razor Pages are
callable on their own, whereas Razor views are returned by controller
action methods. Razor Pages will be discussed in their own chapter.

Let's carry on by exploring the view class.

Understanding views
A Razor view is actually a template that is transformed into a class that inherits from
RazorPage<T>. The generic parameter is actually the type of model, as we will see in a
moment. This class inherits from RazorPage, which exposes a few useful properties, as
follows:

IsLayoutBeingRendered (bool): Whether a layout page is currently being
rendered or not
BodyContent (IHtmlContent): The resulting page's body contents; will only be
available at a later time
TempData (ITempDataDictionary): The temporary data dictionary
ViewBag (dynamic): Access to the view bag, which holds arbitrary data
prototyped as dynamic
User (ClaimsPrincipal): The current user, as in HttpContext.User
Output (TextWriter): The output writer, to which the HTML results are sent
once the page is processed
DiagnosticSource (DiagnosticSource): Allows the logging of diagnostic
messages, covered here
HtmlEncoder (HtmlEncoder): The HTML encoder used for encoding the results
as they are sent in the response
Layout (string): The current layout file
ViewContext (ViewContext): The view context
Path (string): The current view file path
Context (HttpContext): The HTTP context

All of these properties can be used in a view.

Views Chapter 5

[207]

We can, of course, define our own class that derives from RazorPage<T> and have our
view use it, by using @inherits, like this:

public class MyPage : RazorPage<dynamic>
{
 public override Task ExecuteAsync()
 {
 return Task.CompletedTask;
 }
}

The only required method is ExecuteAsync, but you don't need to worry about that. If we
now inherit from this class, we will see the following:

@inherits MyPage

Or, if we want the generated class to implement some interface, we can use the
@implements keyword instead—like, for example, for IDisposable, as illustrated in the
following code snippet:

@implements IDisposable

@public void Dispose()
{
 //do something
}

In this case, we must, of course, implement all interface members ourselves.

Understanding the view life cycle
When an action signals that a view should be rendered, the following occurs (in a
simplified way):

The action returns a ViewResult object because ViewResult implements
IActionResult, and its ExecuteResultAsync method is called
asynchronously.
The default implementation attempts to find ViewResultExecutor from the
dependency injection (DI) framework.
The FindView method is called on ViewResultExecutor, which uses an
injected ICompositeViewEngine, also obtained from the DI framework, to
obtain IView from the list of registered view engines.

Views Chapter 5

[208]

The view engine chosen will be an implementation of IRazorViewEngine
(which, in turn, extends IViewEngine).
The IView implementation uses the registered IFileProviders to load the
view file.
ViewResultExecutor is then asked to invoke the view, through its
ExecuteAsync method, which ends up invoking the ExecuteAsync methods of
the base ViewExecutor.
ViewExecutor builds and initializes some infrastructure objects such as
ViewContext and ends up invoking IView RenderAsync method.
Another service (ICompilationService) is used to compile the C# code.
The registered IRazorPageFactoryProvider creates a factory method for
creating a .NET class that inherits from IRazorPage.
IRazorPageActivator is passed an instance of the new IRazorPage.
The ExecuteAsync method of IRazorPage is called.

Here, I didn't mention the filters, but they are here as well, except action filters, as I said.

Why is this important? Well, you may need to implement your own version
of—say—IRazorPageActivator so that you can perform some custom initialization or DI
in the Razor view, as illustrated in the following code block:

public class CustomRazorPageActivator : IRazorPageActivator
{
 private readonly IRazorPageActivator _activator;

 public CustomRazorPageActivator(
 IModelMetadataProvider metadataProvider,
 IUrlHelperFactory urlHelperFactory,
 IJsonHelper jsonHelper,
 DiagnosticSource diagnosticSource,
 HtmlEncoder htmlEncoder,
 IModelExpressionProvider modelExpressionProvider)
 {
 this._activator = new RazorPageActivator(
 metadataProvider,
 urlHelperFactory,
 jsonHelper,
 diagnosticSource, htmlEncoder,
 modelExpressionProvider);
 }

 public void Activate(IRazorPage page, ViewContext context)
 {

Views Chapter 5

[209]

 if (page is ICustomInitializable)
 {
 (page as ICustomInitializable).Init(context);
 }

 this._activator.Activate(page, context);
 }
}

All you need to do is register this implementation in ConfigureServices, for the
IRazorPageActivator service, like this:

services.AddSingleton<IRazorPageActivator, CustomRazorPageActivator>();

Now, how are views located?

Locating views
When asked to return a view (ViewResult), the framework needs first to locate the view
file (.cshtml).

The built-in conventions around locating view files are as follows:

View files end with the cshtml extension.
View filenames should be identical to the view names, minus the extension (for
example, a view of Index will be stored in a file named Index.cshtml).
View files are stored in a Views folder and inside a folder named after the
controller they are returned from—for example, Views\Home.
Global or shared views are stored in either the Views folder directly or inside a
Shared folder inside of it—for example, Views\Shared.

Actually, this is controlled by the ViewLocationFormats collection of the
RazorViewEngineOptions class (Razor is the only included view engine). This has the
following entries, by default:

/Views/{1}/{0}.cshtml

/Views/Shared/{0}.cshtml

The {1} token is replaced by the current controller name and {0} is
replaced by the view name. The / location is relative to the ASP.NET Core
application folder, not wwwroot.

Views Chapter 5

[210]

If you want the Razor engine to look in different locations, all you need to do is tell it; so,
through the AddRazorOptions method, that is usually called in sequence to AddMvc, in the
ConfigureServices method, like this:

services
 .AddMvc()
 .AddRazorOptions(options =>
 {
 options.ViewLocationFormats.Add("/AdditionalViews/{0}.cshtml");
 });

The view locations are searched sequentially in the ViewLocationFormats collection until
one file is found.

The actual view file contents are loaded through IFileProviders. By default, only one
file provider is registered (PhysicalFileProvider), but more can be added through the
configuration. The code can be seen in the following snippet:

services
 .AddMvc()
 .AddRazorOptions(options =>
 {
 options.FileProviders.Add(new CustomFileProvider());
 });

Adding custom file providers may prove useful—for example, if you want to load contents
from non-orthodox locations, such as databases, ZIP files, assembly resources, and so on.
There are multiple ways to do this. Let's try them in the following subsections.

Using view location expanders
There is an advanced feature by which we can control, per request, the locations to search
the view files: it's called view location expanders. View location expanders are a Razor
thing, and thus are also configured through AddRazorOptions, as illustrated in the
following code snippet:

services
 .AddMvc()
 .AddRazorOptions(options =>
 {
 options.ViewLocationExpanders.Add(new ThemesViewLocationExpander
 ("Mastering"));
 });

Views Chapter 5

[211]

A view location expander is just some class that implements the IViewExpander contract.
For example, imagine you want to have a theme framework that would add a couple of
folders to the views search path. You could write it like this:

public class ThemesViewLocationExpander : IViewLocationExpander
{
 public ThemesViewLocationExpander(string theme)
 {
 this.Theme = theme;
 }

 public string Theme { get; }

 public IEnumerable<string> ExpandViewLocations(
 ViewLocationExpanderContext context,
 IEnumerable<string> viewLocations)
 {
 var theme = context.Values["theme"];

 return viewLocations
 .Select(x => x.Replace("/Views/", "/Views/" + theme + "/"))
 .Concat(viewLocations);
 }

 public void PopulateValues(ViewLocationExpanderContext context)
 {
 context.Values["theme"] = this.Theme;
 }
}

The default search locations, as we've seen, are the following:

/Views/{1}/{0}.cshtml

/Views/Shared/{0}.cshtml

By adding this view location expander, for a theme called Mastering, these will become
the following:

/Views/{1}/{0}.cshtml

/Views/Mastering/{1}/{0}.cshtml

/Views/Shared/Mastering/{0}.cshtml

/Views/Shared/{0}.cshtml

Views Chapter 5

[212]

The IViewLocationExpander interface defines only two methods, as follows:

PopulateValues: Used to initialize the view location expander; in this example,
I used it to pass some value in the context.
ExpandViewLocations: This will be called to retrieve the desired view
locations.

View location expanders are queued, so they will be called in sequence, from the
registration order; each ExpandViewLocations method will be called with all the
locations returned from the previous one.

Both methods, through the context parameter, have access to all the request parameters
(HttpContext, RouteData, and so on), so you can be as creative as you like, and define the
search locations for the views according to whatever rationale you can think of.

Using view engines
It was mentioned at the start of the chapter that ASP.NET Core only includes one view
engine, Razor, but nothing prevents us from adding more. This can be achieved through
the ViewEngines collection of MvcViewOptions, as illustrated in the following code
snippet:

services
 .AddMvc()
 .AddViewOptions(options =>
 {
 options.ViewEngines.Add(new CustomViewEngine());
 });

A view engine is an implementation of IViewEngine, and the only included
implementation is RazorViewEngine.

Again, view engines are searched sequentially when ASP.NET Core is asked to render a
view and the first one that returns one is the one that is used. The only two methods
defined by IViewEngine are as follows:

FindView (ViewEngineResult): Tries to find a view from ActionContext
GetView (ViewEngineResult): Tries to find a view from a path

Both methods return null if no view is found.

Views Chapter 5

[213]

A view is an implementation of IView, and the ones returned by RazorViewEngine are all
RazorView. The only notable method in the IView contract is RenderAsync, which is the
one responsible for actually rendering a view from ViewContext.

A view engine is not an easy task. You can find a sample implementation
written by Dave Paquette in a blog post at: http:/ ​/​www. ​davepaquette.
com/​archive/ ​2016/ ​11/ ​22/ ​creating- ​a-​new- ​view- ​engine- ​in- ​asp- ​net-
core. ​aspx.

A Razor view is a template composed essentially of HTML, but it also accepts
fragments—which can be quite large, actually—of server-side C# code. Consider the
requirements for it, as follows:

First, you may need to define the type of model that your view receives from the
controller. By default, it is dynamic, but you can change it with a @model
directive, like this:

@model MyNamespace.MyCustomModel

Doing this is exactly the same as specifying the base class of your view. This is
accomplished by using @inherits, like this:

@inherits RazorPage<MyNamespace.MyCustomModel>

Remember: the default is RazorPage<dynamic>. Don't forget: you cannot
have @inherits and @model at the same time with different types!

If you don't want to write the full type name, you can add as many @using
declarations as you want, as illustrated in the following code snippet:

@using My.Namespace
@using My.Other.Namespace

You can intermix HTML with Razor expressions, which are processed on the
server side. Razor expressions always start with the @ character. For example, if
you want to output the currently logged-in user, you could write this:

User: @User.Identity.Name

http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx
http://www.davepaquette.com/archive/2016/11/22/creating-a-new-view-engine-in-asp-net-core.aspx

Views Chapter 5

[214]

You can output any method that returns either a string or an IHtmlContent
directly, like this:

@Html.Raw(ViewBag.Message)

If you need to evaluate some simple code, you will need to include it inside
parentheses, like this:

Last week: @(DateTime.Today - TimeSpan.FromDays(7))

Remember—if your expression has a space, you need to include it inside
parentheses, the only exception being the await keyword, as illustrated in the
following code snippet:

@await Component.InvokeAsync("Process");

You can encode HTML (implicitly using the HtmlEncoder instance supplied in
the HtmlEncoder property), like this:

@("Hello, World")

This will output an HTML-encoded string, as illustrated in the following code snippet:

Hello, World

More complex expressions, such as the definition of variables, setting values to properties,
or calling of methods that do not return a stringy result (string, IHtmlContent) need to
go in a special block, in which you can put pretty much anything you would like in a .NET
method, as illustrated in the following code snippet:

@{
 var user = @User.Identity.Name;
 OutputUser(user);
 Layout = "Master";
 }

Sentences inside @{} blocks need to be separated by semicolons.

A variable defined in this way can be used in any other place in the view—after the
declaration, of course.

Views Chapter 5

[215]

Let's look at conditionals (if, else if, else and switch) now, which are nothing special.
Have a look at the following code snippet:

//check if the user issuing the current request is authenticated somehow
@if (this.User.Identity.IsAuthenticated)
{
 <p>Logged in</p>
}
else
{
 <p>Not logged in</p>
}

//check the authentication type for the current user
@switch (this.User.Identity.AuthenticationType)
{
 case "Claims":
 <p>Logged in</p>
 break;

 case null:
 <p>Not logged in</p>
 break;
}

The first condition checks whether the current user is authenticated, and displays an HTML
block accordingly. On the second, we have a switch instruction, on which we can specify
multiple possible values; in this case, we are only looking at two, "Claims" and null,
which essentially yields the same result as the first condition.

Loops use a special syntax, where you can mix together HTML (any valid Extensible
Markup Language (XML) element) and code, as illustrated in the following code snippet:

@for (var i = 0; i < 10; i++)
{
 <p>Number: @i</p>
}

Note that this will not work because Number is not included inside an XML element, as
illustrated in the following code snippet:

@for (var i = 0; i < 10; i++)
{
 Number: @i
}

Views Chapter 5

[216]

But the following syntax (@:) would work:

@:Number: @i

This makes the rest of the line be treated as an HTML chunk.

The same syntax can be used in foreach and while.

Now, let's have a look at try/catch blocks, shown in the following code snippet:

@try
{
 SomeMethodCall();
}
catch (Exception ex)
{
 <p class="error">An error occurred: @ex.Message</p>
 Log(ex);
}

Consider the @using and @lock blocks shown in the following code snippet:

@using (Html.BeginForm())
{
 //the result is disposed at the end of the block
}

@lock (SyncRoot)
{
 //synchronized block
}

Now, what if you want to output the @ character? You need to escape it with another @, like
this:

<p>Please enter your username @@domain.com</p>

But Razor views recognize emails and do not force them to be encoded, as illustrated in the
following code snippet:

<input type="email" name="email" value="nobody@domain.com"/>

Finally, comments—single or multiline—are also supported, as illustrated in the following
code snippet:

@*this is a single-line Razor comment*@
@*
 this

Views Chapter 5

[217]

 is a multi-line
 Razor comment
*@

Inside a @{} block, you can add C# comments too, as illustrated in the following code
snippet:

@{
 //this is a single-line C# comment
 /*
 this
 is a multi-line
 C# comment
 */
 }

Of course, because a view is essentially HTML, you can also use HTML comments, as
illustrated in the following code snippet:

<!-- this is an HTML comment -->

The difference between C#, Razor, and HTML comments is that only
HTML comments are left by the Razor compilation process; the others are
discarded.

We can add functions (which are actually, in object-oriented terminology, methods) to our
Razor views; these are just .NET methods that are only visible in the scope of a view. To
create them, we need to group them inside a @functions directive, like this:

@functions
{
 int Count(int a, int b) { return a + b; }

 public T GetValueOrDefault<T>(T item) where T : class, new()
 {
 return item ?? new T();
 }
}

It is possible to specify visibility. By default, this happens inside a class, which is called a
private class. It is probably pointless to specify visibility since the generated class is only
known at runtime, and there is no easy way to access it.

Views Chapter 5

[218]

The @functions name is actually slightly misleading, as you can declare fields and
properties inside of it, as can be seen in the following code block:

@functions
{
 int? _state;
 int State
 {
 get
 {
 if (_state == null)
 {
 _state = 10;
 }
 return _state;
 }
 }
}

This example shows a simple private field that is encapsulated behind a property that has
some logic behind it: the first time it is accessed, it sets the field to a default value;
otherwise, it just returns what the current value is.

Logging and diagnostics
As usual, you can obtain a reference to ILogger<T> from the DI framework and use it in
your views, like this:

@inject ILogger<MyView> Logger

But there is also another built-in mechanism, the DiagnosticSource class, and property,
which is declared in the RazorPage base class. By calling its Write method, you can write
custom messages to a diagnostics framework. These messages can be any .NET object, even
an anonymous one, and there is no need to worry about its serialization. Have a look at the
following code snippet:

@{
 DiagnosticSource.Write("MyDiagnostic", new { data = "A diagnostic" });
}

Views Chapter 5

[219]

What happens with this diagnostic message is actually somewhat configurable. First, let's
add the Microsoft.Extensions.DiagnosticAdapter NuGet package, and then create a
custom listener for the events generated for this diagnostic source, like this:

public class DiagnosticListener
{
 [DiagnosticName("MyDiagnostic")]
 public virtual void OnDiagnostic(string data)
 {
 //do something with data
 }
}

We can add as many listeners as we want, targeting different event names. The actual
method name does not matter, as long as it has a [DiagnosticName] attribute applied to it
that matches an event name. We need to register and hook it to the .NET Core framework,
in the Configure method, by adding a reference to the DiagnosticListener service so
that we can interact with it, like this:

public void Configure(IApplicationBuilder app, DiagnosticListener
diagnosticListener)
{
 var listener = new DiagnosticListener();
 diagnosticListener.SubscribeWithAdapter(listener);

 //rest goes here
}

Notice that the name in the [DiagnosticName] attribute and DiagnosticSource.Write
call match, and also, the name, data, of the anonymous type in the Write call matches the
parameter name (and type) of the OnDiagnostic method.

Built-in .NET Core classes produce diagnostics for the following:

Microsoft.AspNetCore.Diagnostics.HandledException

Microsoft.AspNetCore.Diagnostics.UnhandledException

Microsoft.AspNetCore.Hosting.BeginRequest

Microsoft.AspNetCore.Hosting.EndRequest

Microsoft.AspNetCore.Hosting.UnhandledException

Microsoft.AspNetCore.Mvc.AfterAction

Microsoft.AspNetCore.Mvc.AfterActionMethod

Microsoft.AspNetCore.Mvc.AfterActionResult

Microsoft.AspNetCore.Mvc.AfterView

Views Chapter 5

[220]

Microsoft.AspNetCore.Mvc.AfterViewComponent

Microsoft.AspNetCore.Mvc.BeforeAction

Microsoft.AspNetCore.Mvc.BeforeActionMethod

Microsoft.AspNetCore.Mvc.BeforeActionResult

Microsoft.AspNetCore.Mvc.BeforeView

Microsoft.AspNetCore.Mvc.BeforeViewComponent

Microsoft.AspNetCore.Mvc.Razor.AfterViewPage

Microsoft.AspNetCore.Mvc.Razor.BeforeViewPage

Microsoft.AspNetCore.Mvc.Razor.BeginInstrumentationContext

Microsoft.AspNetCore.Mvc.Razor.EndInstrumentationContext

Microsoft.AspNetCore.Mvc.ViewComponentAfterViewExecute

Microsoft.AspNetCore.Mvc.ViewComponentBeforeViewExecute

Microsoft.AspNetCore.Mvc.ViewFound

Microsoft.AspNetCore.Mvc.ViewNotFound

Hopefully, the names should be self-explanatory. Why would you use this mechanism over
the ILogger-based one? This one makes it very easy to add listeners to a diagnostic source,
with strongly typed methods. I will talk more about the differences between the two in
Chapter 12, Logging, Tracing, and Diagnostics.

View compilation
Normally, a view is only compiled when it is first used—that is, a controller action returns
ViewResult. What this means is that any eventual syntax errors will only be caught at
runtime when the framework is rendering the page; plus, even if there are no errors,
ASP.NET Core takes some time (in the order of milliseconds, mind you) to compile the
view. This does not need to be the case, however.

Unlike previous versions, ASP.NET Core 3 does not recompile a view when the Razor file
changes, by default. For that, you have to restart your server. If you want to have this
behavior back, you need to add a reference to the
Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilation NuGet package and add
the following line to the services configuration:

services
 .AddMvc()
 .AddRazorRuntimeCompilation();

Views Chapter 5

[221]

Or, you may prefer to enable this only for the debug version of your app, which excludes it
from production builds. In that case, you can do it like this:

var mvc = services.AddMvc();

#if DEBUG
mvc.AddRazorRuntimeCompilation();
#endif

Or, for a specific environment, you can inject IWebHostEnvironment into your Startup
class, store it, and check the current environment before making the call to
AddRazorRuntimeCompilation, as follows:

public IConfiguration Configuration { get; }
public IWebHostEnvironment Environment { get; }

public Startup(IConfiguration configuration, IWebHostEnvironment
environment)
{
 this.Configuration = configuration;
 this.Environment = environment;
}

var mvc = services.AddMvc();

if (this.Environment.IsDevelopment())
{
 mvc.AddRazorRuntimeCompilation();
}

Microsoft makes available a NuGet package, which is
Microsoft.AspNetCore.Mvc.Razor.ViewCompilation, that you can add as a reference
to your project. After this, you can enable view compilation at publishing time, and
currently, the only way to do this is by manually editing the .csproj file. Look for the first
<PropertyGroup> instance declared in it, the one that contains the <TargetFramework>
element, and add a <MvcRazorCompileOnPublish> and a
<PreserveCompilationContext> element. The result should look like this:

<PropertyGroup>
 <TargetFramework>netcoreapp3</TargetFramework>
 <MvcRazorCompileOnPublish>true</MvcRazorCompileOnPublish>
 <PreserveCompilationContext>true</PreserveCompilationContext>
</PropertyGroup>

Now, whenever you publish your project, either using Visual Studio or the dotnet
publish command, you will get errors.

Views Chapter 5

[222]

Do not forget that the precompilation only occurs at publish, not build,
time!

The class that is generated for each view exposes a property called Html that is of type
IHtmlHelper<T>, T being the type of your model. This property has some interesting
methods that can be used for rendering HTML, as follows:

Generating links (ActionLink, RouteLink)
Generating forms for a given model or model property (BeginForm,
BeginRouteForm, CheckBox, CheckBoxFor, Display, DisplayFor,
DisplayForModel, DisplayName, DisplayNameFor,
DisplayNameForInnerType, DisplayNameForModel, DisplayText,
DisplayTextFor, DropDownList, DropDownListFor, Editor, EditorFor,
EditorForModel, EndForm, Hidden, HiddenFor, Id, IdFor, IdForModel,
Label, LabelFor, LabelForModel, ListBox, ListBoxFor, Name, NameFor,
NameForModel, Password, PasswordFor, RadioButton, RadioButtonFor,
TextArea, TextAreaFor, TextBox, TextBoxFor, Value, ValueFor,
ValueForModel)
Displaying validation messages (ValidationMessage,
ValidationMessageFor, ValidationSummary)
Rendering anti-forgery tokens (AntiForgeryToken)
Outputting raw HTML (Raw)
Including partial views (Partial, PartialAsync, RenderPartial,
RenderPartialAsync)
Getting access to the context properties (ViewContext, ViewBag, ViewData,
TempData) and also the base classes' (RazorPage, RazorPage<T>) properties
(UrlEncoder, MetadataProvider)
A couple of configuration properties (Html5DateRenderingMode,
IdAttributeDotReplacement)

We will look into these methods in more detail in Chapter 13, Understanding How Testing
Works. For now, let's see how we can add our own extension (helper) methods. The easiest
way is to add an extension method over IHtmlHelper<T>, as illustrated in the following
code snippet:

public static HtmlString CurrentUser(this IHtmlHelper<T> html)
{
 return new HtmlString(html.ViewContext.HttpContext.

Views Chapter 5

[223]

 User.Identity.Name);
}

Now, you can use it in every view, like this:

@Html.CurrentUser()

Make sure that you either return string or IHtmlContent from it; otherwise, you won't
be able to use this syntax.

We've seen that the ViewResult class offers the following three properties that can be used
to pass data from an action into a view:

The model (Model): In the early days of ASP.NET MVC, this was the only
mechanism that could be used; we needed to define a possibly quite complex
class with all the data that we would like to make available.
The view data (ViewData): Now that we have a strongly typed collection of
random values, this has gained in popularity against the model.
The temporary data (TempData): Data that will only be available until the next
request.

These properties are eventually passed along to identically named ones in the
RazorPage<T> class.

It is even possible, but not too common, to specify the view engine (an instance of
IViewEngine) that should be used by the view rendering process, by setting a value to the
ViewEngine property. Normally, this is looked after automatically.

Passing data to views
Next we will be talking about different ways to pass data to a view.

Using the model
By default, a Razor view inherits from RazorPage<dynamic>, which means that the model
is prototyped as dynamic.

This will be the type for the Model property. This is a flexible solution because you can pass
whatever you want in the model, but you won't get IntelliSense—Visual Studio support in
completion—for it.

Views Chapter 5

[224]

You could, however, specify a strongly typed model through inherits, like this:

@inherits RazorPage<ProcessModel>

This could also be achieved by using the model directive, like this:

@model ProcessModel

These are essentially the same. Visual Studio helps you find its properties and methods, as
illustrated in the following screenshot:

One thing to keep in mind is that you cannot pass an anonymous type on
your controller, as the view won't be able to access its properties. See the
next chapter for a solution to this.

Using the ViewBag property
The view bag (ViewBag property) came as a complement for the model, but, in my
perspective, has long taken over it. Why is that? Well, I guess the problem is that you need
to change the model class whenever you need more properties, and it's much easier to just
stick new items in the view bag.

There are two options for using the view bag, as follows:

Through the ViewBag dynamic property, which is not runtime-safe, like this:

<script>alert('@ViewBag.Message');</script>

Through the ViewData strongly typed dictionary, like this:

<script>alert('@ViewData["Message"]');</script>

Views Chapter 5

[225]

ViewBag is just a wrapper around ViewData—anything that is added to one can be
retrieved from the other, and vice versa. A good reason for picking ViewData is if the
stored data's name contains a space or other special character such as -, /, @, and so on.

Using temporary data
Temporary data, explained in Chapter 4, Controllers and Actions, can be retrieved in a
similar way to ViewData, should we need to, as follows:

<script>alert('@TempData["Message"]');</script>

Remember that temporary data only exists in the scope of the next request, as its name
implies.

Next, we will explore the mechanism for defining a common structure for our views.

Understanding view layouts
View layouts are similar to master pages in good old ASP.NET Web Forms. They define a
base layout and, possibly, default contents that several views can use, so as to maximize,
reuse, and offer a consistent structure. An example view layout can be seen in the following
screenshot:

Image taken from https://docs.microsoft.com/en-us/aspnet/core/mvc/views/layout

Views Chapter 5

[226]

View layouts themselves are also Razor views, and they can be controlled by setting the
Layout property in a view, which is defined in the RazorPage base class, as follows:

@{ Layout = "_Layout"; }

The Layout property is just the name of a view, one that can be discovered in the usual
way.

The only thing that is required in a layout view is a call to the RenderBody method; this
causes the actual view that is using it to be rendered. It is also possible to define section
placeholders, which may be used by actual views to provide content. A section is defined
by a RenderSection call, as illustrated in the following code block:

<!DOCTYPE html>
<html>
 <head><title></title>
 @RenderSection("Head", required: false)
 </head>
 <body>
 @RenderSection("Header", required: false)
 <div style="float:left">
 @RenderSection("LeftNavigation", required: false)
 </div>
 @RenderBody
 <div style="float:right">
 @RenderSection("Content", required: true)
 </div>
 @RenderSection("Footer", required: false)
 </body>
</html>

As you can see, RenderSection takes the following two parameters:

A name, which must be unique among the layout
Depending on whether the section is required, the required parameter (the
default is true)

There are also asynchronous versions of RenderSection, appropriately named
RenderSectionAsync.

Unlike ASP.NET Web Forms content placeholders, it is not possible to
supply default content on a view layout.

Views Chapter 5

[227]

If a section is defined as required, a view page that uses the layout view must declare a
section for it, as follows:

@section Content
{
 <h1>Hello, World!</h1>
}

If no sections are defined, the Razor compilation system just takes the compiled view and
inserts its contents in the location where RenderBody is called.

You can check whether a section is defined or not by executing the following code:

@if (IsSectionDefined("Content")) { ... }

The IsLayoutBeingRendered property tells us whether a layout view is defined, found,
and is currently being rendered.

If you know that a section is defined as required in the view layout but you still do not wish
to render it, you can call IgnoreSection, like this:

@IgnoreSection(sectionName: "Content")

And if for whatever reason you decide not to include any contents of your actual view in a
view layout, you can call IgnoreBody.

Layouts can be nested—that is, a top-level view can define one layout that
also has its own layout, and so on.

Next, let's explore the view types and how they are used.

Understanding partial views
A partial view is similar to a regular view, but it is intended to be included in the middle of
one. The syntax and feature set are exactly the same. The concept is similar to that of user
controls in ASP.NET Web Forms, and the idea is basically DRY (short for Don't Repeat
Yourself). By wrapping common content in a partial view, we can reference it in different
places.

Views Chapter 5

[228]

There are three ways in which you can include a partial view in the middle of a view, both
in a synchronous and an asynchronous manner. The first way involves the Partial and
PartialAsync methods, as illustrated in the following code snippet:

@Html.Partial("LoginStatus")
@await Html.PartialAsync("LoginStatus")

You would use the asynchronous version if the view has any code that needs to run
asynchronously.

Another way to include partial contents is through RenderPartial and
RenderPartialAsync, as illustrated in the following code snippet:

@{ Html.RenderPartial("LoginStatus"); }
@{ await Html.RenderPartialAsync("LoginStatus"); }

What is the difference between the two?, I hear you ask. Well, Partial/PartialAsync returns
IHtmlContent, which is essentially an encoded string, and
RenderPartial/RenderPartialAsync directly writes to the underlying output writer,
possibly resulting in a (slightly) better performance.

The third one is to use the <partial> tag helper that came out in ASP.NET Core 2.1, as
illustrated in the following code snippet:

<partial name="Shared/_ProductPartial.cshtml" />

Partial views and view layouts are two different, complementary,
mechanisms to allow reuse. They should be used together, not one instead
of the other.

Let's see how partial views work.

Passing data to partial views
Both Partial and RenderPartial offer overloads that allow us to pass a model object, as
illustrated in the following code snippet:

@Html.Partial("OrderStatus", new { Id = 100 })
@{ Html.RenderPartial("OrderStatus", new { Id = 100 }); }

Views Chapter 5

[229]

Of course, the model declared in the OrderStatus view must be compatible with the
passed model, which will always happen if it is declared as dynamic (the default); if it's not,
then it will throw an exception, so beware!

For Partial/PartialAsync, we can also pass values for its ViewBag, like this:

@Html.Partial("OrderStatus", new { Id = 100 }, ViewData)
@await Html.PartialAsync("OrderStatus", new { Id = 100 }, ViewData)

Here, we are just passing along the current view bag, but it need not be the case.

Partial views can be nested, meaning that a partial view can include other
partial views.

Finding partial views
The discovery of partial views is slightly different, for the following reasons:

If only a name is supplied (for example, LoginStatus), view files are discovered
using the same rules as with global views.
If the view name ends with .cshtml (for example, LoginStatus.cshtml), then
the view file is only looked up in the same folder as the containing view.
If the view name starts with either ~/ or / (for example,
~/Views/Status/LoginStatus.cshtml), then the view file is looked up in a
folder relative to the web application root (not the wwwroot folder, mind you).
If the view name starts with ../ (for example,
../Status/LoginStatus.cshtml), then the view engine tries to find it in a
folder relative to one of the calling views.

Multiple partial views with the same name can exist if located in different folders.

Views Chapter 5

[230]

Understanding the special view files
ASP.NET Core recognizes two special view files, which, if present, are treated specially, as
follows:

_ViewImports.cshtml: Used to specify Razor directives that should apply to
all views (@addTagHelper, @removeTagHelper, @tagHelperPrefix, @using,
@model, @inherits, and @inject), as illustrated in the following code snippet:

@using Microsoft.AspNetCore.Mvc.Razor
@using My.Custom.Namespace
@inject IMyService Service

_ViewStart.cshtml: Any code that is placed here will be executed for all
views; for this reason, it is a good place for setting the global common layout
(which, of course, can be overridden by each view), a common model, or base
view page, as follows:

@{ Layout = "_Layout"; }

But there are other uses too, such as the following:

Adding @using directives so that all views have access to the same namespaces
Adding @inject directives
Registering tag helpers through @addTagHelper
Defining static methods (most useful for Razor Pages)

The Visual Studio template adds these files to the Views folder of the application. This
means that they cannot be normally referenced, as this folder is outside the default search
locations for views.

Special files are aware of areas, meaning that if you are using areas and
you add one of these files to an area, it will be executed after the global
one.

Let's see some of the options we can configure for views.

Views Chapter 5

[231]

Understanding the view options
As developers, we get to influence some of the ways views—and, in particular, Razor
views—work. Normally, this is done through configuration, through AddViewOptions
and AddRazorOptions extension methods, which are commonly called in sequence to
AddMvc, in the ConfigureServices method, as illustrated in the following code snippet:

services
 .AddMvc()
 .AddViewOptions(options =>
 {
 //global view options
 })
 .AddRazorOptions(options =>
 {
 //razor-specific options
 });

Through AddViewOptions, we can configure the following properties of the
MvcViewOptions class:

ClientModelValidatorProviders

(IList<IClientModelValidatorProvider>): A collection of client-model
validator providers, to be used when the model is to be validated on the client
side; this will be discussed in Chapter 11, Security, but by default, it
includes DefaultClientModelValidatorProvider,
DataAnnotationsClientModelValidatorProvider,
and NumericClientModelValidatorProvider.
HtmlHelperOptions (HtmlHelperOptions): Several options related to the
generation of HTML; this is discussed next.
ViewEngines (IList<IViewEngine>): The registered view engines; by default,
this only contains an instance of RazorViewEngine.

HtmlHelperOptions features the following properties:

ClientValidationEnabled (bool): Whether client validation should be
enabled or not; the default is true.
Html5DateRenderingMode (Html5DateRenderingMode): The format for
rendering DateTime values as strings in HTML5 form fields; the default is
Rfc3339, which renders DateTime as 2017-08-19T12:00:00-01:00.
IdAttributeDotReplacement (string): The string to be used instead of dots
(.) when MVC renders input fields for a model; the default is _.

Views Chapter 5

[232]

ValidationMessageElement (string): The HTML element that will be used to
render its specific validation message; the default is span.
ValidationSummaryMessageElement (string): The HTML element for
rendering the global validation summary; the default is span.

The AddRazorOptions method provides features that are more specific to Razor views, as
follows:

AdditionalCompilationReferences (IList<MetadataReference>): A
collection of assembly references from where ASP.NET Core elements
(controllers, view components, tag helpers, and more) can be loaded; empty by
default
AreaViewLocationFormats (IList<string>): The list of folders to be
searched, inside an area folder, for views; similar to ViewLocationFormats, but
applies to areas
CompilationCallback (Action<RoslynCompilationContext>): A callback
method that is called after each element is compiled; safe to ignore, as it should
only be used by advanced developers
CompilationOptions (CSharpCompilationOptions): A set of C# compilation
options
FileProviders (IList<IFileProvider>): The collection of file providers; by
default, only contains an instance of PhysicalFileProvider
ParseOptions (CSharpParseOptions): A set of C# parsing options
ViewLocationExpanders (IList<IViewLocationExpander>): The collection
of view location expanders
ViewLocationFormats (IList<string>): The locations to be searched for
view files, discussed earlier

Normally, MetadataReference is obtained using one of the static methods of the
MetadataReference class, as follows:

var asm = MetadataReference.CreateFromFile("\Some\Folder\MyAssembly.dll");

The CSharpCompilationOptions and CSharpParseOptions classes are quite extensive
and include, mostly, every setting that the compiler supports, even some that are not easily
found in Visual Studio. Explaining all of them would be tedious and really off-topic, but
I'm going to give you just two examples here:

services
 .AddMvc()
 .AddRazorOptions(options =>

Views Chapter 5

[233]

 {
 //enable C# 7 syntax
 options.ParseOptions.WithLanguageVersion(LanguageVersion.CSharp7);

 //add a using declaration for the System.Linq namespace
 options.CompilationOptions.Usings.Add("System.Linq");
 });

This code runs as part of the bootstrap process and it sets an option for Razor Pages to use
C# version 7. It is also adding an implicit using statement for the System.Linq
namespace.

Now, we will see how to logically (and physically) organize our site functionality: areas.

Referencing the base path of the application
The base path was described in Chapter 2, Configuration, as a means to host our application
in a path other than /. Should you need to get the base path for your app in a view, you can
use this:

<script>
var basePath = '@Url.Content("~/")';
</script>

In this example, we are storing the configured base path (which maps to the special ~
folder) to a JavaScript variable.

Now that we understand how layouts work, let's see how to use areas on a website.

Using areas
Areas are a way for you to segregate functionality within your website. For example,
anything related to the admin area goes in one place—for example, a physical folder,
including its own controllers, views, and so on. In terms of views, the only thing worth
mentioning is how we can configure the paths where view files can be found. This is
controlled through the AreaViewLocationFormats collection of the
RazorViewEngineOptions class, as illustrated in the following code snippet:

services
 .AddMvc()
 .AddRazorOptions(options =>
 {

Views Chapter 5

[234]

 options.AreaViewLocationFormats.Add("/SharedGlobal
 /Areas/{2}.cshtml");
 });

The included values are the following ones:

/Areas/{2}/Views/{1}/{0}.cshtml

/Areas/{2}/Views/Shared/{0}.cshtml

/Views/Shared/{0}.cshtml

Here, the {2} token stands for the area name, whereas {0} is for the view name, and
{1} stands for the controller name, as seen previously. Essentially, you have a similar
structure as for non-area views, but you now have views that are shared globally or per
area.

As stated previously, you can add special files to areas. Now, let's see how DI works in
views.

Dependency injection
View classes (RazorPage<T>) support services being injected in their constructors, as
illustrated in the following code snippet:

public class MyPage : RazorPage<dynamic>
{
 public MyPage(IMyService svc)
 {
 //constructor injection
 }
}

Views also support having services injected into them. Just declare an @inject element in
the .cshtml file with the service type to retrieve and the local variable to hold it, probably
at the beginning of the view, like this:

@inject IHelloService Service

After this, you can use the injected Service variable, like this:

@Service.SayHello()

Views Chapter 5

[235]

There may be the need to either fully qualify the type name or add a
@using declaration for its namespace.

Let's see now how to have our application respond in different languages.

Using translations
We've seen in the previous chapter that ASP.NET Core includes built-in mechanisms for
displaying resources in different languages; this definitely includes views. Actually, there
are two ways to display translated texts, as follows:

Resources
Translated views

Let's start with resources.

Using resources
So, let's assume we have a couple of resource files (.resx), for languages PT and EN. Let's
store them under the Resources folder (this can be configured, as we'll see in a moment),
underneath a folder called Views, and inside a folder named after the controller the views
are to be served from (say, Home, for example). The filenames themselves must match the
action names—so, for example, we might have the following:

Resources\Views\Home\Index.en.resx

Resources\Views\Home\Index.pt.resx

Before we can use them, we need to configure the localization services, in
ConfigureServices, like this:

services
 .AddMvc()
 .AddMvcLocalization(
 format: LanguageViewLocationExpanderFormat.Suffix,
 localizationOptionsSetupAction: options =>
 {
 options.ResourcesPath = "Resources";
 });

Views Chapter 5

[236]

The two parameters to AddMvcLocalization represent the following:

format (LanguageViewLocalizationExpanderFormat): The format to use for
stating the culture of the resource file
localizationOptionsSetupAction (Action<LocalizationOptions>): The
action to be taken for configuring the location mechanism, such as specifying the
path of the resource (currently only the ResourcesPath property)

The two possible values of LanguageViewLocalizationExpanderFormat are as follows:

SubFolder: This means that every resource file should be stored under a folder
named after the culture (for example, Resources\Views\Home\en,
Resources\Views\Home\en-gb, Resources\Views\Home\pt,
Resources\Views\Home\pt-pt, and so on).
Suffix: The culture is part of the filename (for example, Index.en.resx,
Index.pt.resx, and so on).

As for the LocalizationOptions structure, its ResourcePath property already has a
default of Resources.

After we register this, we need to actually add the middleware that is responsible for
setting the culture and the UI culture:

var supportedCultures = new[] { "en", "pt" };

var localizationOptions = new RequestLocalizationOptions()
 .SetDefaultCulture(supportedCultures[0])
 .AddSupportedCultures(supportedCultures)
 .AddSupportedUICultures(supportedCultures);

app.UseRequestLocalization(localizationOptions);

This should go in the Configure method. Here is a little explanation for this:

We must define the cultures that will be made available for selecting; these1.
should map to the resource files that we have.
One of them will be the default (fallback) culture if no specific culture is set by2.
the browser.
Here we are setting both the current culture (CultureInfo.CurrentCulture)3.
as well as the current UI culture (CultureInfo.CurrentUICulture); they are
useful because we may want to format a string value on the server before
sending it to a view, and in this case we want the server code to be using the
appropriate culture.

Views Chapter 5

[237]

As for resource providers, ASP.NET Core includes three of them, and all are included in
the RequestLocalizationOptions class by default, in this order:

QueryStringRequestCultureProvider: Looks for the culture query string
key
CookieRequestCultureProvider: Gets the culture to use from
the .AspNetCore.Culture cookie
AcceptLanguageHeaderRequestCultureProvider: Looks for the Accept-
Language HTTP header

The list of providers (classes that implement IRequestCultureProvider) is stored in the
RequestLocalizationOptions.

RequestCultureProviders and this list is crossed until it finds one provider that returns
a value.

When it comes to actually using the values from the resource files, we need to inject into the
views an instance of IViewLocalizer and retrieve values from it, like this:

@inject IViewLocalizer Localizer
<h1>@Localizer["Hello"]</h1>

The IViewLocalizer interface extends IHtmlLocalizer, so it inherits all its properties
and methods.

You can also use shared resources. A shared resource is a set of .resx files, plus an empty
class, and they are not tied to a specific action or controller. These should be stored in the
Resources folder, but the namespace of this class should be set to the assembly default
namespace, as illustrated in the following code snippet:

namespace chapter05
{
 public class SharedResources { }
}

For this example, the resource files should be called SharedResources.en.resx, or the
name of any other culture.

Then, in your view, inject a reference to IHtmlLocalizer<SharedResources>, like this:

@inject IHtmlLocalizer<SharedResources> SharedLocalizer
<h1>@SharedLocalizer["Hello"]</h1>

Next, we have translated views.

Views Chapter 5

[238]

Using translated views
Another option is to have an entire view translated; by translated, I mean that ASP.NET
Core will look for a view that matches the current language before falling back to a general
one.

In order to activate this feature, you need to call AddViewLocalization, as follows:

services
 .AddMvc()
 .AddViewLocalization();

What this does is add a view location expander (remember this?) called
LanguageViewLocationExpander. This duplicates the registered view locations so as to
include ones with the current language as the file suffix. For example, we may have the
following initial view location formats:

/Views/{1}/{0}.cshtml

/Views/Shared/{0}.cshtml

For the pt language, these will become the following:

/Views/{1}/{0}.pt.cshtml

/Views/{1}/{0}.cshtml

/Views/Shared/{0}.pt.cshtml

/Views/Shared/{0}.cshtml

Because the order matters, this effectively means that ASP.NET Core will first try to find a
view ending with .pt (such as Index.pt.cshtml), and only after that, if not found, will it
resort to locating the generic one (for example, Index.cshtml). Cool, don't you think? Of
course, a translated view can be totally different than a generic one, even though this was
mostly designed with translation in mind.

Summary
View layouts are a must-have; try to avoid nested (or too nested) view layouts, as it may be
difficult to understand the final result. Partial views are also very handy, but make sure you
use them to avoid repeating code.

Views Chapter 5

[239]

We should also avoid having code in views—for example, by specifying custom view
classes; use filters for that purpose. We saw that we should consider the localization needs
of your app upfront; it's very difficult and error-prone to refactor an existing app that does
not use localization to introduce it.

Then, next, we saw that for security, you can use code or tag helpers to keep sensitive parts
of your views secure.

Stick to the conventions in terms of folder names and the like. This will make things easier
for everyone, currently and in the future, in your team.

We learned that _ViewImports.cshtml and _ViewStart.cshtml are your friends—use
them for common code that you want to be applied to all your pages.

Consider view compilation—it really helps in detecting some problems before they bite
you.

In this chapter, we covered the views feature of ASP.NET Core, using the built-in Razor
engine. We saw how we can use view layouts to introduce a coherent layout and partial
views for encapsulation and reuse. We learned the ways in which we can pass data from a
controller to a view.

In the next chapter, we will continue working with views, and, in particular, with HTML
forms. We will go deeper into some of the topics that were introduced here.

Questions
You should now be able to answer these questions:

What is the base class for a view?1.
How can you inject services into a view?2.
What is a view location expander?3.
What is a view layout?4.
What are partial views?5.
Which functionality can replace partial views?6.
What does the _ViewStart.cshtml special file do?7.

2
Section 2: Improving

Productivity
This section will show us how to get productive by enforcing reuse, process forms, and
effective security measures.

This section has the following chapters:

Chapter 6, Using Forms and Models
Chapter 7, Implementing Razor Pages
Chapter 8, API Controllers
Chapter 9, Reusable Components
Chapter 10, Understanding Filters
Chapter 11, Security

6
Using Forms and Models

In this chapter, we will learn how to build forms for displaying and capturing data for use
in our application, how to bind controls to models, and how to use validation techniques to
exclude invalid data. We will cover client-submitted data—namely, HTML forms and their
server-side counterpart, models, and files. With these, we will learn how to deal with user-
submitted data.

Specifically, we will talk about the following:

Using the form context
Working with the model
Understanding the model metadata and using metadata to influence form
generation
How can we use HTML helpers to generate HTML
Working with templates
Binding forms to object models
Validating the model
Using AJAX
Uploading files

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all of our
requirements, but you can also use Visual Studio Code, for example.

The source code for this chapter can be retrieved from GitHub at https:/ ​/​github. ​com/
PacktPublishing/​Modern- ​Web- ​Development- ​with- ​ASP. ​NET- ​Core- ​3-​Second- ​Edition.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Using Forms and Models Chapter 6

[242]

Getting started
Because views are essentially HTML, nothing prevents you from manually adding your
markup to them, which can include values obtained from the controller either through the
model, view bag, or temporary data. ASP.NET Core, however, like previous versions, has
built-in methods to assist you in generating HTML that matches your model (structure and
content) and displaying model validation errors and other useful model metadata.

Because all of this works on top of the model, for the framework to be able to extract any
relevant information, we need to use strongly typed views, not dynamic views; this means
adding either an @model or @inherits directive to the views with the appropriate model
type. To be clear, the model is the object that you pass to the ViewResult object returned
from your controller, possibly returned from the View method, and it must either match the
declared @model directive in the view or its @inherit declaration.

Let's begin by looking at the form context and then we will see how we can get information
about the model.

Using the form context
The view context object (ViewContext) is available in the view components (which will be
discussed in Chapter 9, Reusable Components) and as a property of Razor Pages
(IRazorPage), meaning you can access it in views. In it, besides the usual context
properties (such as HttpContext, ModelStateDictionary, RouteData,
and ActionDescriptor), you also have access to the form context (FormContext) object.
This object offers the following properties:

CanRenderAtEndOfForm (bool): Indicates whether the form can render
additional content (EndOfFormContent) at the end.
EndOfFormContent (IList<IHtmlContent>): A collection of content to add at
the end of the form (before the </form> tag).
FormData (IDictionary<string, object>): The submitted form data.
HasAntiforgeryToken (bool): Indicates whether the form is rendering the anti-
forgery token, which depends on how the BeginForm method was called. The
default is true.
HasEndOfFormContent (bool): Indicates whether any end-of-form content has
been added.
HasFormData (bool): Indicates whether the FormData dictionary has been used
and contains data.

Using Forms and Models Chapter 6

[243]

Additionally, it offers a single method, RenderedField, with two overloads:

One that returns an indication of whether a form field has been rendered in the
current view
Another that sets this flag for a specific field (typically called by the
infrastructure)

Developers can leverage the form context to render additional data with the form, such as
validation scripts or extra fields.

Now that we've seen what the global context looks like, let's see how we can extract
information about the model.

Working with the model
The ASP.NET Core framework uses a model metadata provider to extract information
from the model. This metadata provider can be accessed through MetadataProperty of
Html and is exposed as IModelMetadataProvider. By default, it is set to an instance of
DefaultModelMetadataProvider, which can be changed through the dependency
injection framework, and its contract defines only two relevant methods:

GetMetadataForType (ModelMetadata): Returns metadata for the model type
itself
GetMetadataForProperties (IEnumerable<ModelMetadata>): Metadata for
all of the public model properties

You never normally call these methods; they are called internally by the framework. The
ModelMetadata class they return (which may actually be of a derived class, such as
DefaultModelMetadata) is what should interest us more. This metadata returns the
following:

The display name and description of the type or property (DisplayName)
The data type (DataType)
The text placeholder (Placeholder)
The text to display in case of a null value (NullDisplayText)
The display format (DisplayFormatString)
Whether the property is required (IsRequired)
Whether the property is read-only (IsReadOnly)
Whether the property is required for binding (IsBindingRequired)

Using Forms and Models Chapter 6

[244]

The model binder (BinderType)
The binder model's name (BinderModelName)
The model's binding source (BindingSource)
The property's containing class (ContainerType)

These properties are used by the HTML helpers when generating HTML for the model and
they affect how it is produced.

By default, if no model metadata provider is supplied and no attributes are present, safe or
empty values are assumed for the metadata properties. It is, however, possible to override
them. Let's understand how each of these attributes is used.

We will start by looking at the display name (DisplayName) and description
(Description). These can be controlled by the [Display] attribute from the
System.ComponentModel.DataAnnotations namespace. This attribute also sets the
placeholder/watermark for the property (Placeholder):

[Display(Name = "Work Email", Description = "The work email",
 Prompt = "Please enter the work email")]
public string WorkEmail { get; set; }

Marking a property as required (IsRequired) is achieved through [Required]. All of the
other validation attributes, which are inherited from ValidationAttribute (such as
Required and MaxLength), can also be supplied, as follows:

[Required]
[Range(1, 100)]
public int Quantity { get; set; }

Whether the property can be edited (IsReadOnly) is controlled by whether the property
has a setter and whether it has an [Editable] attribute applied (the default value is true):

[Editable(true)]
public string Email { get; set; }

The data type (DataType) contained in a string can be defined by applying a [DataType]
attribute, or one inherited from it:

[DataType(DataType.Email)]
public string Email { get; set; }

Using Forms and Models Chapter 6

[245]

There are a few attribute classes that inherit from DataTypeAttribute and can be used
instead of it:

[EmailAddress]: Same as DataType.EmailAddress
[CreditCard]: DataType.CreditCard
[Phone]: DataType.PhoneNumber
[Url]: DataType.Url
[EnumDataType]: DataType.Custom
[FileExtensions]: DataType.Upload

DataType has several other possible values; I advise you to have a look
into it.

The text to display whether a value is null (NullDisplayText) and the display format
(DisplayFormatString) can both be set through the [DisplayFormat] attribute:

[DisplayFormat(NullDisplayText = "No birthday supplied", DataFormatString =
"{0:yyyyMMdd}")]
public DateTime? Birthday { get; set; }

When it comes to binding form fields to class properties, [ModelBinder] can be used to
specify a custom model binder type (the BinderType property) and the name in the model
to bind to (ModelBinderName); typically, you do not supply the name of the model as it is
assumed to be the same as the property name:

[ModelBinder(typeof(GenderModelBinder), Name = "Gender")]
public string Gender { get; set; }

Here, we are specifying a custom model binder that will try to retrieve a value from the
request and convert it into the appropriate type. Here is a possible implementation:

public enum Gender
{
 Unspecified = 0,
 Male,
 Female
}

public class GenderModelBinder : IModelBinder
{
 public Task BindModelAsync(ModelBindingContext bindingContext)
 {

Using Forms and Models Chapter 6

[246]

 var modelName = bindingContext.ModelName;
 var valueProviderResult = bindingContext.
 ValueProvider.GetValue(modelName);

 if (valueProviderResult != ValueProviderResult.None)
 {
 bindingContext.ModelState.SetModelValue(modelName,
 valueProviderResult);

 var value = valueProviderResult.FirstValue;

 if (!string.IsNullOrWhiteSpace(value))
 {
 if (Enum.TryParse<Gender>(value, out var gender))
 {
 bindingContext.Result = ModelBindingResult.
 Success(gender);
 }
 else
 {
 bindingContext.ModelState.TryAddModelError
 (modelName, "Invalid gender.");
 }
 }
 }

 return Task.CompletedTask;
 }
}

What this does is it looks up the passed form name using the current value provider and
then, if it is set, checks whether it matches the Gender enumeration. If so, then it sets it as
the return value (bindingContext.Result); otherwise, it adds a model error.

If a property is required by setting [Bind], [BindRequired], [BindingBehavior],
or [BindNever], then IsBindingRequired will be true:

[BindNever] //same as [BindingBehavior(BindingBehavior.Never)]
public int Id { get; set; }
[BindRequired] //same as [BindingBehavior(BindingBehavior.Required)]
public string Email { get; set; }
[BindingBehavior(BindingBehavior.Optional)] //default, try to bind if a
 //value is provided
public DateTime? Birthday { get; set; }

Using Forms and Models Chapter 6

[247]

[Bind] is applied to the class itself or to a parameter to specify which properties should be
bound or otherwise excluded from the binding. Here, we are mentioning which should be
bound:

[Bind(Include = "Email")]
public class ContactModel
{
 public int Id { get; set; }
 public string Email { get; set; }
}

The BindingSource property is set if we use one of the IBindingSourceMetadata
attributes:

[FromBody]

[FromForm]

[FromHeader]

[FromQuery]

[FromRoute]

[FromServices]

The default model metadata provider recognizes these attributes, but you can certainly roll
out your own provider and supply properties in any other way.

There are times when you should not apply attributes to model properties—for example,
when the model class is generated automatically. In that case, you can apply
a [ModelMetadataType] attribute, usually in another file where you specify the class that
will be used to retrieve metadata attributes from:

public partial class ContactModel
{
 public int Id { get; set; }
 public string Email { get; set; }
}

You can add an attribute to this same class from another file:

[ModelMetadataType(typeof(ContactModelMetadata))]
public partial class ContactModel
{
}

Using Forms and Models Chapter 6

[248]

In the following example, we specified the individual properties we want to bind:

public sealed class ContactModelMetadata
{
 [BindNever]
 public int Id { get; set; }
 [BindRequired]
 [EmailAddress]
 public string Email { get; set; }
}

Besides using the model, it is also possible to bind properties on the
controller itself. All that is said also applies, but these properties need to
take the [BindProperty] attribute. See Chapter 4, Controllers and
Actions, for more information.

Let's now see how we can work with anonymous types.

Using models of anonymous types
As in previous versions of ASP.NET MVC, you cannot pass an anonymous type as the
model to your view. Even if you can, the view won't have access to its properties, even if
the view is set to use dynamic as the model type. What you can do is use an extension
method such as this one to turn your anonymous type into ExpandoObject, a common
implementation of dynamic:

public static ExpandoObject ToExpando(this object anonymousObject)
{
 var anonymousDictionary = HtmlHelper.
 AnonymousObjectToHtmlAttributes(anonymousObject);
 IDictionary<string, object> expando = new ExpandoObject();

 foreach (var item in anonymousDictionary)
 {
 expando.Add(item);
 }

 return expando as ExpandoObject;
}

You can use this in your controller:

return this.View(new { Foo = "bar" }.ToExpando());

Using Forms and Models Chapter 6

[249]

In your view file, you use it as follows:

@model dynamic

<p>@Model.Foo</p>

We're done with model binding for now, so let's proceed with HTML helpers.

Using HTML helpers
HTML helpers are methods of the view's Html object (IHtmlHelper) and exist to aid in
generating HTML. We may not know the exact syntax and URLs to routes can be tricky to
generate, but there are two more important reasons why we use them. HTML helpers
generate the appropriate code for display and editing purposes based on the model
metadata, and they also include error and description placeholders. It is important to keep
in mind that they are always based on the model.

In general, the built-in HTML helpers have two overloads:

One that takes a strongly typed model (for example, EditorFor(x =>
x.FirstName))
Another that takes dynamic parameters in the form of strings (for example,
EditorFor("FirstName"))

Also, they all take an optional parameter, htmlAttributes, that can be used to add any
attribute to the rendered HTML element (for example, TextBoxFor(x => x.FirstName,
htmlAttributes: new { @class = "first-name" })). For this reason, as we go
through the different HTML helpers, I will skip the htmlAttributes parameter.

Forms
In order to submit values, we first need a form; the HTML form element can be used for
this. The BeginForm helper generates one for us:

@using (Html.BeginForm())
{
 <p>Form goes here</p>
}

It returns an IDisposable instance; therefore, it should be used in a using block. This
way, we ensure it is properly terminated.

Using Forms and Models Chapter 6

[250]

This method has several overloads and among them all, it can take the following
parameters:

actionName (string): An optional name of a controller action. If present, the
controllerName parameter must also be supplied.
controllerName (string): An optional name of a controller; it must go along
with actionName.
method (FormMethod): An optional HTML form method (GET or POST); if not
supplied, it defaults to POST.

routeName (string): An optional route name (the name of a route registered
through fluent configuration).
routeValues (object): An optional object instance containing route values
specific to routeName.
antiForgery (bool?): Indicates whether or not the form should include an anti-
forgery token (more on this later on); if not supplied, it is included by default.

There is another form generation method, BeginRouteForm, that is more focused on
routes, so it always takes a routeName parameter. Anything that it does can also be
achieved with BeginForm.

There are two alternatives for defining the target for the form submittal:

actionName and controllerName: An action and an optional controller name
to where the form will be submitted. If the controller name is omitted, it will
default to the current one.
routeName: A route name, as defined in the routing table, which will, in turn,
consist of a controller and an action.

One of these must be chosen.

Single-line text boxes
All of the primitive .NET types can be edited through a text box. By text box, I mean an
<input> element with an appropriate type attribute. For that, we have the TextBoxFor
and TextBox methods, the former for the strongly typed version (the one that uses LINQ
expressions based on the model) and the other for the string-based version. These methods
can be used as follows:

@Html.TextBoxFor(x => x.FirstName)
@Html.TextBox("FirstName")

Using Forms and Models Chapter 6

[251]

These methods have several overloads that take the format parameter.

format (string): An optional format string for cases where the type to render implements
IFormattable

For example, if the value to be rendered represents money, we could have a line such as the
following:

@Html.TextBoxFor(model => model.Balance, "{0:c}");

Here, c is used to format currency.

The TextBox and TextBoxFor HTML helpers render an <input> tag with a value of type
that depends on the actual type of the property and its data type metadata
(DefaultModelMetadata.DataTypeName):

text: For string properties without any particular DataType attribute
date and datetime: For DateTime properties, depending on the presence
of DataType with a value of either Date or DateTime
number: For numeric properties
email: For string properties when associated with a DataType attribute of
EmailAddress

url: String properties with a DataType attribute of Url
time: The TimeSpan properties or string properties with a DataType attribute of
Time

tel: String properties with a DataType attribute of PhoneNumber

The type of the <input> tag is one of the HTML5-supported values. You can read more
about it at https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/ ​HTML/ ​Element/ ​input.

Multi-line text boxes
If we instead want to render multi-line text boxes, we must use the TextArea and
TextAreaFor methods. These render HTML textarea elements and their parameters:

rows (int): The rows to generate (the textarea rows attribute)
columns (int): The cols attribute

After this, we move on to see how passwords work.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

Using Forms and Models Chapter 6

[252]

Passwords
Passwords (<input type="password">) are produced by one of the Password and
PasswordFor methods. The only optional value they can take is the initial password which
is value (string), the initial password.

Next, come the dropdowns.

Dropdowns
The DropDownList and DropDownListFor methods render a <select> element with
values specified in the form of a collection of SelectListItem items. The parameters are
as follows:

selectList (IEnumerable<SelectListItem>): The list of items to display
optionLabel (string): The default empty item

The SelectListItem class exposes the following properties:

Disabled (bool): Indicates whether the item is available. The default is false.
Group (SelectListGroup): An optional group.
Selected (bool): Indicates whether the item is selected. There can only be one
item marked as selected; therefore, the default is false.
Text (string): The textual value to display.
Value (string): The value to use.

The SelectListGroup class offers two properties:

Name (string): The mandatory group name, used to group together multiple list
items.
Disabled (bool): Indicates whether the group is disabled. It is false by default.

There are two helper methods, GetEnumSelectList and GetEnumSelectList<>, that
return, in the form of IEnumerable<SelectListItem>, the names and values of
enumeration fields. This can be useful if we wish to use them to feed a drop-down list.

Using Forms and Models Chapter 6

[253]

List boxes
The ListBox and ListBoxFor methods are similar to their drop-down list counterparts.
The only difference is that the generated <select> element has its multiple attributes set
to true. It only takes a single parameter, which is selectList
(IEnumerable<SelectListItem>), for the items to show.

Radio buttons
As for radio buttons, we have the RadioButton and RadioButtonFor methods, which
render <input> with a type of radio:

value (object): The value to use for the radio button
isChecked (bool?): Indicates whether the radio button is checked (which is
default)

The radio button group name will be the name of the property that it is being generated
to—for example, the following:

@Html.RadioButtonFor(m => m.Gender, "M") %> Male
@Html.RadioButtonFor(m => m.Gender, "F") %> Female

Checkboxes
Checkboxes are contemplated, too, by means of the CheckBox, CheckBoxFor, and
CheckBoxForModel methods. This time, they render a <input> tag with a type of
checkbox. The sole parameter is the following:

isChecked (bool?): Indicates whether the checkbox is checked. The default is
false.

Again, the group name will come from the property, as is the case for radio buttons.

One thing to keep in mind when working with checkboxes is that we would normally bind
a checkbox value to a bool parameter. In that case, we must not forget to supply a value of
true for the checkbox; otherwise, the form will contain no data for its field.

Using Forms and Models Chapter 6

[254]

Hidden values
Hidden, HiddenFor, and HiddenForModel render an <input type="hidden"> element.
The model or its properties can be explicitly overridden with the following parameter:

value (object): A value to include in the hidden field

Another option is to decorate your model class property with the [HiddenInput]
attribute, as in the following example:

[HiddenInput(DisplayValue = false)]
public bool IsActive { get; set; } = true;

The DisplayValue parameter causes the property to not be output as a label when using
automatic model editors.

Links
If we want to generate hyperlinks (<a>) to specific controller actions, we can use the
ActionLink method. It has several overloads that accept the following parameters:

linkText (string): The link text
actionName (string): The action name
controllerName (string): The controller name, which must be supplied
together with actionName
routeValues (object): An optional value (a POCO class or a dictionary)
containing route values
protocol (string): The optional URL protocol (for example, http, https, and
so on)
hostname (string): The optional URL hostname
fragment (string): The optional URL anchor (for example, #anchorname)
port (int): The optional URL port

As we can see, this method can generate links for either the same host as the web app or a
different one.

Using Forms and Models Chapter 6

[255]

Another option is to use a route name and for that purpose, there is the RouteLink
method; the only difference is that instead of the actionName and controllerName
parameters, it takes a routeName parameter, asrouteName (string), the name of a route
for which to generate the link.

Next, we have labels.

Labels
Label, LabelFor, and LabelForModel render a <label> element with either a textual
representation of the model or optional text:

labelText (string): The text to add to the label

After labels, we have raw HTML.

Raw HTML
This renders HTML-encoded content. Its sole parameter is as follows:

value (string, object): Content to display after HTML encoding

The next features we are about to learn are IDs, names, and values.

IDs, names, and values
These are often useful to extract some properties from the generated HTML elements, the
generated ID, and the name. This is commonly required for JavaScript:

Id, IdFor, and IdForModel: Return the value for the id attribute
Name, NameFor, and NameForModel: The value for the name attribute
DisplayName, DisplayNameFor, and DisplayNameForModel: The display
name for the given property
DisplayText and DisplayTextFor: The display text for the property or model
Value, ValueFor, and ValueForModel: The first non-null value from the view
bag

Using Forms and Models Chapter 6

[256]

Generic editor and display
We've seen that we can use templates for individual model properties or for the model
itself. To render display templates, we have the Display, DisplayFor, and
DisplayForModel methods. All of them accept the following optional parameters:

templateName (string): The name of a template that will override the one in
the model metadata (DefaultModelMetadata.TemplateHint)
additionalViewData (object): An object or IDictionary that is merged into
the view bag
htmlFieldName (string): The name of the generated HTML <input> field

A property is only rendered in display mode if its metadata states it as such
(DefaultModelMetadata.ShowForDisplay).

As for edit templates, the methods are similar: Editor, EditorFor, and EditorForModel.
These take exactly the same parameters as their display counterparts. It is important to
mention that editors will only be generated for properties that are defined—as per their
metadata—to be editable (DefaultModelMetadata.ShowForEdit).

Utility methods and properties
The IHtmlHelper class also exposes a few other utility methods:

Encode: HTML-encodes a string using the configured HTML encoder
FormatValue: Renders a formatted version of the passed value

Also, it exposes the following context properties:

IdAttributeDotReplacement: This is the dot replacement string used for
generating ID values
(from MvcViewOptions.HtmlHelperOptions.IdAttributeDotReplacement
)
Html5DateRenderingMode: The HTML5 date rendering mode (from
MvcViewOptions.HtmlHelperOptions.Html5DateRenderingMode)
MetadataProvider: The model metadata provider
TempData: Temporary data

Using Forms and Models Chapter 6

[257]

ViewData or ViewBag: The strongly/loosely typed view bag
ViewContext: All of the view's context, including the HTTP context
(HttpContext), the route data (RouteData), the form context (FormContext),
and the parsed model (ModelStateDictionary)

Next are the validation messages.

Validation messages
Validation messages can be displayed for individual validated properties or as a summary
for all the models. For displaying individual messages, we use the ValidationMessage
and ValidationMessageFor methods, which accept the following optional attribute:

message (string): An error message that overrides the one from the validation
framework

For the validation summary, we have ValidationSummary and it accepts the following
parameters:

excludePropertyErrors (bool): If set, displays only model-level (top) errors,
not errors for individual properties
message (string): A message that is displayed with the individual errors
tag (string): The HTML tag to use that overrides
MvcViewOptions.HtmlHelperOptions.ValidationSummaryMessageElemen

t)

After the validations, we move on to the next feature, which is the custom helpers.

Custom helpers
Some HTML elements have no corresponding HTML helper—for example, button. It is
easy to add one, though. So, let's create an extension method over IHtmlHelper:

public static class HtmlHelperExtensions
{
 public static IHtmlContent Button(this IHtmlHelper html, string text)
 {
 return html.Button(text, null);
 }

 public static IHtmlContent Button(this IHtmlHelper html, string

Using Forms and Models Chapter 6

[258]

 text, object htmlAttributes)
 {
 return html.Button(text, null, null, htmlAttributes);
 }

 public static IHtmlContent Button(
 this IHtmlHelper html,
 string text,
 string action,
 object htmlAttributes)
 {
 return html.Button(text, action, null, htmlAttributes);
 }

 public static IHtmlContent Button(this IHtmlHelper html, string
 text, string action)
 {
 return html.Button(text, action, null, null);
 }

 public static IHtmlContent Button(
 this IHtmlHelper html,
 string text,
 string action,
 string controller)
 {
 return html.Button(text, action, controller, null);
 }

 public static IHtmlContent Button(
 this IHtmlHelper html,
 string text,
 string action,
 string controller,
 object htmlAttributes)
 {
 if (html == null)
 {
 throw new ArgumentNullException(nameof(html));
 }

 if (string.IsNullOrWhiteSpace(text))
 {
 throw new ArgumentNullException(nameof(text));
 }

 var builder = new TagBuilder("button");
 builder.InnerHtml.Append(text);

Using Forms and Models Chapter 6

[259]

 if (htmlAttributes != null)
 {
 foreach (var prop in htmlAttributes.GetType()
 .GetTypeInfo().GetProperties())
 {
 builder.MergeAttribute(prop.Name,
 prop.GetValue(htmlAttributes)?.ToString() ??
 string.Empty);
 }
 }

 var url = new UrlHelper(new ActionContext(
 html.ViewContext.HttpContext,
 html.ViewContext.RouteData,
 html.ViewContext.ActionDescriptor));

 if (!string.IsNullOrWhiteSpace(action))
 {
 if (!string.IsNullOrEmpty(controller))
 {
 builder.Attributes["formaction"] = url.Action(
 action, controller);
 }
 else
 {
 builder.Attributes["formaction"] = url.Action(action);
 }
 }

 return builder;
 }
}

This extension method uses the common guidelines for all the other HTML helpers:

Several overloads for each of the possible parameters
Has a parameter of the object type called htmlAttributes, which is used for
any custom HTML attributes that we wish to add
Uses the UrlHelper class to generate correct route links for the controller action,
if supplied
Returns an instance of IHtmlContent

Using it is simple:

@Html.Button("Submit")

Using Forms and Models Chapter 6

[260]

It can also be used with a specific action and controller:

@Html.Button("Submit", action: "Validate", controller: "Validation")

It can even be used with some custom attributes:

@Html.Button("Submit", new { @class = "save" })

Since ASP.NET Core does not offer any HTML helpers for submitting the form, I hope you
find this useful!

This concludes our study of custom helpers. Let's focus now on writing templates for
commonly used pieces of markup.

Using templates
When the Display, DisplayFor<T>, or DisplayForModel HTML helper methods are
called, the ASP.NET Core framework renders the target property (or model) value in a way
that is specific to that property (or model class) and can be affected by its metadata. For
example, ModelMetadata.DisplayFormatString is used for rendering the property in
the desired format. However, suppose we want a slightly more complex HTML—for
example, in the case of composite properties. Enter display templates!

Display templates are a Razor feature; basically, they are partial views that are stored in a
folder called DisplayTemplates under Views\Shared and their model is set to target a
.NET class. Let's imagine, for a moment, that we have a Location class that stores
the Latitude and Longitude values:

public class Location
{
 public decimal Latitude { get; set; }
 public decimal Longitude { get; set; }
}

If we want to have a custom display template for this, we could have a partial view, as
follows:

@model Location
<div>Latitude: @Model.Latitude - Longitude:
@Model.Longitude</div>

Using Forms and Models Chapter 6

[261]

So, this file is stored in Views/Shared/DisplayTemplates/Location.cshtml, but now
you need to associate the Location class to it, which you can do by applying [UIHint] to
a property of that type:

[UIHint("Location")]
public Location Location { get; set; }

The [UIHint] attribute accepts a view name. It is searched in the
Views\Shared\DisplayTemplates folder.

Similar to display templates, we have editor templates. Editor templates are rendered by
Editor, EditorFor, or EditorForModel and their main difference from display
templates is that the partial view files are stored in Views\Shared\EditorTemplates. Of
course, in these templates, you would probably add HTML editor elements, even with
custom JavaScript. For the case of the Location class, we could have the following:

@model Location
<div>
 Latitude: @Html.TextBoxFor(x => x.Latitude)
 Longitude: @Html.TextBoxFor(x => x.Longitude)
</div>

There can be only one [UIHint] attribute specified, which means that
both templates—display and editor—must use the same name. Also,
custom templates are not rendered by EditorForModel or
DisplayForModel; you need to explicitly render them using EditorFor
and DisplayFor.

OK, we've seen how to use templates for commonly used markup elements, which is very
useful from a reusing perspective. Let's have a look now at model binding.

Enforcing model binding
ASP.NET Core tries to automatically populate (set values of their properties and fields) any
parameters of an action method. This happens because it has a built-in (although
configurable) model binder provider, which creates a model binder. These model binders
know how to bind data from the many binding sources (discussed previously) to POCO
classes in many formats.

Using Forms and Models Chapter 6

[262]

Model binders
The model binder provider interface is IModelBinderProvider and the model binder,
unsurprisingly, is IModelBinder. The model binder providers are registered in the
ModelBinderProviders collection of MvcOptions:

services.AddMvc(options =>
{
 options.ModelBinderProviders.Add(new CustomModelBinderProvider());
});

The included providers are as follows:

BinderTypeModelBinderProvider: Custom model binder (IModelBinder)
ServicesModelBinderProvider: [FromServices]
BodyModelBinderProvider: [FromBody]
HeaderModelBinderProvider: [FromHeader]
SimpleTypeModelBinderProvider: Basic types using a type converter
CancellationTokenModelBinderProvider: CancellationToken
ByteArrayModelBinderProvider: Deserializes from Base64 strings into byte
arrays
FormFileModelBinderProvider: [FromForm]
FormCollectionModelBinderProvider: IFormCollection
KeyValuePairModelBinderProvider: KeyValuePair<TKey, TValue>
DictionaryModelBinderProvider: IDictionary<TKey, TValue>
ArrayModelBinderProvider: Arrays of objects
CollectionModelBinderProvider: Collections of objects
(ICollection<TElement>, IEnumerable<TElement>, or IList<TElement>)
ComplexTypeModelBinderProvider: Nested properties (for example,
TopProperty.MidProperty.BottomProperty)

These providers help assign values to the following types:

Simple properties using type converters
POCO classes
Nested POCO classes
Arrays of POCO classes
Dictionaries
Collections of POCO classes

Using Forms and Models Chapter 6

[263]

For example, take a model of the following class:

public class Order
{
 public int Id { get; set; }
 public int CustomerId { get; set; }
 public OrderState State { get; set; }
 public DateTime Timestamp { get; set; }
 public List<OrderDetail> Details { get; set; }
}

public enum OrderState
{
 Received,
 InProcess,
 Sent,
 Delivered,
 Cancelled,
 Returned
}

public class OrderDetail
{
 public int ProductId { get; set; }
 public int Quantity { get; set; }
}

public class Location
{
 public int X { get; set; }
 public int Y { get; set; }
}

Here, we have properties of different types, including primitive types, enumerations, and
collections of POCO classes. When we generate a form for a model such as this, perhaps
using the HTML helpers that were described previously, you will get HTML form elements
containing values such as the following:

Id=43434
CustomerId=100
State=InProcess
Timestamp=2017-06-15T20:00:00
Details[0]_ProductId=45
Details[0]_Quantity=1
Details[1]_ProductId=47
Details[1]_Quantity=3
X=10
Y=20

Using Forms and Models Chapter 6

[264]

Notice the _ character separating the child property names—it is configured by default to
replace dots (.) in the MvcViewOptions.HtmlHelper.IdAttributeDotReplacement
property. As you can see, ASP.NET Core can bind even somewhat complex cases.

Model binding sources
So, we declare a model (or individual base type parameters) as a parameter to an action
method and we can apply model binding source attributes to instruct ASP.NET Core to get
the values from a specific location. Again, these are as follows:

[FromServices]: The object will be inserted from the dependency injection
container.
[FromBody]: The value will come from the payload of a POST request, normally
either as JSON or XML.
[FromForm]: The value will come from the posted form.
[FromQuery]: The value will be obtained from the query string.
[FromHeader]: The value will be read from the request headers.
[FromRoute]: The value will come from the route as a named template item.

You can mix different model binding source attributes on the same method, as follows:

public IActionResult Process(
 [FromQuery] int id,
 [FromHeader] string contentType,
 [FromBody] Complex complex) { ... }

[FromPost] will take key-value pairs in either a multipart/form-data
or application/x-www-form-urlencoded format.

One thing that you need to keep in mind is that there can only be one parameter with
a [FromBody] attribute, which makes sense as the body is unique and it doesn't make
sense to have it bound to two different objects. It only makes sense to apply it to POCO
classes too. [FromBody] works with the registered input formatters; it tries to deserialize
whatever payload is sent (normally by POST or PUT) by going through each input formatter.
The first one to respond with a non-null value yields the result. Input formatters look at the
request's Content-Type header (for example, application/xml or application/json)
to determine whether they can process the request and deserialize it into the target type.
We will look at input formatters in more detail in Chapter 8, API Controllers.

Using Forms and Models Chapter 6

[265]

You can construct POCO objects from the query string using [FromQuery]. ASP.NET Core
is smart enough to do that, provided you supply a value for each of the properties of the
POCO on the query string, as follows:

//call this with: SetLocation?X=10&Y=20
public IActionResult SetLocation([FromQuery] Location location) { ... }

Some of these attributes take an optional Name parameter, which can be used to explicitly
state the source name, as follows:

[FromHeader(Name = "User-Agent")]
[FromQuery(Name = "Id")]
[FromRoute(Name = "controller")]
[FromForm(Name = "form_field")]

If you don't specify the source name, it will use the name of the parameter.

If you don't specify any attributes, ASP.NET Core will take the following logic when trying
to bind values:

If the request is a POST value, it will try to bind values from the form (as with1.
[FromForm]).
Then, it will route the values ([FromRoute]).2.
Then, it will query the string ([FromQuery]).3.

So, [FromBody], [FromServices], and [FromHeader] are never used automatically. You
always need to apply attributes (or define a convention).

If no value can be found for a parameter in your action method using either the default
logic or any attributes, that value will receive a default value:

The default value for value types (0 for integers, false for Boolean values, and
so on)
An instantiated object for classes

If you want to force the model state to be invalid if a value cannot be found for a parameter,
apply the [BindRequired] attribute to it:

public IActionResult SetLocation(
 [BindRequired] [FromQuery] int x,
 [BindRequired] [FromQuery] int y) { ... }

Using Forms and Models Chapter 6

[266]

In this case, you will get an error when trying to call this action without providing the X
and Y parameters. You can also apply it to model classes, in which case, all of its properties
will need to be supplied, as follows:

[BindRequired]
public class Location
{
 public int X { get; set; }
 public int Y { get; set; }
}

This also has some limitations as you cannot bind to an abstract class, a value type
(struct), or a class without a public parameterless constructor. If you want to bind to an
abstract class or one without a public, parameterless constructor, you need to roll out your
own model binder and return an instance yourself.

Dynamic binding
What if you don't know upfront what the request will contain—for example, if you want to
accept anything that is posted? You essentially have three ways of accepting it:

Use a string parameter, if the payload can be represented as a string.
Use a custom model binder.
Use one of the JSON-aware parameter types.

If you use a string parameter, it will just contain the payload as is, but ASP.NET Core also
supports binding JSON payloads to either a dynamic or
System.Text.Json.JsonElement parameter. JsonElement, in case you're not familiar,
is part of the new System.Text.Json API, which replaces JSON.NET
(Newtonsoft.Json) as the included JSON serializer. ASP.NET Core can bind POST with a
content type of application/json to one of these parameter types without any additional
configuration, as follows:

[HttpPost]
public IActionResult Process([FromBody] dynamic payload) { ... }

The dynamic parameter will actually be an instance of JsonElement. You can't declare the
parameter to be of an interface or abstract base class unless you use your own model binder
and return a constructed instance from it.

Now, let's move on to validating the model post that binds it.

Using Forms and Models Chapter 6

[267]

JSON.NET is still available as an open source project from GitHub
at https:/ ​/ ​github. ​com/ ​JamesNK/ ​Newtonsoft. ​Json. You can use it instead
of the built-in JSON serializer. To do this, have a look at https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​aspnet/ ​core/ ​migration/ ​22-​to- ​30? ​view=
aspnetcore- ​3. ​1.

Model validation
We all know that client-side validation by validating a page without having to post its
content is what we expect from a web app these days. However, this may not be
sufficient—for example for the (granted, few) cases where JavaScript is disabled. In this
case, we need to ensure we validate our data on the server-side before actually doing
anything with it. ASP.NET Core supports both scenarios; let's see how.

Server-side validation
The result of validating a submitted model (normally through POST) is always available in
the ModelState property of the ControllerBase class, and it is also present in the
ActionContext class. Consider the following code snippet:

if (!this.ModelState.IsValid)
{
 if (this.ModelState["Email"].Errors.Any())
 {
 var emailErrors = string.
 Join(Environment.NewLine, this.ModelState
 ["Email"].Errors.Select(e => e.ErrorMessage));
 }
}

As you can see, we have both the global validation state (IsValid) and the individual
property error messages (for example, ["Email"].Errors).

Using the built-in validators, all based on
the System.ComponentModel.DataAnnotations API, the following validations are
performed:

Validation based on attributes (ValidationAttribute-derived)
Validation based on the IValidatableObject interface

https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30?view=aspnetcore-3.1

Using Forms and Models Chapter 6

[268]

Validation is executed when a form is posted or when it is explicitly invoked by a call to
TryValidateModel if you happened to change the model. The ModelState property is of
the ModelStateDictionary type, which exposes the following properties:

Item (ModelStateEntry): Access to individual model properties' states
Keys (KeyEnumerable): The collection of model properties' names
Values (ValueEnumerable): The model properties' values
Count (int): The count of model properties
ErrorCount (int): The error count
HasReachedMaxErrors (bool): Whether or not the found errors have reached
the configured maximum
MaxAllowedErrors (int): The configured maximum number of errors (see
the Configuration section)
Root (ModelStateEntry): The root object's model state
IsValid (bool): Whether or not the model is valid
ValidationState (ModelValidationState): The validation state for the
model (Unvalidated, Invalid, Valid, or Skipped)

Validation based on attributes is associated with the property to which the validation
attribute is located (some validation attributes can also be applied to classes). The
property's name will be the key and the property's value will be the value in the
ModelStateDictionary. For each property, once a validator fails, any other eventual
validators will not be fired and the model state will be immediately invalid. Each property
exposes a collection of one or more ModelError objects:

IEnumerable<ModelError> errors = this.ModelState["email"];

This class has two properties:

ErrorMessage (string): The message produced by the property validator(s), if
any
Exception (Exception): Any exception produced while validating this
particular property

After this, we move to the configuration for it.

Using Forms and Models Chapter 6

[269]

Configuration
There are a couple of configuration options available through the AddMvc method as part of
the MvcOptions class:

MaxModelValidationErrors (int): The maximum number of validation errors
before no more validation is performed (the default is 200).
ModelValidatorProviders (IList<IModelValidatorProvider>): The
registered model validation providers. By default, it contains an instance of
DefaultModelValidatorProvider and one of
DataAnnotationsModelValidatorProvider.

These built-in providers basically do the following:

DefaultModelValidatorProvider: If a property has an attribute that
implements IModelValidator, it uses it for validation.
DataAnnotationsModelValidatorProvider: Hooks any
ValidatorAttribute instances that the property to validate may have.

Data annotation validation
System.ComponentModel.DataAnnotations offers the following validation attributes:

[Compare]: Compares two properties to see whether they have the same value.
[CreditCard]: The string property must have a valid credit card format.
[CustomValidation]: Custom validation through an external method.
[DataType]: Validates a property against a specific data type (DateTime, Date,
Time, Duration, PhoneNumber, Currency, Text, Html, MultilineText,
EmailAddress, Password, Url, ImageUrl, CreditCard, PostalCode,
or Upload).
[EmailAddress]: Checks whether the string property is a valid email address.
[MaxLength]: The maximum length of a string property.
[MinLength]: The minimum length of a string property.
[Phone]: Checks that the string property has a phone-like structure (US only).
[Range]: The maximum and minimum values of a property.
[RegularExpression]: Uses a regular expression to validate a string property.
[Remote]: Uses a controller action to validate a model.
[Required]: Checks whether the property has a value set.

Using Forms and Models Chapter 6

[270]

[StringLength]: Checks the maximum and minimum lengths of a string; same
as one [MinLength] value and one [MaxLength] value, but using this, you only
need one attribute.
[Url]: Checks that the string property is a valid URL.

All of these attributes are hooked automatically by the registered
DataAnnotationsModelValidatorProvider.

For custom validation, we have two options:

Inherit from ValidationAttribute and implement its IsValid method:

[AttributeUsage(AttributeTargets.Property, AllowMultiple = false,
Inherited = true)]
public sealed class IsEvenAttribute : ValidationAttribute
{
 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 if (value != null)
 {
 try
 {
 var convertedValue = Convert.ToDouble(value);
 var isValid = (convertedValue % 2) == 0;

 if (!isValid)
 {
 return new ValidationResult(this.ErrorMessage,
 new[] { validationContext.MemberName });
 }
 }
 catch { }
 }

 return ValidationResult.Success;
 }
 }

Implement a validation method:

[CustomValidation(typeof(ValidationMethods), "ValidateEmail")]
public string Email { get; set; }

Using Forms and Models Chapter 6

[271]

In this ValidationMethods class, add the following method:

public static ValidationResult ValidateEmail(string email,
ValidationContext context)
{
 if (!string.IsNullOrWhiteSpace(email))
 {
 if (!Regex.IsMatch(email, @"^([\w\.\-]+)@([\w\-]+
)((\.(\w){2,3})+)$"))
 {
 return new ValidationResult("Invalid email",
 new[] { context.MemberName });
 }
 }

 return ValidationResult.Success;
}

A few things to note:

This validation attribute only checks for valid emails; it does not check for
required values.
The ValidationContext attribute has some useful properties, such as the
current member name being validated (MemberName), its display name
(DisplayName), and the root validating object (ObjectInstance).
ValidationResult.Success is null.

The signature of the validation method can vary:

The first parameter can either be strongly typed (for example, string) or loosely
typed (for example, object), but it must be compatible with the property to be
validated.
It can be static or instance.
It can take the ValidationContext parameter or not.

Why choose one or the other? The [CustomValidation] attribute potentially promotes
reuse by having a set of shared methods that can be used in different contexts. We also
have an error message in this attribute.

[CustomValidation] can be applied to either a property or the whole
class.

Using Forms and Models Chapter 6

[272]

Error messages
There are three ways by which you can set an error message to display in the case of a
validation error:

ErrorMessage: A plain old error message string, with no magic attached.
ErrorMessageString: A format string that can take tokens (for example, {0},
{1}) that depend on the actual validation attribute; token {0} is usually the
name of the property being validated.
ErrorMessageResourceType and ErrorMessageResourceName: It is possible
to ask for the error message to come from a string property
(ErrorMessageResourceName) declared in an external type
(ErrorMessageResourceType); this is a common approach if you would like to
localize your error messages.

After this, we move on to the next feature.

Self-validation
You would implement IValidatableObject (also supported by
DataAnnotationsValidatorProvider) if the validation you need involves several
properties of a class, similar to what you would achieve with applying
[CustomValidation] to the whole class. We say that this class is self-validatable. The
IValidatableObject interface specifies a single method, Validate, and the following is
a possible implementation:

public class ProductOrder : IValidatableObject
{
 public int Id { get; set; }
 public DateTime Timestamp { get; set; }
 public int ProductId { get; set; }
 public int Quantity { get; set; }
 public decimal Price { get; set; }

 public IEnumerable<ValidationResult> Validate(ValidationContext
 context)
 {
 if (this.Id <= 0)
 {
 yield return new ValidationResult("Missing id", new []
 { "Id" });
 }

 if (this.ProductId <= 0)

Using Forms and Models Chapter 6

[273]

 {
 yield return new ValidationResult("Invalid product",
 new [] { "ProductId" });
 }

 if (this.Quantity <= 0)
 {
 yield return new ValidationResult("Invalid quantity",
 new [] { "Quantity" });
 }

 if (this.Timestamp > DateTime.Now)
 {
 yield return new ValidationResult("Order date
 is in the future", new [] { "Timestamp" });
 }
 }
}

After self-validation, let us move on to custom validation.

Custom validation
Yet another option for custom validation involves hooking a new model validator provider
and a bespoke model validator. Model validator providers are instances of
IModelValidatorProvider, such as this one:

public sealed class IsEvenModelValidatorProvider : IModelValidatorProvider
{
 public void CreateValidators(ModelValidatorProviderContext context)
 {
 if (context.ModelMetadata.ModelType == typeof(string)
 || context.ModelMetadata.ModelType == typeof(int)
 || context.ModelMetadata.ModelType == typeof(uint)
 || context.ModelMetadata.ModelType == typeof(long)
 || context.ModelMetadata.ModelType == typeof(ulong)
 || context.ModelMetadata.ModelType == typeof(short)
 || context.ModelMetadata.ModelType == typeof(ushort)
 || context.ModelMetadata.ModelType == typeof(float)
 || context.ModelMetadata.ModelType == typeof(double))
 {
 if (!context.Results.Any(x => x.Validator is
 IsEvenModelValidator))
 {
 context.Results.Add(new ValidatorItem
 {
 Validator = new IsEvenModelValidator(),

Using Forms and Models Chapter 6

[274]

 IsReusable = true
 });
 }
 }
 }
}

This checks whether the target property (context.ModelMetadata) is one of the expected
types (numbers or strings) and then it adds an IsEvenModelValidator attribute. When
validation is triggered, this validator will be called.

For the sake of completion, here is its code:

public sealed class IsEvenModelValidator : IModelValidator
{
 public IEnumerable<ModelValidationResult>
 Validate(ModelValidationContext context)
 {
 if (context.Model != null)
 {
 try
 {
 var value = Convert.ToDouble(context.Model);
 if ((value % 2) == 0)
 {
 yield break;
 }
 }
 catch { }
 }

 yield return new ModelValidationResult(
 context.ModelMetadata.PropertyName,
 $"{context.ModelMetadata.PropertyName} is not even.");
 }
}

This validator code tries to convert a number to a double value (because it's more generic)
and then checks whether the number is even. If the value is null or not convertible, it just
returns an empty result.

Using Forms and Models Chapter 6

[275]

Preventing validation
If you don't wish for your model—either the whole class or one or more properties—to be
validated, you can apply the [ValidateNever] attribute to it. This implements
the IPropertyValidationFilter interface, which can be used to selectively include or
exclude properties from the validation process. I find that the way
the [ValidateNever] attribute is implemented, however, doesn't make much sense as it
forces you to include it in the model class, not on the model parameter, which in my
opinion would make more sense.

Automatic validation
In Chapter 4, Controllers and Actions, we saw how we can register a filter that can be used to
trigger automatic model validation—which is already the case when you use POST—and
perform actions accordingly. Please do take a look at this chapter for more information.

Client-side model validation
Because server-side validation requires a post, sometimes it's more useful and provides a
better user experience to perform the validation on the client side. Let's see how we can do
this.

All of the built-in validators also include client-side behavior; what this means is that, if you
are using jQuery's unobtrusive validation—included by default in the ASP.NET Core
templates—you get it automatically. Unobtrusive validation requires the following
JavaScript modules:

jQuery itself (jquery-xxx.js): https:/ ​/ ​jquery. ​com/ ​

jQuery validation (jquery.validate.js): https:/ ​/​jqueryvalidation. ​org/ ​

 jquery.validate.unobtrusive.js: https:/ ​/​github. ​com/ ​aspnet/ ​jquery-
validation- ​unobtrusive

The actual filenames may vary slightly (minimized versus normal version or including a
version number), but that is all. They are installed by default to wwwroot\lib\jquery,
wwwroot\lib\jquery-validation, and wwwroot\lib\jquery-validation-
unobtrusive.

https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://jqueryvalidation.org/
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive

Using Forms and Models Chapter 6

[276]

Behind the scenes, the included validators add HTML5 attributes (data-*) to each
property to validate the HTML form elements and, when the form is about to be submitted,
force validation to occur. Client-side validation is only performed if it is enabled (more on
this in the next topic).

Configuration
Client validation providers are configured through the AddViewOptions method, which
takes a lambda function that exposes MvcViewOptions:

ClientModelValidatorProviders

(IList<IClientModelValidatorProvider>): The registered client model
validators; by default, it contains one
DefaultClientModelValidatorProvider attribute, one
DataAnnotationsClientModelValidatorProvider attribute, and one
NumericClientModelValidatorProvider attribute.
HtmlHelperOptions.ClientValidationEnabled (bool): Whether or not
client-side validation is enabled. The default is true, meaning it is enabled.
ValidationMessageElement (string): The HTML element used for inserting
the validation error messages for each validated property. The default is span.
ValidationSummaryMessageElement (string): The HTML element used for
inserting the validation error messages summary for the model. The default is
span.

The included IClientModelValidatorProvider attributes have the following purposes:

DefaultClientModelValidatorProvider: If the validation attribute
implements IClientModelValidator, it uses it for the validation, regardless of
having a specific client model validator provider.
NumericClientModelValidatorProvider: Restricts text boxes to only contain
numeric values.
DataAnnotationsClientModelValidatorProvider: Adds support for all the
included data annotations validators.

Using Forms and Models Chapter 6

[277]

Custom validation
You can certainly roll out your own client-side validator; the core of it is the
IClientModelValidator and IClientModelValidatorProvider interfaces. Picking up
on the IsEvenAttribute attribute that we saw earlier, let's see how we can achieve the
same validation on the client-side.

First, let's register a client model validator provider:

services
 .AddMvc()
 .AddViewOptions(options =>
 {
 options.ClientModelValidatorProviders.Add(new
 IsEvenClientModelValidatorProvider());
 });

The code for the IsEvenClientModelValidatorProvider attribute is as follows:

public sealed class IsEvenClientModelValidatorProvider :
IClientModelValidatorProvider
{
 public void CreateValidators(ClientValidatorProviderContext context)
 {
 if (context.ModelMetadata.ModelType == typeof(string)
 || context.ModelMetadata.ModelType == typeof(int)
 || context.ModelMetadata.ModelType == typeof(uint)
 || context.ModelMetadata.ModelType == typeof(long)
 || context.ModelMetadata.ModelType == typeof(ulong)
 || context.ModelMetadata.ModelType == typeof(short)
 || context.ModelMetadata.ModelType == typeof(ushort)
 || context.ModelMetadata.ModelType == typeof(float)
 || context.ModelMetadata.ModelType == typeof(double))
 {
 if (context.ModelMetadata.ValidatorMetadata.
 OfType<IsEvenAttribute>().Any())
 {
 if (!context.Results.Any(x => x.Validator is
 IsEvenClientModelValidator))
 {
 context.Results.Add(new ClientValidatorItem
 {
 Validator = new IsEvenClientModelValidator(),
 IsReusable = true
 });
 }
 }

Using Forms and Models Chapter 6

[278]

 }
 }
}

This requires some explanation. The CreateValidators infrastructure method is called to
give the client model validator provider a chance to add custom validators. If the property
currently being inspected (context.ModelMetadata) is of one of the supported types
(context.ModelMetadata.ModelType), numbers, or strings—and simultaneously
contains an IsEvenAttribute attribute and does not contain any
IsEvenClientModelValidator attributes—we add one to the validators collection
(context.Results) in the form of ClientValidatorItem that contains an
IsEvenClientModelValidator attribute, which is safe to reuse (IsReusable) as it
doesn't keep any state.

Now, let's see what the IsEvenClientModelValidator attribute looks like:

public sealed class IsEvenClientModelValidator : IClientModelValidator
{
 public void AddValidation(ClientModelValidationContext context)
 {
 context.Attributes["data-val"] = true.ToString().
 ToLowerInvariant();
 context.Attributes["data-val-iseven"] = this.GetErrorMessage
 (context);
 }

 private string GetErrorMessage(ClientModelValidationContext context)
 {
 var attr = context
 .ModelMetadata
 .ValidatorMetadata
 .OfType<IsEvenAttribute>()
 .SingleOrDefault();

 var msg = attr.FormatErrorMessage(context.
 ModelMetadata.PropertyName);

 return msg;
 }
}

Using Forms and Models Chapter 6

[279]

It works like this:

Two attributes are added to the HTML element that is used to edit the model1.
property:

data-val: This means the element should be validated.
data-val-iseven: The error message to use for the iseven rule in
case the element is invalid.

The error message is retrieved from the2.
IsEvenAttribute attribute's FormatErrorMessage method. We know there
is IsEvenAttribute; otherwise, we wouldn't be here.

Finally, we need to add somehow a JavaScript validation code, perhaps in a separate .js
file:

(function ($) {
 var $jQval = $.validator;
 $jQval.addMethod('iseven', function (value, element, params) {
 if (!value) {
 return true;
 }

 value = parseFloat($.trim(value));

 if (!value) {
 return true;
 }

 var isEven = (value % 2) === 0;
 return isEven;
 });

 var adapters = $jQval.unobtrusive.adapters;
 adapters.addBool('iseven');
})(jQuery);

What we are doing here is registering a custom jQuery validation function under
the iseven name, which, when fired, checks whether the value is empty and tries to
convert it into a floating-point number (this works for both integers and floating-point
numbers). Finally, it checks whether this value is even or not and returns appropriately. It
goes without saying that this validation function is hooked automatically by the
unobtrusive validation framework, so you do not need to be worried about it not
validating.

Using Forms and Models Chapter 6

[280]

The error message is displayed in both the element-specific error message
label and in the error message summary if it is present in the view.

You may find the process a bit convoluted, in which case, you will be happy to know that
you can add together the validation attribute and the IClientModelValidator
implementation; it will work just the same and this is possible because of the included
DefaultClientModelValidatorProvider attribute. It is, however, advisable to separate
them because of the Single Responsibility Principle (SRP) and the Separation of
Concerns (SoC).

In this section, we've seen how to write a custom validator that works on the client side or
on the server side. Now, let's see how we can implement an AJAX experience.

Using AJAX for validation
AJAX is a term coined long ago to represent a feature of modern browsers by which
asynchronous HTTP requests can be done, via JavaScript or by the browser, without a full
page reload.

ASP.NET Core does not offer any support for AJAX, which doesn't mean that you can't use
it—it is just the case that you need to do it manually.

The following example uses jQuery to retrieve values in a form and send them to an action
method. Make sure the jQuery library is included in either the view file or the layout:

<form>
 <fieldset>
 <div><label for="name">Name: </label></div>
 <div><input type="text" name="name" id="name" />
 <div><label for="email">Email: </label></div>
 <div><input type="email" name="email" id="email" />
 <div><label for="gender">Gender: </label></div>
 <div><select name="gender" id="gender">
 <option>Female</option>
 <option>Male</option>
 </select></div>
 </fieldset>
</form>
<script>

$('#submit').click(function(evt) {
 evt.preventDefault();

Using Forms and Models Chapter 6

[281]

 var payload = $('form').serialize();

 $.ajax({
 url: '@Url.Action("Save", "Repository")',
 type: 'POST',
 data: payload,
 success: function (result) {
 //success
 },
 error: function (error) {
 //error
 }
 });
 });

</script>

This section of JavaScript code does the following things:

Binds a click event handler to an HTML element with an ID of submit.
Serializes all the form elements.
Creates a POST AJAX request to a controller action named Save in a controller
called RepositoryController.
If the AJAX call succeeds, the success function is called; otherwise, an
error function is called instead.

The URL to the controller action is generated by the Action method. It is
important not to have it hardcoded but to instead rely on this HTML
helper to return the proper URL.

Let's now see how we can perform validation AJAX-style using a built-in mechanism.

Using Forms and Models Chapter 6

[282]

Validation
One of the included validation attributes, [Remote], uses AJAX to perform validation on
the server-side transparently. When applied to a property of the model, it takes a
controller and an action parameter that must refer to an existing controller action:

[Remote(action: "CheckEmailExists", controller: "Validation")]
public string Email { get; set; }

This controller action must have a structure similar to this one, minus—of course—the
parameters to the action:

[AcceptVerbs("Get", "Post")]
public IActionResult CheckEmailExists(string email)
{
 if (this._repository.CheckEmailExists(email))
 {
 return this.Json(false);
 }

 return this.Json(true);
}

Essentially, it must return a JSON-formatted value of true if the validation succeeds or
false, otherwise.

This validation can not only be used for a simple property of a primitive
type (such as string) but also for any POCO class.

Enforcing restrictions
In previous (pre-Core) versions of ASP.NET MVC, there was an attribute, [AjaxOnly],
that could be used to restrict an action to only be callable by AJAX. While it is no longer
present, it is very easy to bring it back by writing a resource filter, as follows:

[AttributeUsage(AttributeTargets.Method, AllowMultiple = false, Inherited =
true)]
public sealed class AjaxOnlyAttribute : Attribute, IResourceFilter
{
 public void OnResourceExecuted(ResourceExecutedContext context)
 {
 }

Using Forms and Models Chapter 6

[283]

 public void OnResourceExecuting(ResourceExecutingContext context)
 {
 if (context.HttpContext.Request.Headers["X-Requested-With"]
 != "XMLHttpRequest")
 {
 context.Result = new StatusCodeResult
 ((int)HttpStatusCode.NotFound);
 }
 }
}

This attribute implements the resource filter interface, IResourceFilter, which will be
discussed in Chapter 10, Understanding Filters, and basically, what it does is check for the
presence of a specific header (X-Requested-With), which is an indication that the current
request is being carried out by AJAX if its value is XMLHttpRequest. If not, it sets the
response result, thereby short-circuiting any other possible filters. To apply it, just place it
next to an action that you want to restrict:

[AjaxOnly]
public IActionResult AjaxOnly(Model model) { ... }

For an overview of AJAX and the XMLHttpRequest object, please see
https:/ ​/​developer. ​mozilla. ​org/​en/ ​docs/ ​Web/ ​API/ ​XMLHttpRequest.

After this, we move on learning how to return content from AJAX.

Returning content from AJAX
According to the best practices, your AJAX endpoints should return data; in the modern
world, when it comes to web apps, this data is normally in the form of JSON. So, you will
most likely use the JsonResult class to return contents to the client code. As for sending
data to the server, if you use jQuery, it will take care of everything for you and it works.
Otherwise, you will need to serialize data to a proper format—perhaps JSON, too. Set the
appropriate content-type header and off you go.

https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest

Using Forms and Models Chapter 6

[284]

Uploading files
File uploading is a process where we send files from our computer to a server—in this case,
running ASP.NET Core. File uploading in HTTP requires two things:

You must use the POST verb.
The multipart/form-data encoding must be set on the form.

Where ASP.NET Core is concerned, the included model binders know how to bind any
posted files to an IFormFile object (or collection of objects). For example, take a form such
as the following:

@using (Html.BeginForm("SaveForm", "Repository", FormMethod.Post,
 new { enctype = "multipart/form-data" }))
{
 <input type="file" name="file" />
 <input type="submit" value="Save"/>
}

You can retrieve the file in an action method such as this one:

[HttpPost("[controller]/[action]")]
public IActionResult SaveForm(IFormFile file)
{
 var length = file.Length;
 var name = file.Name;
 //do something with the file
 return this.View();
}

However, the HTML file upload specification (https:/ ​/ ​www.​w3. ​org/ ​TR/​2010/ ​WD- ​html-
markup-​20101019/ ​input. ​file. ​html) also mentions the possibility to submit multiple files
at once with the multiple attribute. In that case, you can just declare your parameter as an
array of IFormFile instances (a collection will also work):

public IActionResult SaveForm(IFormFile[] file) { ... }

The IFormFile interface gives you everything you need to manipulate these files:

ContentType (string): The content type of the posted file
ContentDisposition (string): The inner content-disposition header
containing the HTML input name and selected filename
Headers (IHeaderDictionary): Any headers sent with the file
Length (long): The length, in bytes, of the posted file

https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html
https://www.w3.org/TR/2010/WD-html-markup-20101019/input.file.html

Using Forms and Models Chapter 6

[285]

Name (string): The HTML name of the input element that originated the file
upload
FileName (string): The temporary filename in the filesystem where the posted
file was saved

By using CopyTo and CopyToAsync, you can easily copy the contents of the posted file as
arrays of bytes from the Stream source to another. OpenReadStream allows you to peek
into the actual file contents.

The default file upload mechanism makes uses of a temporary file in the filesystem, but you
can roll out your mechanism. For additional information, please refer to the following post
by Microsoft:

https:/​/​docs.​microsoft. ​com/ ​en- ​us/ ​aspnet/ ​core/ ​mvc/ ​models/ ​file- ​uploads.

Direct access to submitted files
There is also the possibility of directly accessing the HttpContext.Request.Form.Files
collection. This collection is prototyped as IFormFileCollection and it exposes a
collection of IFormFile.

This concludes this chapter on how to work with files. Most complex applications will need
this somewhere, so it's useful to have this knowledge.

Summary
This chapter dealt with data coming from the user and data that, because of that, needs to
be validated; otherwise, it would be possible to submit invalid information, even if
improperly formatted. After reading through this chapter, you should be able to design a
form to receive complex data structures as well as validate them.

For validation, you should probably stick to data annotations attributes and
IValidatableObject implementations, if need be. These are used in a plethora of other
.NET APIs and are pretty much the standard for validation.

It would be good to implement client-side validation and AJAX as it provides a much better
user experience, but never forget to also validate on the server side!

There is probably no need for custom model binders as the included ones seem to cover
most cases.

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads

Using Forms and Models Chapter 6

[286]

Display and editor templates are very handy, so you should try to use them as it may
reduce the code you need to add every time, especially if you want to reuse it.

In this chapter, we've seen how we can work with models, produce HTML for
them—including with templates—validate it on the frontend and backend, see the
validation error messages, and bind your model to and from HTML form elements.

In the next chapter, we will talk about a whole different subject—Razor Pages!

Questions
You should be able to answer these questions, with the answers in the Assessments section:

What is the default validation provider?1.
What do we call the methods used to render HTML fields?2.
What is model metadata?3.
Does ASP.NET Core support client-side validation?4.
What is the base interface that can be bound to an uploaded file?5.
What is unobtrusive validation?6.
How can we perform server-side validation?7.

7
Implementing Razor Pages

This chapter covers Razor Pages, a functionality introduced in ASP.NET Core 2.0, which
provides a simplified development model that does not use controllers.

By studying this chapter, we will be able to develop dynamic websites that are driven by
data.

 We will talk about the following:

Assets search order
Working with the page model
The commonality in Razor views
Enforcing security

Technical requirements
To implement the examples introduced in this chapter, you will need the .NET Core 3 SDK
and a text editor. Of course, Visual Studio 2019 (any edition) meets all of the requirements,
but you can also use Visual Studio Code, for example.

The source code can be retrieved from GitHub
here: https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Cor
e-3-Second-Edition

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Implementing Razor Pages Chapter 7

[288]

Getting started
Razor Pages was introduced in ASP.NET Core 2.0, and they follow a totally different
approach from the rest of ASP.NET Core. Instead of the MVC pattern, Razor pages are self-
contained files, similar to XAML controls or ASP.NET Web Forms, because they can also
have a code-behind file. There is no longer a controller/view separation, as Razor pages
have all they need in a single file although we can also specify a class for them.

To use Razor Pages, you need a compatible Visual Studio version, starting from 2017
Update 3, plus you need to have ASP.NET Core 2.0 or higher installed:

Razor Pages is physically stored in the filesystem, underneath a Pages folder (this is by
convention), and the pages should have the same .cshtml extension as regular Razor
views. What differentiates them is the new @page directive. This is shown with the
following code:

@page
@model HelloWorldModel
<!DOCTYPE html>
<html>

Implementing Razor Pages Chapter 7

[289]

 <head><title>Hello World</title></head>
 <body>
 <h1>@Html.Raw("Hello, World!")</h1>
 </body>
</html>

Adding an @page directive (preferably as the first line) automatically turns
the .cshtml file into a Razor page. There is no need to reference any specific NuGet
package or perform any configuration because it is enabled by default.

Accessing a Razor page is straightforward; as no routing is involved, they can be called
directly, without the .cshtml extension:

/HelloWorld

/Admin/Settings

The only requirement is that the pages are located somewhere inside the Pages root folder.
The Index.cshtml file is served by default, meaning if one such file is located inside
a Pages\Admin folder, it is served without having to be explicitly requested; /Admin will
serve the \Pages\Admin\Index.cshtml file.

For routing to a Razor page, you need to explicitly enable it using the new endpoint routing
mechanism:

app.UseEndpoints(endpoints =>
{
 endpoints.MapRazorPages();
});

You can even use the new RequireHost extension method to ensure that Razor pages are
only accessible when using certain host headers or ports. Don't forget to also register the
services needed for it:

services.AddRazorPages();

Leave the Pages prefix and the .cshtml extension out; they cannot be
used in the request. Also, Razor pages cannot start with an underscore (_).

Let's begin with the assets search order to understand how Razor pages are located.

Implementing Razor Pages Chapter 7

[290]

Assets search order
Razor Pages assets (.cshtml files) will be searched in the following folders and order:

Current folder inside Pages
/Pages/Shared/

/Views/Shared/

This means that the view name, as requested by the user, or layout, will be looked for first
in the current folder (as per the request's path), then in the /Pages/Shared folder, and
lastly in /Views/Shared—all relative to the root folder of the application.

So, after learning the basics, let's jump into the page model, a very important concept.

Working with the page model
You can use the exact same syntax as you would with a Razor view, but there's something
more; a Razor page inherently has a PageModel class associated with it—notice
the @model directive pointing to HelloWorldModel. This class must inherit
from PageModel, and in it, you can define methods for handling HTTP methods, such
as GET or POST. The file containing the definition of the page model class must have the
same physical name as the Razor page with a .cs extension, be located in the same folder,
and inherit from PageModel. So, for example, if the previous file was
named HelloWorld.cshtml, then its page model would go in
a HelloWorld.cshtml.cs file:

public class HelloWorldModel : PageModel
{
}

If you do not wish to specify a custom page model class, one is provided for you
automatically, and you can still specify handler methods directly in the .cshtml file:

@functions
{
 public async Task<IActionResult> OnGetAsync()
 {
 if (!this.User.Identity.IsAuthenticated)
 {
 return this.RedirectToAction(actionName: "Login",
 controllerName: "Account");
 }

Implementing Razor Pages Chapter 7

[291]

 return this.Page();
 }
}

Consider the following properties that, for example, you might declare in the PageModel-
derived class:

public string Message { get; set; }

public void OnGet()
{
 this.Message = "Hello, World!";
}

These can then be used in the .cshtml file:

<p>Message: @Model.Message</p>

You can even have the class declared there:

@page
@model IndexModel
@functions
{
 public class IndexModel : PageModel
 {
 public async Task<IActionResult> OnGetAsync()
 {
 //whatever
 }
 }
}

The PageModel class offers the following properties:

HttpContext (HttpContext): The usual context
ModelState (ModelStateDictionary): The model state, filled from all of the
value providers
PageContext (PageContext): Offers access to the current handler method (if
any), plus the value provider and view start factory collections
Request (HttpRequest): The same value as HttpContext.Request, the
request object
Response (HttpResponse from HttpContext.Response): The response object
RouteData (RouteData): The route data, not normally needed
TempData (ITempDataDictionary): Temporary data

Implementing Razor Pages Chapter 7

[292]

Url (IUrlHelper): Used for generating URLs that point to route actions, for
exampleUser (ClaimsPrincipal coming from HttpContext.User): The
current user, as determined by the authentication mechanism in use
ViewData (ViewDataDictionary): The view bag, as introduced in Chapter
4, Controllers and Actions

This is the general information about the page model—let's now see each of these features
in detail; so, first, let's see how to implement a page handler.

Understanding page handlers
The HTTP method handlers can have several signatures:

The name must start with On and be followed by the HTTP method name
(Get, Post, Put, Delete, and so on).
The return type must either be void or IActionResult.
If we are to use the asynchronous version, the method must either
return Task or Task<IActionResult> and optionally have the async keyword
applied to it, and it should end with the Async suffix.
They can either take parameters (basic types with default values or complex
types), no parameters at all, or an IFormCollection parameter.

You can now add methods for handling requests, either synchronously, as shown here:

public IActionResult OnGet()
{
 if (this.HttpContext.Request.Headers["HTTP-
 Referer"].SingleOrDefault().Contains("google.com") == true)
 {
 //hey, someone found us through Google!
 }

 return this.Page();
}

Or these can handle requests asynchronously:

public async Task<IActionResult> OnGetAsync()
{
 //...
 return this.Page();
}

Implementing Razor Pages Chapter 7

[293]

You cannot have both a synchronous and an asynchronous handler
method or multiple overloads for the same HTTP verb, as it will result in
a runtime error.

You can even have custom handlers, which do not follow these patterns. A few ways to
achieve that are as follows:

Pass a handler parameter in the query string, for
example, ?handler=MyHandler.
Pass the handler parameter in the route instead, for example, @page
"{handler?}".
In the <form> , <input>, or <button> tags, set an asp-page-handler attribute,
for example, asp-page-handler="MyHandler" (this uses the tag handler
functionality).

This way, you can have a method such as the following:

public async Task<IActionResult> OnPostMyHandlerAsync() { ... }

Regardless of the name you give it, you will always have the On prefix and
the Async suffix, if it is an asynchronous handler.

If you want to have your page post to multiple handlers, depending on what is clicked, it's
easy:

<form method="post">
 <input type="submit" value="One Handler" asp-page-handler="One" />
 <input type="submit" value="Another Handler" asp-page-handler="Two" />
</form>

For this to work, both buttons must be inside a form with a POST method and the default
tag helpers must be registered in _ViewImports.cshtml:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The handler's names must follow the convention. For this example, you can have them as
the following:

public void OnPostOne() { ... }

public async Task<IActionResult> OnPostTwoAsync() { ... }

Implementing Razor Pages Chapter 7

[294]

This is just an example—they can be asynchronous or not, and return values or not
too. Inside they can perform tasks such as redirection by returning IActionResult:

public async Task<IActionResult> OnPostTwoAsync()
{
 return this.RedirectToPage("/Pages/Success");
}

Not all action results make sense though; for example, it doesn't make sense to
return ViewResult, as Razor Pages does not execute in the context of a controller. If this is
not required, you do not even need to return IActionResult:

public void OnGet()
{
 //initialize everything
}

And these can be used as helpers for returning IActionResults, in pretty much the same
way as the ControllerBase and Controller classes:

Challenge (ChallengeResult)
Content (ContentResult)
File (FileContentResult, FileStreamResult, VirtualFileResult)
Forbid (ForbidResult)
LocalRedirect (LocalRedirectResult)
LocalRedirectPermanent (LocalRedirectResult)
LocalRedirectPermanentPreserveMethod (LocalRedirectResult)
LocalRedirectPreserveMethod (LocalRedirectResult)
NotFound (NotFoundResult, NotFoundObjectResult)
Page (PageResult)
PhysicalFile (PhysicalFileResult)
Redirect (RedirectResult)
RedirectPermanent (RedirectResult)
RedirectPermanentPreserveMethod (RedirectResult)
RedirectPreserveMethod (RedirectResult)
RedirectToAction (RedirectToActionResult)
RedirectToActionPermanent (RedirectToActionResult)
RedirectToActionPermanentPreserveMethod (RedirectToActionResult)
RedirectToActionPreserveMethod (RedirectToActionResult)

Implementing Razor Pages Chapter 7

[295]

RedirectToPage (RedirectToPageResult)
RedirectToPagePermanent (RedirectToPageResult)
RedirectToPagePermanentPreserveMethod (RedirectToPageResult)
RedirectToPagePreserveMethod (RedirectToPageResult)
RedirectToRoute (RedirectToRouteResult)
RedirectToRoutePermanent (RedirectToRouteResult)
RedirectToRoutePermanentPreserveMethod (RedirectToRouteResult)
RedirectToRoutePreserveMethod (RedirectToRouteResult)
SignIn (SignInResult)
SignOut (SignOutResult)
StatusCode (StatusCodeResult, ObjectResult)
Unauthorized (UnauthorizedResult)

Some of these methods offer overloads, and each of these can return different result types.

Finally, if you want, you can pass parameters to your handlers:

<input type="submit" value="Third Handler" asp-page-handler="Three" asp-
route-foo="bar" />

Just declare a parameter on the handler:

public void OnPostThree(string foo)
{
 //do something with the value of foo
}

Having seen how a page handler can be implemented, let's see now how we can bind a
request to a class model.

Doing model binding
If you declare a property in the page model class (or in a @functions block, for that
matter) and decorate it with a [BindProperty] attribute, it will be bound automatically,
using the same rules (binding source providers and binding attributes) as described in the
previous chapter:

[BindProperty]
public Order Order { get; set; }

Implementing Razor Pages Chapter 7

[296]

You will then be able to access and change any of its properties, perhaps in
an HTTP handler method. You can also supply your own binder through the BinderType
property. BindProperty can also bind on GET calls if its SupportsGet property is set to
true.

If you prefer, you can also apply the [BindProperties] attribute to the whole class, and
all of its properties will be automatically bound:

[BindProperties]
public class Model
{
 public int OneProperty { get; set; }
 public string AnotherProperty { get; set; }
}

Do notice that properties bound this way will only be so for non-GET calls
(typically POST) unless you set its SupportsGet property (both
[BindProperty] and [BindProperties] have SupportsGet). It works
pretty much the same as [ModelBinder], but the latter never binds on
GET requests.

Also, similarly to controller actions, parameters in HTTP handler methods are
automatically bound:

public void OnGet(int? id = null)
{
 //?id=1212
}

You can opt for not declaring a model as part of the handler method signature but instead
update it dynamically:

public void OnPost()
{
 var model = new OrderModel();
 this.TryUpdateModel(model);
}

A possible reason for this would be that the same page handles different requests and,
consequently, different models.

Now that we've seen how to turn a request into a class, it's time to learn how to validate it!

Implementing Razor Pages Chapter 7

[297]

Doing model validation
Model validation also works in pretty much the same way as in controllers:

public IActionResult OnPost()
{
 var model = new OrderModel();

 this.TryUpdateModel(model);

 if (this.TryValidateModel(model))
 {
 return this.RedirectToPage("/Pages/Error");
 }

 return this.Page();
}

Similarly to controllers, the ModelState property also keeps track of all injected values and
their validation state.

Maintaining state
All of the usual ways to persist data apply also to Razor Pages, so there is nothing specific
worth mentioning here.

Using view layouts
Razor Pages can use the same layout functionality as views, but you are advised to keep
your layout pages outside the Views\Shared folder, as this is reserved for views.

Using partial views
Like view layouts, partial views are also supported in exactly the same way.

Let's see now how areas are supported.

Implementing Razor Pages Chapter 7

[298]

Using areas
As of ASP.NET Core 2.1, Razor Pages also supports areas. Areas are a way to physically
separate modules inside our application, in folders. This just means that Razor Pages can be
addressed inside these folders, as in these examples:

/Admin/Index

/HR/Index

/Orders/Index

Notice that these folders must be created below an Areas folder on the root of the project,
like this:

And inside each named area, we must create a Pages folder. Inside of it, you can put
whatever you like, such as .cshtml files, _ViewStart.cshml, and many others. Areas are
enabled by default.

It's time to mention the special files that exist for Razor views and Razor Pages.

Special files
The _ViewStart.cshtml and _ViewImports.cshtml files are respected by Razor Pages
and treated in the same way as for regular Razor views, that is, they are called before the
actual page. They also work in areas too, meaning you can have different files, one per each
area.

Next, let's discuss filters.

Implementing Razor Pages Chapter 7

[299]

Using filters
Razor Pages works with any filters except action filters—these will not be triggered, as you
don't have actions. There is also a new filter, IPageFilter, with an asynchronous version
as well, IAsyncPageFilter. I already talked about them in the Using filters section, so I
won't repeat myself here.

Dependency injection, as we will see next, is also supported.

Using dependency injection
You can have dependencies injected in the constructor of your page model class in the
usual way:

public class HelloWorldModel : PageModel
{
 public HelloWorldModel(IMyService svc)
 {
 //yes, dependency injection in the constructor also works!
 }
}

If you decorate a property in your custom page model with [FromServices], it will be
honored, and the property will have its value set from the dependency injection
framework, from its declared type.

You can also use the @inject directive, in the same way as you would in a Razor view.

Now, we will see how we can configure Razor Pages specific options.

Configuring options
The AddRazorPagesOptions extension method can be called subsequently to AddMvc so
that we can configure some of the options of Razor Pages:

services
 .AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.RootDirectory = "/Pages";
 });

Implementing Razor Pages Chapter 7

[300]

The RazorPagesOptions class offers the following properties:

AllowAreas (bool): Whether or not areas should be allowed—the default is
false

AllowMappingHeadRequestsToGetHandler (bool): Whether or not HEAD
requests will be turned into GET requests if the Razor page (or it's model) does
not provide a handler for HEAD—the default is false
Conventions (IList<IApplicationModelConvention>): The conventions to
use—this will be discussed in a future chapter
RootDirectory (string): The root directory, relative to the application root,
which is normally set to /Pages

In addition, there are a few extension methods that are configured
through RazorPagesOptions, and basically, add one or more conventions:

AllowAnonymousToFolder: Allows anonymous requests to all pages under a
specific folder
AllowAnonymousToPage: Allows anonymous requests for a given page
AuthorizeFolder: Defines an authorization policy for all pages under a specific
folder (this will be discussed in more depth in Chapter 11, Security)
AuthorizePage: Defines an authorization policy for a specific page
ConfigureFilter: Allows the configuration (adding and removing) of global
filters

Check out the following example:

services
 .AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.AllowAnonymousToPage("/Pages/HelloWorld");
 });

Page routes are a specific kind of configuration that we will see next.

Implementing Razor Pages Chapter 7

[301]

Understanding page routes
Besides calling Razor pages directly, you can also have them answer to routes. There is a
new AddPageRoute extension method for RazorPagesOptions that you can leverage to
add friendly routes to your pages:

services
 .AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.AddPageRoute("/Order", "My/Order/{id:int}");
 });

Interestingly, we can see that Razor Pages depends on the MVC framework somehow.

The parameters to AddPageRoute are as follows:

pageName (string): The name of a page to direct to, starting with /, and without
the .cshtml suffix
route (string): A regular route, with possible some route or query string
parameters

In the view, you can then access any route or query string parameters using
HttpContext.RouteData or HttpContext.Request.Query.

Interestingly, here's how you set a page (/HelloWorld) to be your default one:

.AddRazorPagesOptions(options =>
{
 options.Conventions.AddPageRoute("/HelloWorld", "");
});

Moreover, you can have your Razor page to listen to a specific route, by adding a route
template parameter to the page directive:

@page "{id:int}"

In this case, if the Razor page is called without the id parameter, which must also be of
the int type, it will not be found and an HTTP 404 error will be returned instead.

Next up, how to enforce security rules in Razor Pages.

Implementing Razor Pages Chapter 7

[302]

Enforcing security
There are essentially two ways by which we can enforce security rules over Razor Pages:

By applying the [Authorize] attribute to page models or page handlers
By defining conventions

Let's start with the attribute approach.

Using the [Authorize] attribute
It's simple for a whole page:

[Authorize]
public class AdminIndexModel: PageModel
{
}

Or you can also use it for a single handler:

public class AdminIndexModel: PageModel
{
 [Authorize]
 public void OnGet() { ... }
}

And now, let's move on to conventions.

Conventions
Using the AddRazorPagesOptions extension method, we can control how security can be
applied to one or more pages or folders. The available methods are the following:

AllowAnonymousToPage: Grants anonymous access to a single page
AllowAnonymousToFolder: Grants anonymous access to all pages underneath a
given folder
AuthorizePage: Defines an authorization policy for a page
AuthorizeFolder: Defines an authorization policy for all pages underneath a
folder

Implementing Razor Pages Chapter 7

[303]

Here's an example:

services
 .AddMvc()
 .AddRazorPagesOptions(options =>
 {
 //adds an AuthorizeAttribute with a named Policy property
 options.Conventions.AuthorizePage("/ShoppingBag",
 "Authenticated");
 //adds an AuthorizeAttribute
 options.Conventions.AuthorizeFolder("/Products");
 //adds an AllowAnonymousAttribute
 options.Conventions.AllowAnonymousToPage("/Login");
 options.Conventions.AllowAnonymousToFolder("/Images");
 });

Here, we are making sure the "/ShoppingBag" endpoint is only available for the
"Authenticated" policy and ensuring that whoever tries to access "/Products" needs to
be authorized. Lastly, both "/Login" and "/Images" URLs are available for anyone,
including anonymous users.

And now, what can we learn about XSS attacks?

Cross-site request scripting
Razor Pages on the server, by default, checks for Cross-Site Request Scripting (XSS)
attacks. If you want to use AJAX with Razor Pages, make sure you include the anti-forgery
token in your page and send the header in each AJAX request, as described in Chapter
11, Security, in the Anti-forgery protection section.

Summary
First, choosing between regular views and Razor Pages is a decision that should be made
upfront—they're just too different. Having controllers and views may be more appealing to
people who have worked with MVC before, and I'd say it can result in better coupling and
organization, but Razor Pages is just so easy to use—no server-side code and no
recompilation (if the page model is not used) are required.

Keep on using partial views and view layouts as they are a good mechanism to improve
reusability.

Implementing Razor Pages Chapter 7

[304]

The same security concerns apply to Razor Pages as they do to controller actions. It might
be better to prefer conventions over attributes, as we have a central location where the
security information is stored.

In this chapter, we were introduced to the new Razor Pages feature of ASP.NET Core 2,
which, although different from the ordinary views, shares quite a bit of functionality. It can
be used for simpler solutions, without all of the hassle of controllers and actions.

In the next chapter, we shall see how we can extract information about what is happening
inside ASP.NET Core.

Questions
You should now be able to answer the following questions:

Do Razor pages use code-behind?1.
What is the purpose of the page model?2.
What are page handlers?3.
How can we restrict a Razor page from being called by anonymous users?4.
What are the two ways by which we can inject services into a Razor page?5.
Do Razor pages use page layouts?6.
Where are Razor pages served by default?7.

8
API Controllers

This chapter introduces API controllers. An API controller is just an MVC controller that
doesn't return a UI but instead works with requests and payloads and returns responses in
machine-readable formats, such as JSON or XML. We will cover a number of aspects
related to API controllers, from security to versioning.

The following topics will be covered in this chapter:

Introduction to REST
Model binding
Authorizing access to resources
Applying OpenAPI conventions
Returning validation results
Performing content negotiation
Handling errors
Understanding API versioning
Generating API documentation
Serving OData

By the end of this chapter, we will be able to work with authentication and validation
overall, without much human interaction.

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all the
requirements, but you can also use Visual Studio Code, for example.

The source code for this chapter can be retrieved from GitHub from https:/ ​/ ​github. ​com/
PacktPublishing/​Modern- ​Web- ​Development- ​with- ​ASP. ​NET- ​Core- ​3-​Second- ​Edition.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

API Controllers Chapter 8

[306]

Getting started with web APIs
Not all actions are meant to return HTML (such as views). Some return content is only
suitable for non-human processing, such as some client APIs. In this case, other content is
more suitable than HTML—namely, a presentation language, such as JSON or XML.
Sometimes, it is only necessary to return an HTTP status code or some response headers. In
the past, this was done with APIs outside the ASP.NET MVC, such as with
Microsoft's ASP.NET Web API (https:/ ​/ ​www. ​asp.​net/ ​web- ​api), Nancy (http:/ ​/​nancyfx.
org), or ServiceStack (https:/ ​/​servicestack. ​net).

Let's look at the ASP.NET web API. It shared quite a few concepts and similarly named
(and purposed) APIs with MVC, but it was an entirely different project that used different
assemblies and a different bootstrap mechanism such as Open Web Interface for .NET
(OWIN). Unsurprisingly, Microsoft made the decision with ASP.NET Core to unify the
MVC and web API; now, there is no more web API, just the MVC. All of the API's features
can be found on the MVC, however.

There is a concept called Representational State Transfer (REST), which is the de facto
standard for writing web services and APIs that embrace HTTP in its entirety, including its
verbs, headers, and URLs. ASP.NET Core allows us to write web services that comply with
what REST proposes.

API controllers differ from non-API controllers because the former does not return a
UI—HTML or otherwise—but rather, consumes and returns data. This data is essentially
machine-readable and uses enterprise-standard formats, such as XML and JSON.
Sometimes, it is possible to negotiate what the acceptable and returned protocols are. In any
case, whenever data is received, it should be validated.

The API features of ASP.NET Core build on the MVC functionality, but it does not need all
of the functionality. it. So, you may need to add the MVC functionality, as follows:

services.AddMvc();

Alternatively, you could use just the bare minimum for the API, which may be enough for
your needs and uses less memory:

services.AddControllers();

Now that we've learned a bit about the basics, let's delve further into REST.

https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
https://www.asp.net/web-api
http://nancyfx.org
http://nancyfx.org
http://nancyfx.org
http://nancyfx.org
http://nancyfx.org
http://nancyfx.org
https://servicestack.net
https://servicestack.net
https://servicestack.net
https://servicestack.net
https://servicestack.net
https://servicestack.net
https://servicestack.net

API Controllers Chapter 8

[307]

Understanding REST
REST is a style—rather than an architectural pattern—that prescribes the use of meaningful
URLs and HTTP verbs.

Verbs represent operations. Take the following, for example:

HTTP verb Meaning
GET Reads
PUT Updates or replaces
POST Creates
PATCH Partially updates
DELETE Deletes

As you can see, this resembles what we have in the ASP.NET MVC, but HTML forms only
use POST and GET.

URLs, on the other hand, expose entities and identifiers. Take the following examples:

http://store.com/products/1

http://profile.net/users/rjperes

http://search.pt/term/rest+api

All of these URLs have a different meaning; if, for example, each URL is called using
a GET verb, it should return results and cause no side effects. For POST, new records should
be created. PUT updates an existing record and DELETE removes the underlying record.

As you can imagine, the actual content that is required for POST, PUT, and PATCH cannot
always be sent through the URL; if the content is complex, they need to be sent as payloads.
GET and DELETE normally do not take complex parameters.

REST is particularly useful for creating Create, Retrieve, Update, and Delete (CRUD)-style
applications. These are applications used for the addition of records, such as blog posts.

Finally, HTTP status codes represent the outcome of operations, such as the following:

200 OK: An entity/entities was/were successfully retrieved.
201 Created: An entity was successfully created.
202 Accepted: An entity was accepted to be deleted or updated.
204 No Content: A request was processed successfully but did not return any
content.

API Controllers Chapter 8

[308]

404 Not Found: The requested entity does not exist.
409 Conflict: The entity to save conflicts with the persisted version.
422 Unprocessable Entity: The entity failed to validate.
501 Bad Request: A bad request was issued.

For more information about the REST and RESTful APIs, please
read https:/ ​/​searchmicroservices. ​techtarget. ​com/ ​definition/
RESTful- ​API.

In this section, we've learned about REST, which is essentially a consent mechanism. Let's
now look at ASP.NET Core—specifically, how we turn a request into a .NET class.

Model binding
Normally, when using a REST API, we use either POST, PUT, or sometimes even PATCH
verbs to send content as payloads. This content is then translated into POCO classes, which
are defined as parameters to action methods.

It turns out that ASP.NET Core can bind payloads to POCOs if you bind from the body of
the request or from the query string, but you cannot exclude (or include) specific properties
using the [Bind], [BindNever], and [BindRequired] attributes. A typical example is as
follows:

[ApiController]
public class PetController : ControllerBase
{
 [HttpPost]
 public IActionResult Post([FromBody] Pet pet) { ... }
}

This is because ASP.NET Core uses input formatters to bind requests to models, and since
these can change, it's up to them to decide what properties should be skipped or not—for
example, a certain JSON serializer might use some attributes to configure property
serialization, which would be ignored by others.

https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API

API Controllers Chapter 8

[309]

Authorizing access to resources
While forms normally use username and password pairs to enforce authentication, that is
not normally the case with APIs. However, the concepts of both authentication and
authorization apply, too; authorization is ensured by means of roles, claims, or custom
rules, but authentication is usually achieved through JSON Web Tokens (JWTs). JWTs are
similar to cookies, but cookies are stored in the browser and web APIs are not usually
called by a browser but by an API client. ASP.NET Core offers a mechanism for checking
both the authentication of a request and for checking that the requester is entitled to do
what it wants to do. Explaining how to do this is the purpose of this chapter.

Using JWTs
JWTs are open-standard—defined in RFC 7519—securely representing claims between two
connecting parties using HTTP for communication. The spec is available at https:/ ​/ ​tools.
ietf.​org/​html/​rfc7519.

Using JWTs is similar to using cookies for authentication, but cookies are usually associated
with human interaction, whereas JWTs are more common in machine-to-machine scenarios,
such as web services. Using cookies requires a cookie container that can hold them and
send them upon each request—normally, the browser does this for us. However, with web
APIs, the request is not often made by a browser.

Let's have a look at a full example. Before we delve into the code, make sure you add
the Microsoft.AspNetCore.Authentication.JwtBearer NuGet package to the code.

Let's see how we can generate a token by looking at a simple GenerateToken method that,
for example, generates a token for a given username:

private string GenerateToken(string username)
{
 var claims = new Claim[]
 {
 new Claim(ClaimTypes.Name, username),
 new Claim(JwtRegisteredClaimNames.Nbf,
 new DateTimeOffset(DateTime.UtcNow).ToUnixTimeSeconds()
 .ToString()),
 new Claim(JwtRegisteredClaimNames.Exp,
 new DateTimeOffset(DateTime.UtcNow.AddDays(1))
 .ToUnixTimeSeconds().ToString()),
 };

 var token = new JwtSecurityToken(

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

API Controllers Chapter 8

[310]

 new JwtHeader(new SigningCredentials(
 new SymmetricSecurityKey(Encoding.UTF8.GetBytes("<at-least-16-
 character-secret-key>")),
 SecurityAlgorithms.HmacSha256)),
 new JwtPayload(claims));

 return new JwtSecurityTokenHandler().WriteToken(token);
}

This code allows anyone with a valid username/password pair to request a JWT that lasts
for 1 day (DateTime.UtcNow.AddDays(1)). The secret key (<at-least-16-character-
secret-key>), of course, can be generate from configuration and should not really be
hardcoded.

Now, to set up the authentication, we need to go to ConfigureServices; this is how it
looks in ASP.NET Core 2.x and higher:

services
 .AddAuthentication(options =>
 {
 options.DefaultAuthenticateScheme = JwtBearerDefaults.
 AuthenticationScheme;
 options.DefaultChallengeScheme = JwtBearerDefaults.
 AuthenticationScheme;
 })
 .AddJwtBearer(JwtBearerDefaults.AuthenticationScheme, options =>
 {
 options.TokenValidationParameters = new TokenValidationParameters
 {
 ValidateAudience = false,
 ValidateIssuer = false,
 ValidateIssuerSigningKey = true,
 IssuerSigningKey = new SymmetricSecurityKey(
 Encoding.UTF8.GetBytes("<at-least-16-character
 -secret-key>")),
 ValidateLifetime = true,
 ClockSkew = TimeSpan.FromMinutes(5)
 };
 });

API Controllers Chapter 8

[311]

ClockSkew allows differences in clock synchronization between the server and any clients
connected to it. In this case, we are allowing a 5-minute tolerance, which means clients
whose token has expired by less than 5 minutes will still be accepted. This needs to go
in Configure to add the authentication middleware to the pipeline:

app.UseAuthentication();

Now, any requests for action methods with the [Authorize] attribute will be checked for
the JWT and will only be accepted if it is valid. To make sure this happens, you need to
send the authorization token with all requests (including AJAX calls); this is
the Authorization header and it looks like this:

Authorization: Bearer <my-long-jwt-authorization-token>

The <my-long-jwt-authorization-token> value is the one produced from the
GenerateToken method shown earlier.

You can play around with and generate valid JWT tokens using a number of public sites,
such as https:/​/​jwt. ​io. Of course, you need to find a way to store the token for the
duration of the request (HTML local storage, for example—see https:/ ​/​developer.
mozilla.​org/​en-​US/ ​docs/ ​Web/ ​API/ ​Window/ ​localStorage for more information). If the
token is tampered with or its timeout is reached, you will get an authorization error.

If you wish, you can instruct ASP.NET Core to use a different authentication validation
provider—for example, you can have both cookie- and JWT-based authorization providers.
You only need to use the AuthenticationSchemes property of
the [Authorize] attribute, as follows, for JWT:

[Authorize(AuthenticationSchemes = JwtBearerDefaults.AuthenticationScheme)]

The following can be used to use cookies:

[Authorize(AuthenticationSchemes =
CookieAuthenticationDefaults.AuthenticationScheme)]

You can mix different authentication schemes on the same ASP.NET Core app.

Now that we've finished with authentication, let's look at the mechanism that Visual Studio
offers for enforcing REST conventions.

https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

API Controllers Chapter 8

[312]

Applying OpenAPI REST conventions
ASP.NET Core 2.2 introduced API web analyzers to Visual Studio. These analyzers are
used to enforce REST conventions. Simply put, we state that an assembly or class should
follow some convention; Visual Studio then checks whether its methods declare—for the
purpose of OpenAPI (Swagger)—the proper response types and status codes and offers to
fix this by adding the correct attributes if needed. This is purely a design-time feature, not
something that you code, for a change.

The Microsoft.AspNetCore.Mvc.Api.Analyzers NuGet package includes some
standard conventions for REST APIs in the form of the DefaultApiConventions class. If
we want to ensure that all types in the current assembly follow these conventions, we apply
the following attribute at the assembly level:

[assembly: ApiConventionType(typeof(DefaultApiConventions))]

If we only want to do this at a class level, we take out the assembly modifier and instead
apply it to a class, usually a controller, as follows:

[ApiConventionType(typeof(DefaultApiConventions))]
public class PerController : ControllerBase { }

Alternatively, we can do so at a method level:

[ApiConventionMethod(typeof(DefaultApiConventions),
nameof(DefaultApiConventions.Put))]
[HttpPut("{id}")]
public async Task<ActionResult<Pet>> PutPet(int id, Pet pet) { ... }

Note that in this case, we are specifying the name of the method (Put) that holds the
conventions that we want to use for this method. In all the other cases, Visual Studio looks
for hints at the convention methods, specified as attributes, which it uses to match the
methods in the current context.

API Controllers Chapter 8

[313]

The DefaultApiConventions class has conventions for the following kinds of methods
(same as the HTTP verbs):

Get or Find
Post or Create
Put, Edit, or Update
Delete

For each of these, Visual Studio offers to add appropriate status code
([ProducesResponseType]) attributes. So, it goes like this:

Method Commands

GET
200 OK: Content was found and is returned with success.
404 Not Found: Content was not found.

POST
201 Created: Content was created successfully.
400 Bad Request: Bad or invalid request issued.

PUT
204 No Content: No content issued.
404 Not Found: The content to be updated was not found.400 Bad Request: Bad or invalid request
issued.

DELETE
200 OK: Content deleted successfully.
404 Not Found: Content was not found.400 Bad Request: Bad or invalid request issued.

API Controllers Chapter 8

[314]

The following is an example of using Visual Studio to add response types that are missing
for a method that matches the GET convention:

It is possible to roll out our own conventions, but these are the default ones for REST APIs,
so we should probably stick to them. If you wish to learn more about this, please have a
look at https:/​/ ​docs. ​microsoft. ​com/ ​en- ​us/​aspnet/ ​core/ ​web- ​api/​advanced/
conventions.

Returning validation results
Before ASP.NET 2.1, you would need to explicitly look at the model validation result—for
example, by inspecting ModelState.IsValid—and act accordingly, returning, for
example, BadRequestResult. Since then, for any controllers that feature the
[ApiController] attribute, ASP.NET Core will add an action filter
called ModelStateInvalidFilter, which, before an action method is actually run,
inspects the model for validity and returns BadRequestResult for us. The pseudocode
looks as follows:

public void OnActionExecuting(ActionExecutingContext context)
{
 if (!context.ModelState.IsValid)
 {
 context.Result = new BadRequestObjectResult(context.ModelState);
 }
}

https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions
https://docs.microsoft.com/en-us/aspnet/core/web-api/advanced/conventions

API Controllers Chapter 8

[315]

The response sent to the client includes the model validation errors and, by default, a
special content type of application/problem+json. We will discuss this in greater detail
when we talk about error handling later in this chapter.

You can disable this behavior completely by setting a value of false to
the ApiBehaviorOptions.SuppressModelStateInvalidFilter property:

services.Configure<ApiBehaviorOptions>(options =>
{
 options.SuppressModelStateInvalidFilter = true;
});

You can just hide the validation details, which can be useful from a security point of view:

options.SuppressUseValidationProblemDetailsForInvalidModelStateResponses =
true;

Yet another option is to explicitly state how a model validation error will be translated to a
response. The ApiBehaviorOptions class offers a property
called InvalidModelStateResponseFactory, delegated just for this purpose. This
takes ActionContext as its sole parameter, from which we can inspect ModelState, as
well as other possibly useful properties. The following code sample shows how we can
return a different result depending on the number of model validation errors:

options.InvalidModelStateResponseFactory = (ctx) =>
{
 if (ctx.ModelState.ErrorCount > 1)
 {
 return new JsonResult(new { Errors = ctx.ModelState.ErrorCount });
 }
 return new BadRequestObjectResult(ctx.ModelState);
};

In this example, if the error count is greater than 1, we return a JSON result; otherwise, we
fall back to the default bad request.

Now, let's see how content negotiation works when requested by a client.

Performing content negotiation
Content negotiation is the process by which the application returns data in a format that is
requested by the client. This is usually done for API-style invocations, not requests that
serve HTML. For example, a certain client might want data returned in JSON format, while
others might prefer XML. ASP.NET Core supports this.

API Controllers Chapter 8

[316]

There are essentially two ways to achieve this:

Through a route or query string parameter
Through the Accept request header

The first approach lets you specify the format that you're interested in on the URL. Let's see
how this works first:

Say you have the following action method:1.

public Model Process() { ... }

Let's forget what Model actually is as it's just a POCO class that contains the2.
properties you're interested in. It could be as simple as this:

public class Model
{
 public int A { get; set; }
 public string B { get; set; }
}

Out of the box, ASP.NET Core includes a formatter for JSON, but you can also3.
add a NuGet package, also from Microsoft, that adds support for
XML—Microsoft.AspNetCore.Mvc.Formatters.Xml. As well as adding it to
the services, you also need to tell ASP.NET what mapping to use; in this case,
the .xml format to the application/xml content type:

services
 .AddMvc(options =>
 {
options.FormatterMappings.SetMediaTypeMappingForFormat("xml",
 "application/xml");
 })
 .AddXmlSerializerFormatters();

Calling AddXmlSerializerFormatters already does this:

services
 .AddMvc()
 .AddXmlSerializerFormatters();

API Controllers Chapter 8

[317]

There is already a mapping from json to application/json, so there is no4.
need to add this as it will be the default. Then, you need to decorate your action
method with a route that specifies the format parameter:

[Route("[controller]/[action]/{format}")]
public Model Process() { ... }

You also need to decorate your controller class with the [FormatFilter]5.
attribute, as follows:

[FormatFilter]
public class HomeController { }

Now, if you call your action with json or xml as the format route value, you6.
will get an answer properly formatted according to the format you specified,
such as this for XML:

<Model xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <A>1
 two
</Model>

You will get the following for JSON:7.

{"a":1,"b":"two"}

The other way is to use the request's Accept header, which is a standard way of8.
specifying the content we're interested in receiving. API clients don't typically
use this, but browsers do. In the AddMvc call, you need to activate
the RespectBrowserAcceptHeader property:

services
 .AddMvc(options =>
 {
 options.RespectBrowserAcceptHeader = true;
 })
 .AddXmlSerializerFormatters();

Now, if you send an Accept header of
either application/xml or application/json (this is the default), you will get the
result in the desired format.

API Controllers Chapter 8

[318]

For more information about the Accept header, please consult https:/ ​/
developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​HTTP/ ​Headers/ ​Accept.

For the sake of completeness, the JSON formatter allows us to specify additional options
through the use of the AddJsonOptions extension method:

services
 .AddMvc()
 .AddJsonOptions(options =>
 {
 options.JsonSerializerOptions.PropertyNamingPolicy =
 JsonNamingPolicy.CamelCase;
 });

This configures the resolver to use camelCasing instead of the default option. There are
too many options to discuss here and since they're not really that relevant, we won't cover
them.

Now that we've looked at request acceptance, let's now look at response formatting.

Output formatters
What does returning an object in an HTTP response mean? Well, the object needs to be
turned into something that can be transmitted over the wire. Some typical response types
are as follows:

text/html: For HTML content
text/plain: For generic text content
application/json: For JSON content
application/xml: For XML content
binary/octet-stream: For any binary content

Therefore, the object you return needs to be turned into something that can be sent using
one of these content types. For this, ASP.NET Core uses the concept of an output formatter.
An output formatter is essentially an implementation of IOutputFormatter.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept

API Controllers Chapter 8

[319]

Out of the box, ASP.NET Core includes the following output formatters:

HttpNoContentOutputFormatter doesn't write any content at all; only returns
a 204 HTTP status code.
StringOutputFormatter outputs strings as is.
StreamOutputFormatter writes a stream as a series of bytes.
JsonOutputFormatter serializes the object to JSON.

There are also a couple of types of XML formatters that can be installed using
the Microsoft.AspNetCore.Mvc.Formatters.Xml NuGet package and registered either
through AddXmlDataContractSerializerFormatters (for DataContractSerializer)
or AddXmlSerializerFormatters (for XmlSerializer).

Data contracts and XML serializers use different approaches; for example,
different attributes to control the output.

Output formatters can be configured using the AddMvc extension method overload, which
takes a parameter, as follows:

services.AddMvc(options =>
{
 options.OutputFormatters.Insert(0, new MyOutputFormatter());
});

So, how is an output formatter selected? ASP.NET Core iterates the list of configured
formatters and calls its IOutputFormatter.CanWriteResult method. The first formatter
that returns true is the one that is used to serialize the object to the output stream (the
WriteAsync method).

Handling null values
When an ASP.NET Core API controller returns a null value that is normally wrapped in
IActionResult and takes a value, ASP.NET Core automatically switches the return value
to NoContentResult (HTTP 204 No Content). This behavior is probably OK most of the
time, but it may be undesirable at other points. Fortunately, it can be controlled by us; this
is actually done through the HttpNoContentOutputFormatter output formatter, which is
registered by default.

API Controllers Chapter 8

[320]

So, if we want to disable it, all we need to do is remove this formatter:

services.AddMvc(options =>
{
 options.OutputFormatters.RemoveType<HttpNoContentOutputFormatter>();
});

In this case, be warned that you may end up returning, for example, a response of 200 OK
with a null response if you don't validate the response being returned. If you wish, you
can implement a result filter that returns something else—for example,
NotFoundResult—in the event of the response being null. This would look something as
follows:

public sealed class NoResultToNotFoundFilterAttribute : Attribute,
IAlwaysRunResultFilter
{
 public void OnResultExecuting(ResultExecutingContext context)
 {
 if ((context.Result is ObjectResult result) && (result.Value
 == null))
 {
 context.Result = new NotFoundResult();
 }
 }

 public void OnResultExecuted(ResultExecutedContext context) { }
}

Notice that we implemented this as an always run result filter, described in Chapter
10, Understanding Filters. You just need to register this filter as a global filter and you're
good to go.

This concludes the section on content negotiation. In the next section, we will be looking at
error handling.

Handling errors
Error handling, when we are talking about APIs, means returning information that
can possibly be consumed by a non-human endpoint in the event of an error that can
provide useful information. The W3C (which is World Wide Web Consortium) this, on RFC
7807 (https:/​/​tools. ​ietf. ​org/ ​html/ ​rfc7807), as "a way to carry machine-readable details of
errors in an HTTP response".

https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807

API Controllers Chapter 8

[321]

The idea here is that when an error occurs, we gather all the useful information and return
a response that describes what happened with the appropriate level of detail.

One way to intercept any exceptions that occur on a web request is through an exception
handler—a middleware that is added through a call to UseExceptionHandler. Let's look
at an example:

app.UseExceptionHandler(errorApp =>
{
 errorApp.Run(async context =>
 {
 var errorFeature = context.Features.Get
 <IExceptionHandlerPathFeature>();
 var exception = errorFeature.Error;
 var path = errorFeature.Path;
 var problemDetails = new ProblemDetails
 {
 Instance = $"urn:my:error:{Guid.NewGuid()}",
 Detail = exception.Message
 };

 if (exception is BadHttpRequestException badHttpRequestException)
 {
 problemDetails.Title = "Invalid request!";
 problemDetails.Status = StatusCodes.Status400BadRequest;
 }
 else
 {
 problemDetails.Title = "An unexpected error occurred!";
 problemDetails.Status = StatusCodes
 .Status500InternalServerError;
 }

 context.Response.ContentType = "application/problem+json";
 context.Response.StatusCode = problemDetails.Status.Value;

 await context.Response.WriteAsync(JsonSerializer.
 Serialize(problemDetails));
 });
});

What we have here is a handler that is called in the event of an exception; we retrieve the
current exception through IExceptionHandlerPathFeature and check what it is. There
is another feature class, IExceptionHandlerFeature, but
IExceptionHandlerPathFeature extends it and adds a Path property to the already
existing Error property.

API Controllers Chapter 8

[322]

We then build an instance of a ProblemDetails class (provided by .NET Core; you can
inherit from it should you wish to provide your own properties) and fill in the appropriate
properties. We then set the response content type to application/problem+json, as
defined by the RFC interface, and serialize this instance as JSON to the response stream.

The properties of the ProblemDetails class have the following meanings (from the RFC):

Type (string): A URI reference (RFC3986) that identifies the problem type. If
not supplied, it defaults to about:blank.
Title (string): A short, human-readable summary of the problem type. This
should not change from occurrence to occurrence of the problem, except for the
purposes of localization.
Detail (string): A human-readable explanation specific to this occurrence of
the problem.
Instance (string): A URI reference that identifies the specific occurrence of the
problem. It may or may not yield further information if dereferenced.
Status (int): The HTTP status code.

Of course, the exact level of detail depends on the message that occurred and on what you
want to expose to the client, so you must consider this carefully by inspecting the exception,
the request URL, and any other possible parameters.

Since ASP.NET Core 3, we can also create a ProblemDetails object such as this within a
controller action method:

var problemDetails =
ProblemDetailsFactory.CreateProblemDetails(HttpContext);

This includes general information about the exception that occurred and, in the case of a
more specific model validation error, which is not a server-side error and normally does not
throw any exception, we can do this instead:

var validationProblemDetails = ProblemDetailsFactory.
 CreateValidationProblemDetails(HttpContext, ModelState);

This includes all of the validation errors in the generated object. You could have code such
as this in a controller:

if (!this.ModelState.IsValid)
{
 var validationProblemDetails = ProblemDetailsFactory
 .CreateValidationProblemDetails(HttpContext,
 ModelState);

API Controllers Chapter 8

[323]

 return BadRequest(validationProblemDetails);
}

That's all for error handling; the next section explains how we can have multiple versions of
an API and have our customers select the one that they're interested in.

Understanding API versioning
Also related to API (web service)-style method invocations is versioning. By versioning
your API, you can have multiple simultaneous versions of it by possibly taking different
payloads and returning different results. ASP.NET Core supports API
versioning through the Microsoft.AspNetCore.Mvc.Versioning library.

Out of the box, you can apply the following techniques to specify the version that you're
interested in:

A URL query string parameter
A header
Any of the previous options—either the query string or a header

Let's say you have two controller classes of the same name in two different namespaces:

namespace Controllers.V1
{
 [ApiVersion("1.0")]
 public class ApiController
 {
 [ApiVersion("1.0", Deprecated = true)]
 [HttpGet("[controller]/[action]/{version:apiversion}")]
 public Model Get() { ... }

 [ApiVersion("2.0")]
 [ApiVersion("3.0")]
 public Model GetV2() { ... }
]
}

Here, you can see that we applied a couple of [ApiVersion] attributes to each, with each
one specifying an API version that the controller supports. Let's see how we can implement
versioning, starting with the route approach.

API Controllers Chapter 8

[324]

Using header values
We will configure API versioning to infer the desired version from a header field. We
configure versioning in the ConfigureServices method. Notice
the HeaderApiVersionReader class:

services.AddApiVersioning(options =>
{
 options.ApiVersionReader = new HeaderApiVersionReader("api-version");
});

Here, we're saying that the version should come from the header string called api-
version. This is not a standard value; it's just some string we picked up.

Now, when calling your API at /Api/Get, while passing an api-version header with a
value of 1.0, the request will be handled by the Controllers.V1.ApiController class.
If you pass a value of 2.0 or 3.0, however, it will be picked up by
the Controllers.V2.ApiController class.

Using a header is the most transparent technique, but it is also one that you can't easily
force, for example, using a browser. Let's look at another technique.

Using the query string
In order to infer the version from the URL, we need to use
the QueryStringApiVersionReader class, as follows:

services.AddApiVersioning(options =>
{
 options.ApiVersionReader = new QueryStringApiVersionReader("api-
 version");
});

We also need to configure a route that takes this into account:

[Route("[controller]/{version:apiversion}")]
public Model Get() { ... }

Now, if we make a request to /api/1.0, we get version 1.0, and the same goes
for 2.0 and 3.0.

API Controllers Chapter 8

[325]

If we want to be more flexible, we can use
the QueryStringOrHeaderApiVersionReader class as
ApiVersionReader; both approaches will work.

We've seen how to specify a version using either the query string or a header. Let's now see
how to mark a version as deprecated.

Deprecating versions
You can say that one version is obsolete by setting a flag to the Deprecated property:

[ApiVersion("1.0", Deprecated = true)]

Now, if you set the ReportApiVersions flag to true, you will receive the versions that
are supported and those that aren't as part of the response:

services.AddApiVersioning(options =>
{
 options.ReportApiVersions = true;
 options.ApiVersionReader = new QueryStringApiVersionReader("
 api-version");
});

This yields the following response headers:

api-deprecated-versions: 1.0
api-supported-versions: 2.0, 3.0

Now, let's move on to see how default versions work.

Default versions
You can also specify a default version:

services.AddApiVersioning(options =>
{
 options.AssumeDefaultVersionWhenUnspecified = true;
 options.DefaultApiVersion = new ApiVersion(2, 0);
 options.ApiVersionReader = new QueryStringApiVersionReader("
 api-version");
});

In this case, if you don't specify a version, it will assume that you want version 2.0.

API Controllers Chapter 8

[326]

Version mapping
As we've seen, the Controllers.V2.ApiController class is mapped to two
versions—2.0 and 3.0. But what happens if you want to handle version 3.0 separately?
Well, you simply add a [MapToApiVersion] attribute to a new method:

[MapToApiVersion("3.0")]
public Model GetV3() { ... }

Henceforth, all requests for version 3.0 will be handled by this method.

Invalid versions
If an unsupported version is requested, not a deprecated one, an exception will be thrown
and returned to the client, as follows:

{
 "error":
 {
 "code": "ApiVersionUnspecified",
 "message":"An API version is required, but was not specified."
 }
}

That's about it for versioning ASP.NET Core web APIs. As you can see, you have several
options, from using the URL to using headers, and you can have multiple, simultaneous
versions of your API. This will hopefully help you migrate clients running an old version to
the new one.

Next, we'll see how to generate documentation for an API and even create a UI for calling it
from the browser.

Generating API documentation
Web APIs have a specification that was initially called Swagger but now goes by the
name OpenAPI (https:/ ​/ ​github. ​com/ ​OAI/​OpenAPI- ​Specification). It is used
to describe the endpoints and versions offered by some APIs. The Swagger v3.0
specification contributed to the OpenAPI Initiative, and so Swagger is merged with
OpenAPI.

https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification

API Controllers Chapter 8

[327]

It is still colloquially called Swagger in several places, and there is also an open source
implementation for .NET called Swashbuckle, which is available on NuGet
as Swashbuckle.AspNetCore (https:/ ​/ ​github. ​com/ ​domaindrivendev/ ​Swashbuckle.
AspNetCore). What this package does is inspect the action methods of your controllers and
generate a JSON document that describes them. It also offers a simple web interface for
invoking each of these action methods—how cool is that?

In order to use Swashbuckle.AspNetCore, we need to add a few NuGet
packages—Swashbuckle.AspNetCore, .SwaggerGen,
Swashbuckle.AspNetCore.SwaggerUI, and Microsoft.OpenApi. The latter is added
automatically by the former. To use Swashbuckle, as with most ASP.NET Core APIs, we
first need to register the required services to the dependency injection framework
(ConfigureServices). This is done as follows:

services.AddSwaggerGen(c =>
{
 c.SwaggerDoc("v1", new OpenApiInfo {
 Title = "My API V1",
 Version = "v1",
 OpenApiContact = new Contact {
 Email = "rjperes@hotmail.com",
 Name = "Ricardo Peres",
 Url = "http://weblogs.asp.net/ricardoperes"
 }
 });
});

We add the Swagger middleware to the pipeline in the Configure method:

app.UseSwagger();
app.UseSwaggerUI(options =>
{
 options.SwaggerEndpoint("/swagger/v1/swagger.json", "My API V1");
});

The two calls, UseSwagger and UseSwaggerUI, refer to two different functionalities; the
first is for the actual API documentation and the second is the UI for invoking controller
actions.

You can add as many calls to AddSwaggerGen as you like, with different API names or
versions. Each version will generate a different API version document.

https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore

API Controllers Chapter 8

[328]

Swashbuckle works by introspecting all the controllers and their action methods, but it will
only find those that you explicitly want it to find, such as the following:

Controllers marked with a [Route] attribute
Action methods marked with [Route], [HttpGet], [HttpPost], [HttpPut],
[HttpDelete], [HttpOptions], [HttpPatch], or [HttpMethod] and with an
explicit route template

Swashbuckle will also look at the following:

[Produces]: The content type(s) and contract of the POCO class(es) that may be
produced by an action method.
[ProducesResponseType]: The contract and status code that may be returned
by an action method. You can have as many as you like for different status codes.
[ProducesDefaultResponseType]: The contract that is returned for any status
code not explicitly mentioned by a [ProducesResponseType] attribute.
[ProducesErrorResponseType]: The contract to be returned in the event of an
error.
[Consumes]: The content type(s) that will be accepted by an action method

These attributes can be applied at the class (controller) or method (action) level; so, for
example, if all actions in a controller consume and produce JSON, you could have this:

[Produces("application/json")]
[Consumes("application/json")]
public class HomeController : Controller { }

When you access the /swagger/v1/swagger.json URL, you get something like this:

 {
 "swagger": "2.0",
 "info": {
 "version": "v1",
 "title": "My API V1",
 "contact": {
 "name": "Ricardo Peres",
 "url": "http://weblogs.asp.net/ricardoperes",
 "email": "rjperes@hotmail.com"
 }
 },
 "basePath": "/",
 "paths": {
 "/Home": {
 "get": {

API Controllers Chapter 8

[329]

 "tags": ["Home"],
 "operationId": "HomeIndexGet",
 "consumes": ["application/json"],
 "produces": ["application/json"],
 "responses": {
 "200": {
 "description": "Success"
 }
 }
 }
 }
 },
 "definitions": {},
 "securityDefinitions": {}
 }

Due to space constraints, we have only included one action method, Index, of
the Home controller in this sample output. However, you can see a single document, named
My API V1 version V1. For each action method, Swashbuckle describes the HTTP methods
it accepts, any content types that it accepts (these can be specified through the use of
the [Consumes] attribute) and returns (as set by [Produces]), and the return status codes
(the [ProducesResponseType] attribute). If these are not specified, the defaults are used,
which is 200 for the status code, no accept, or return content types.

This version has nothing to do with the versioning schema discussed in
the previous topic.

If a single method can return more than one document type or status code, you can apply
as many [Produces] and [ProducesResponseType] attributes as you wish:

[ProducesResponseType(typeof(Model), StatusCodes.Status201Created)]
[ProducesResponseType(typeof(Model), StatusCodes.Status202Accepted)]
[ProducesResponseType(typeof(Model), StatusCodes.Status304NotModified)]
[ProducesDefaultResponseType]
public IActionResult AddOrUpdate(Model model) { ... }

In this case, we mean the following:

If the model already exists somewhere, then we return HTTP 303 Not
Modified.
If the model was changed, we return HTTP 202 Accepted.
If the model was added, we then return HTTP 201 Created.

API Controllers Chapter 8

[330]

All of this is inferred from the REST conventions, mind you!

A word of caution—the difference between [Produces] and
[ProducesResponseType] is that the former is a result filter that sets the
response type to be of a specific value and the latter only declares it! This
may be relevant if you wish to use content negotiation, so it's something
that you must keep in mind!

For each document you add with AddSwaggerGen, you get a different URL, such
as /swagger/v1/swagger.json, /swagger/v2/swagger.json, and more.

Of greater interest is the generated UI, which can be accessed through
the /swagger endpoint:

Here, we can see two actions (known as operations)—/Home and /Home/Process. They
are two action methods in the Home controller, and these are the routes to access each one.
For the sake of clarity, let's consider the Process action method to have the following
signature:

[HttpGet("Process")]
[ProducesResponseType(typeof(Model), StatusCodes.Status200OK)]
public IActionResult Process(string id, int state) { ... }

Now, expanding the operations yields the following:

API Controllers Chapter 8

[331]

Here, you get a form that asks for the parameters to Process and even shows you a sample
response formatted as JSON. Brilliant! This sample response comes from the Type property
applied to the [Produces] attribute. If you fill this out and click on Try it out!, this is what
you get:

API Controllers Chapter 8

[332]

Here, you get the response payload and all of the response headers. Pretty cool, right?

What remains to be shown is how we can customize the URLs for both the JSON
documentation and the UI. We do this through
the UseSwagger and UseSwaggerUI extension methods, as follows:

app.UseSwagger(options =>
{
 options.RouteTemplate = "api-doc/{documentName}/swagger.json";
});

The RouteTemplate property only needs to take a {documentName} token, the default
being swagger/{documentName}/swagger.json. This token is replaced by whatever you
add as the first parameter to the SwaggerDoc call in the AddSwaggerGen lambda. Don't
forget that if you change one, you need to change both, as shown:

app.UseSwaggerUI(options =>
{
 options.SwaggerEndpoint("/api-doc/v1/swagger.json", "My API V1");
});

There are lots of other configuration options, so we advise you to take a
look at the documentation available at https:/ ​/​github. ​com/
domaindrivendev/ ​Swashbuckle. ​AspNetCore.

After the generation, let us see how to add the documentation.

Adding API documentation
Swashbuckle can add the documentation that is provided with the code, as long as we
make MSBuild generate an XML file for it. Using Visual Studio, this is just a matter of
setting a property on the .csproj file:

<PropertyGroup>
 <GenerateDocumentationFile>true</GenerateDocumentationFile>
 <NoWarn>$(NoWarn);1591</NoWarn>
</PropertyGroup>

This results in every documentation comment in the code to be included in an XML file that
is suitable to be fed into Swashbuckle. In order to load this file, we need to do the following:

services.AddSwaggerGen(options =>
{
 options.SwaggerDoc("v1", new OpenApiInfo {

https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore

API Controllers Chapter 8

[333]

 Title = "My API V1",
 Version = "v1",
 Contact = new OpenApiContact {
 Email = "rjperes@hotmail.com",
 Name = "Ricardo Peres",
 Url = "http://weblogs.asp.net/ricardoperes"
 }
 });
 //assume that the XML file will have the same name as the current
 //assembly
 var xmlFile = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";
 var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);
 options.IncludeXmlComments(xmlPath);
});

Now, all comments for public types and their public members and parameters will be
shown on the Swashbuckle user interface.

Serving OData
OData is an open standard for querying data over the web. It allows us to expose metadata
about a domain model and to query it using nothing more than HTTP verbs and the query
string. It can be used, for example, to expose any data model as a REST API.

Previous versions of ASP.NET already supported it, and since version 2.0, it is also
supported in ASP.NET Core through the Microsoft.AspNetCore.OData NuGet package.

For additional information about the OData spec, please check
out https:/ ​/​www. ​odata. ​org.

In the case of ASP.NET Core, OData allows us to query, through the URL, any collection
that implements IQueryable<T> or IEnumerable<T>; in the first case, this means that the
query will not be executed in memory, but it will be translated to the data source-specific
dialect. In the case of an object-relational mapper, such as Entity Framework (EF) Core or
NHibernate, this is SQL.

Throughout the course of the following sections, we will see how OData can be used to
expose an object model to the web so that it can be queried easily using nothing but the
browser. Let's start at the beginning with the setup.

https://www.odata.org
https://www.odata.org
https://www.odata.org
https://www.odata.org
https://www.odata.org
https://www.odata.org
https://www.odata.org
https://www.odata.org
https://www.odata.org

API Controllers Chapter 8

[334]

Setting up OData
So, after adding the Microsoft.AspNetCore.OData NuGet package, we need to register
the required services and declare the model that we will be exposing. Let's take a look at
some code:

private static IEdmModel GetEdmModel()
{
 var builder = new ODataConventionModelBuilder();
 //register an entity set of type Order and call it Orders
 builder.EntitySet<Order>("Orders");
 //same for products
 builder.EntitySet<Product>("Products");
 //add other entity sets here
 return builder.GetEdmModel();
}

public void ConfigureServices(IServiceCollection services)
{
 //rest goes here
 services.AddOData();
 services
 .AddControllers()
 .SetCompatibilityVersion(CompatibilityVersion.Latest);
}

public void Configure(IApplicationBuilder app)
{
 //rest goes here
 app.UseRouting();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 //add a route named odata for an endpoint /odata using the EDM
 //model
 endpoints.MapODataRoute("odata", "odata", GetEdmModel());
 });
}

Notice that the GetEdmModel method returns the entity sets that will be made available to
the OData endpoint—in this case, Products and Orders, as an Entity Data Model (EDM).
There are more advanced capabilities, such as declaring functions, but we won't cover them
here.

API Controllers Chapter 8

[335]

We must register the services by calling the AddOData extension method in
ConfigureServices and then, in Configure, when we include the MVC middleware, we
need to declare a route where the OData endpoint will listen—in this example, this is
odata.

The MapODataRoute extension method takes the name of the route as the first
parameter, the actual URL path as the second parameter, and, lastly, the EDM model.

Now, we need to add a controller to actually return collections or single items; this
controller must inherit from ODataController, a class that inherits from
ControllerBase and, therefore, inherits its methods (no need for the Controller class
because this one basically adds view-related methods):

[ODataRoutePrefix("Products")]
public class ProductsController : ODataController
{
 private readonly ProductContext _ctx;

 public ProductsController(ProductContext ctx)
 {
 this._ctx = ctx;
 }

 [EnableQuery]
 public IQueryable<Product> Get() => _ctx.Products;

 public async Task<Product> Get(int id) => await _ctx.Products.
 FindAsync(id);
}

The [ORouteDataPrefix] attribute indicates the prefix to be used for this controller if we
do not wish to use the default convention of the controller name minus the Controller
suffix. It can be safely omitted, otherwise.

Notice the [EnableQuery] attribute in the method that returns the collection; this is the
attribute that does the actual magic by allowing it to be queried over the URL. Also, the two
methods named Get also have an attribute of ODataRoute, but the overload that takes the
id parameter also mentions it in its constructor; this is so that it can be mapped to the
parameter.

API Controllers Chapter 8

[336]

This setup allows the following HTTP calls:

GET /odata/$metadata#Product: For retrieving the metadata—a set of public
properties—of the Product entity
GET /odata/Products to ProductController.Get(): Returns all of the
products, allowing querying over them
GET/ odata/Products(1) to ProductController.Get(1): Returns a single
product

Now that we've seen how to prepare ASP.NET Core for OData, let's look at how we can
query our model.

Getting metadata
There is no need to declare a return type of IQueryable<T>, as long as the actual return
value is of this type—for example, IActionResult, ActionResult<IQueryable<T>>, or
even Task<IQueryable<T>>, where T is an actual type. If you don't return
an IQueryable<T> type, but instead, for example, something that
implements IEnumerable<T>, querying is also possible, but just not on the server side (as
in the database server), but in memory instead.

Listing collections
Calling the OData endpoint (odata, as specified earlier), we get to see the list of entities
that are exposed. In our example, this is the Products and Orders collections:

The preceding screenshot shows the collections exposed by our model in the endpoint that
we defined. Let's now look at the metadata for each of these entities.

API Controllers Chapter 8

[337]

Entity metadata
The metadata for an entity shows all of the entity's properties and is available at the
following endpoint:

/odata/$metadata

The following is the output we get when we run this:

This shows all of the entity properties as well as all of its collections.

Let's now see how we can filter the metadata.

API Controllers Chapter 8

[338]

Querying
Querying an entity is just a matter of accessing the endpoint for that entity:

/odata/Products

This will return all the records for that entity, but what if we just want a few of them?

Filtering an entity
Querying over the URL can be achieved by adding a query parameter named $filter, as
follows:

/odata/Products?$filter=Price gt 100

The following is the output we get on running the query:

You can expect the usual operators for the different property types, such as the following:

Greater than/less than: gt or lt
Greater or equal to/less or equal to: gte or lte
Equals/does not equal: eq or ne
And/or/not: and, or, or not
Enumeration flags: has

As you can see, we can combine expressions using and, or, and not, even including
parentheses to group conditions.

For string properties, we can use other operators:

concat

contains

endswith

API Controllers Chapter 8

[339]

indexof

length

startswith

substring

tolower

toupper

trim

When working with string literals, make sure you enclose them with ', as follows:

/odata/Products?$filter=Name eq 'Expensive Product'

For collections, we have the following:

in

hassubset

hassubsequence

We also have some date and time functions:

date

day

fractionalseconds

hour

maxdatetime

mindatetime

minute

month

now

second

time

totaloffsetminutes

totalseconds

year

API Controllers Chapter 8

[340]

Some math functions that are available are as follows:

ceiling

floor

round

Some type functions are as follows:

cast

isof

Some geo functions (where the underlying data access layer supports the function) are as
follows:

geo.distance

geo.intersects

geo.length

Some lambda operators are as follows:

any

all

I won't try to explain all of these. For a detailed explanation of each function, please have a
look at the OData specification reference documentation, available at https:/ ​/​www. ​odata.
org/​documentation.

Projections
A projection allows you to retrieve just the properties that you're interested. For example,
for Products, you may want just the Name and the Price properties. You can get this by
including a $select parameter on the query string:

/odata/Products?$select=Price

The following is the output of the query:

https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation
https://www.odata.org/documentation

API Controllers Chapter 8

[341]

You can specify many fields for projection, each separated by commas.

Paging
We can specify a page size and an optional starting position by adding $top and $skip:

/odata/Products?$top=2&$skip=2

The following is the output:

This returns up to 10 records, starting from the 21st. Never forget, however, that you
shouldn't apply paging without an explicit sort order, otherwise the results may not be
what you expect.

Sorting
Sorting is achieved through $orderby:

/odata/Products?$orderby=Price

API Controllers Chapter 8

[342]

The following is the output:

To see these results in descending order, use desc:

/odata/Products?$orderby=Price desc

The following is the output for the descending order results:

It is also possible to order by several properties:

/odata/Products?$orderby=Price desc,Name asc

The asc value is the default and can be omitted.

Expansion
Using an expansion we can force the traversal of a related entity through a navigation
property. It is the $expand parameter that we want to use in this case:

/odata/Orders?$expand=Products

Mind you, this is the same as calling the Include extension method in an EF Core LINQ
query for a child collection, forcing EF Core to include it in the query and instantiate all its
records as entities.

API Controllers Chapter 8

[343]

Counting
Even when using filters, we can return the total number of records by including a $count
keyword with a value of true:

/odata/Products?$count=true

After this, let us look at the configuring options.

Configuring options
The OData options are configured in the UseMVC extension method. By default, no option is
allowed, and so they must be explicitly set. The available actions that can be allowed are as
follows:

Selection of entities (Select)
Expansion of child properties and collections (Expand)
Filtering (Filter)
Sorting (OrderBy)
Counting (Count)

Multiple options can be chained together, as follows:

public void Configure(IApplicationBuilder app)
{
 //rest goes here
 app.UseMvc(options =>
 {
 options.Select().Expand().Filter().OrderBy().Count();
 options.MapODataServiceRoute("odata", "odata", GetEdmModel());
 });
}

This tells OData that selection, expansion, filtering, ordering, and counts are allowed.

Limits
It is usually advised that you set some limits to queries, so as to minimize resource
consumption.

API Controllers Chapter 8

[344]

Maximum returnable records
It is possible—and recommended—to set the maximum number of records to be returned
by a query. This is done to save resources. We can do this when configuring the OData
options using the MaxTop extension method:

app.UseMvc(options =>
{
 options.MaxTop(10);
 options.MapODataServiceRoute("odata", "odata", GetEdmModel());
});

This defines the maximum number of entities to retrieve as 10.

Expansion
You can also configure whether or not to allow expansion for the $expand command:

options.Expand();

If this is supplied, queries can be more complex and can return substantially more results as
they can bring child entities together with the master ones.

If you wish to play with OData with a complex model, please go
to https:/ ​/ ​www. ​odata. ​org/ ​odata- ​services.

Summary
In the chapter, we saw how we can make use of JWTs to authenticate our endpoints
without the need for human interaction.

We now know how to use the Data Validation API to perform automatic model validation.
Then, we learned that content negotiation can be useful if you wish to return data in
different formats; but, in reality, JSON is the de facto standard for data exchange over the
web these days.

The OpenAPI specification is also helpful in development mode to inspect your endpoints
and issue requests against them.

https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services
https://www.odata.org/odata-services

API Controllers Chapter 8

[345]

Next, we saw that OData is a great addition to ASP.NET Core, especially when integrated
with EF Core or any other data provider that exposes data as IQueryable<T>.

In this chapter, we also learned how REST is implemented in ASP.NET Core to expose
APIs. We looked at how to carry out model binding and validate data before this. We were
also introduced to the JWT mechanism for authorizing endpoints and how to carry out
versioning and content negotiation. Finally, we looked at how we can leverage OData to
expose a data model to the web.

In the next chapter, we will cover the ways in which we can create reusable components.

Questions
You should now be able to answer the following questions:

What is OData?1.
What is content negotiation?2.
Why is it not suitable to use cookies for authentication in web APIs?3.
What are the different ways that we can ask for a specific version of our API?4.
What is the purpose of conventions with regard to action methods?5.
What are the problem details?6.
What is REST?7.

9
Reusable Components

This chapter covers ASP.NET Core's reusable components. By reusable, I mean that they
can potentially be used across different projects—or in the same project in different
places—with different parameters, yielding possibly distinct results. In this chapter, we will
cover view components and tag helpers (which are new to ASP.NET Core), tag helper
components (new to ASP.NET Core 2), and our old friend, partial views.

In this chapter, we will cover the following topics:

View components
Tag helpers
Tag helper components
Partial views
Razor class libraries
Adding external contents

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all the
requirements, but you can also use Visual Studio Code.

The source code can be retrieved from GitHub
at https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-
3-Second-Edition.

All of the techniques introduced in this chapter help structure the code and minimize the
size of the global code base.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Reusable Components Chapter 9

[347]

Diving into the view components
View components are new to ASP.NET Core—they didn't exist in ASP.NET pre-Core. You
can think of them as replacements for partial views (which are still around) and the
RenderAction method for returning child actions (which is no longer available). No more
being tied to controllers; they are reusable because they can be loaded from external
assemblies (that is, not the assembly of the web app) and they are better suited than partial
views to render complex HTML. In the following sections, we will understand what view
components are, how they work, and where we use them, as well as compare them to
partial views.

Discovering view components
View components can be discovered in one of the following ways:

By inheriting from the ViewComponent class
By adding a [ViewComponent] attribute
By adding the ViewComponent suffix to a class

You will most likely inherit the components from the ViewComponent class as this class
offers a couple of useful methods. View components can be loaded from external
assemblies if the web app references them or they are registered as application parts:

services
 .AddMvc()
 .ConfigureApplicationPartManager(options =>
 {
 options.ApplicationParts.Add(new AssemblyPart(Assembly.Load
 ("ClassLibrary"));
 })

For POCO view components, you won't get easy access to the ambient context of your
request. If you have to choose between the preceding options, opt for inheriting from
ViewComponent because otherwise, you will need to put in extra work to get all the
references (such as HttpContext and so on) that you need. We will describe this in more
detail in the Dependency injection section later.

Reusable Components Chapter 9

[348]

View components need only declare a single method, InvokeAsync:

public class MyViewComponent : ViewComponent
{
 public async Task<IViewComponentResult> InvokeAsync()
 {
 return this.Content("This is a view component");
 }
}

You can also use parameters, as we will see.

The [ViewComponent] attribute can be used to change the name of the view component,
but you should be aware that doing it implies that you need to use this name when loading
it:

[ViewComponent(Name = "MyView")]
public class SomeViewComponent : ViewComponent { ... }

Do not give it a name that has hyphens ("-"), as it will affect the usage! We will see this in
the next section.

Using view components
View components are called from views and there are two different syntaxes:

A code syntax lets you pass parameters of complex types, but the code must be
syntactically valid:

@await Component.InvokeAsync("MyViewComponent", new { Parameter
 = 4, OtherParameter = true })

The InvokeAsync method takes a view component name - by default, the name
of the class minus the ViewComponent suffix - and an optional parameter
containing the parameters to be passed to the view component's InvokeAsync
method; this method can take any number of parameters and return an instance
of IViewComponentResult.

Markup uses the tag helpers syntax (more on this shortly); notice the vc
namespace:

<vc:my-view-component parameter="4" otherParameter="true"/>

Reusable Components Chapter 9

[349]

Again, this is the name of the class without the ViewComponent suffix, but using
hyphen casing. Here you also need to use the Name specified in the
[ViewComponent] attribute, if any. Do not use hyphens in the naming.

Pascal-cased class and method parameters for tag helpers are translated
into lower-kebab case, which you can read about at http:/ ​/
stackoverflow. ​com/ ​questions/ ​11273282/ ​whats- ​the- ​name- ​for- ​dash-
separated- ​case/ ​12273101#12273101.

If you have complex parameters that cannot be represented easily by attributes, you should
choose the code syntax. Also, the namespace is configurable.

Another option is to return a view component from a controller action in the form
of ViewComponentResult:

public IActionResult MyAction()
{
 return this.ViewComponent("MyViewComponent");
}

This is very similar to returning a partial view, only in view components, all of the contents
need to be generated by code. That is, if you want to return custom HTML, you will likely
need to build by concatenating strings.

View component results
View components return an instance of IViewComponentResult, which has three
implementations in ASP.NET Core, each returned by a method of the ViewComponent
class:

Content (ContentViewComponentResult): Returns string content.
View (ViewViewComponentResult): Returns a partial view.
HtmlViewComponentResult: Similar to ContentViewComponentResult, but
returns encoded HTML instead. There is no method that creates an instance of
this class, but you can instantiate one yourself.

The rules for discovering partial view files are identical to the ones
described earlier in Chapter 5, Views.

http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101
http://stackoverflow.com/questions/11273282/whats-the-name-for-dash-separated-case/12273101#12273101

Reusable Components Chapter 9

[350]

The IViewComponentResult interface only specifies a single method in both the
asynchronous (ExecuteAsync) and synchronous (Execute) versions. It takes an instance
of ViewComponentContext as its sole parameter, which has the following properties:

Arguments (IDictionary<string, object>): The named properties of the
object passed to the InvokeAsync method
HtmlEncoder (HtmlEncoder): The HTML output encoder
ViewComponentDescriptor (ViewComponentDescriptor): Describes the
current view component
ViewContext (ViewContext): All of the view context, including the current
view object, the HTTP context, the route data, the model, the form context, and
the action descriptor
ViewData (ViewDataDictionary): The view data from the controller
Writer (TextWriter): Used to write directly to the output stream

Since you have access to all of these contexts, you can do pretty much what you
want—such as access headers, cookies, and request parameters—but you wouldn't use the
view component results for redirection, only for rendering HTML.

Dependency injection
You can register view components as services by calling the
AddViewComponentsAsServices extension method on top of the AddMvc method in
ConfigureServices:

services
 .AddMvc()
 .AddViewComponentsAsServices();

View components support constructor injection, so you can declare any registered types in
the constructor:

public class MyViewComponent : ViewComponent
{
 private readonly ILoggerFactory loggerFactory;

 public MyViewComponent(ILoggerFactory loggerFactory)
 {
 this._loggerFactory = loggerFactory;
 }
}

Reusable Components Chapter 9

[351]

A common need is to get hold of the current HttpContext; if you need it in a POCO
controller, you need to inject an IHttpContextAccessor instance:

public class MyViewComponent : ViewComponent
{
 public MyViewComponent(IHttpContextAccessor httpAccessor)
 {
 this.HttpContext = httpAccessor.HttpContext;
 }

 public HttpContext HttpContext { get; }
}

In this example, we inject the IHttpContextAccessor interface, from which we can
extract the current HttpContext instance of the request. Don't forget that, for this to work,
the following line must be present in ConfigureServices:

services.AddHttpContextAccessor();

View components versus partial views
As you can see, view components and partial views share some similarities; they are both
reusable mechanisms to generate markup. The difference between the two is that partial
views inherit a big part of the context of the containing view, such as the model and the
view data collection, so the two views—views and partial views—must be compatible. For
example, they must have a compatible model. This is not the case for view components,
which you invoke with whatever data you like.

Next, we will talk about a very similar topic that uses a different syntax that is closer to
HTML—tag helpers.

Exploring the tag helpers
Tag helpers are also new to ASP.NET Core. A tag helper is a mechanism for adding server-
side processing to a regular HTML/XML tag; you can think of them as similar to ASP.NET
Web Forms' server-side controls, although there are several differences. Tag helpers are
registered on Razor views and when any tag on the view matches a tag helper, it is fired.
They are an alternative (and, arguably, simpler) to HTML helpers as they result in much
cleaner markup without code blocks.

Reusable Components Chapter 9

[352]

A tag helper's functionality is specified through the ITagHelper interface, in which the
TagHelper abstract base class offers a base implementation. Its life cycle includes two
methods:

Init: Called when the tag helper is initialized, prior to any possible child
ProcessAsync: The actual processing of a tag helper

A tag helper, on the view side, is nothing more than a regular tag and, as such, it can
contain other tags, which themselves may also be tag helpers. Let's look at an example:

<time></time>

As you can see, it is nothing more than a plain XML tag—not HTML because there is no tag
such as this on any version of HTML.

In order to add custom server-side behavior, we define a tag helper class as follows:

public class TimeTagHelper : TagHelper
{
 public override Task ProcessAsync(TagHelperContext context,
 TagHelperOutput output)
 {
 var time = DateTime.Now.ToString();

 output.Content.Append(time);

 return base.ProcessAsync(context, output);
 }
}

Tag helpers are recursive, meaning tag helpers declared inside other tag helpers are all
processed.

We'll shortly look at what we need to do for ASP.NET Core to recognize this, but for now,
let's have a look at the parameters of the ProcessAsync method.

Reusable Components Chapter 9

[353]

TagHelperContext contains the context, as seen in the tag helper. It includes the following
properties:

AllAttributes (ReadOnlyTagHelperAttributeList): All of the attributes
declared in the view for this tag helper
Items (IDictionary<string, object>): A freeform collection of items used
to pass context to other tag helpers on the current request
UniqueId (string): A unique identifier for the current tag helper

As for TagHelperOutput, it not only allows the return of content to the view, but also the
return of any content that is declared inside the tag. It exposes the following properties:

IsContentModified (bool): A read-only flag that says whether the contents
have been modified
Order (int): The order that the tag helper is processed
PostElement (TagHelperContent): The following tag element
PostContent (TagHelperContent): The content following the current tag
Content (TagHelperContent): The current tag's content
PreContent (TagHelperContent): The content prior to the current tag
PreElement (TagHelperContent): The previous tag element
TagMode (TagMode): The tag mode (SelfClosing, StartTagAndEndTag, and
StartTagOnly), which is used to define how the tag should be validated in the
markup (allowing inner content is SelfClosing, just a tag with no self-content
is StartTagOnly)
TagName (string): The name of the tag in the view
Attributes (TagHelperAttributeList): The original list of attributes of the
tag, which can be modified

For example, imagine you had this tag, instead:

<time format="yyyy-MM-dd">Current date is: {0}</time>

Here, you need to access both an attribute (format) and the contents of the <time> tag.
Let's see how we can achieve this:

public class TimeTagHelper : TagHelper
{
 public string Format { get; set; }

 public override async Task ProcessAsync(TagHelperContext
 context, TagHelperOutput output)

Reusable Components Chapter 9

[354]

 {
 var content = await output.GetChildContentAsync();
 var stringContent = content.GetContent();
 var time = DateTime.Now.ToString(this.Format);

 output.TagName = "span";
 output.Content.Append(string.Format(CultureInfo.Invariant
 Culture, stringContent, time));

 return base.ProcessAsync(context, output);
 }
}

Here, we can see that we are doing a couple of things:

Getting the value of the Format attribute
Getting all the tag's content
Setting the target tag's name to span
Using the content and the format to output a string with the formatted
timestamp

This is essentially the way to go to get content and attributes. You can also add attributes to
the output (by adding values to output.Attributes), change the output tag name
(output.TagName), or prevent any content from being generated at all (by using
the output.SuppressOutput method).

When outputting contents, we can either return plain strings, which are encoded as per the
view's HtmlEncoder instance, or return already encoded contents—in which case, instead
of Append, we would call AppendHtml:

output.Content.Append("<p>hello, world!</p>");

Besides appending, we can also replace all of the content; for that, we call \t or
SetHtmlContent, or even clear everything (Clear or SuppressOutput).

An [OutputElementHint] attribute can be used to provide a hint as to what tag will
output—this is useful so that Visual Studio knows to give hints about attributes of some
other elements, such as img:

[OutputElementHint("img")]

This way, when you add your custom tag in markup, Visual Studio will suggest all of the
img element's attributes, such as SRC.

Reusable Components Chapter 9

[355]

We can use the context.Items collection to pass data from one tag helper to
another—remember that the Order property defines which will be processed first.

Let's look at the properties exposed by tag helpers now.

Understanding the properties of a tag helper
Any public properties in the tag helper class can be set through the view. By default, the
same name in either lowercase or the same case is used, but we can give a property a
different name to be used in the view by applying an [HtmlAttributeName] attribute:

[HtmlAttributeName("time-format")]
public string Format { get; set; }

In this case, the attribute must now be declared as time-format.

If, on the other hand, we do not want to allow a property's value to be set through the
view's markup, we can apply the [HtmlAttributeNotBound] attribute to it.

Properties of basic types can be specified in the markup, as well as a couple of others that
can be converted from strings (such as Guid, TimeSpan, and DateTime) and any
enumerations.

We can use Razor expressions to pass code-generated values to tag attributes:

<time format="GetTimeFormat()">Time is {0}</format>

Finally, it is worth mentioning that we can get Visual Studio's IntelliSense for the view's
model if we use a property of the ModelExpression type:

public ModelExpression FormatFrom { get; set; }

This is what it would look like:

To actually retrieve the value of the property, we need to analyze the Name and Metadata
properties of ModelExpression.

Reusable Components Chapter 9

[356]

Restricting the applicability of a tag helper
A tag helper can be restricted in its applicability in a few ways:

It can target a specific element—either a known HTML tag or a custom XML tag.
Its target tag must be contained inside another tag.
Its target tag must have certain attributes, possibly with a specific format.
Its tag must have a specific structure.

A number of restrictions can be specified in terms of several [HtmlTargetElement]
attributes:

//matches any a elements
[HtmlTargetElement("a")]
//matches any a elements contained inside a div tag
[HtmlTargetElement("a", ParentTag = "div")]
//matches any a elements that target a JavaScript file ending in .js
[HtmlTargetElement("a", Attributes = "[href$='.js']")]
//matches any a elements that target a link starting with ~
[HtmlTargetElement("a", Attributes = "[href^='~']")]
//matches any a elements with a value for the name attribute
[HtmlTargetElement("a", Attributes = "name")]
//matches any a elements with a specific id
[HtmlTargetElement("a", Attributes = "id='link'")]
//matches any a elements that do not have any inner contents (for example,
<a/>)
[HtmlTargetElement("a", TagStructure = TagStructure.WithoutEndTag)]

So, we have the following properties:

ParentTag (string): The name of a parent tag
Attributes (string): A comma-separated list of attributes and optional values
TagStructure (TagStructure): The format of the tag, with the default being
Unspecified

TagStructure specifies whether the tag is self-closing (WithoutEndTag) or may have
contents (NormalOrSelfClosing).

If a tag helper is found that does not match its applicability rules, an exception is thrown at
runtime. Multiple rules can be specified at the same time and different tag helpers can
match the same rules.

If you target *, it will apply to any element.

Reusable Components Chapter 9

[357]

Discovering tag helpers
A tag helper needs to implement the ITagHelper interface. Tag helpers need to be
explicitly added, and a good place to do so is the _ViewImports.cshtml file. Anything
placed here will apply to all views. Let's see how each one works:

The addTagHelper directive adds a specific assembly and tag helpers:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The syntax is @addTagHelper <types>, <assembly>, where * stands
for all types.

If we want to prevent a specific tag helper from being used, we apply one or
more removeTagHelper directives:

@removeTagHelper
Microsoft.AspNetCore.Mvc.TagHelpers.AnchorTagHelper,
Microsoft.AspNetCore.Mvc.TagHelpers

If we want to make the use of tag helpers explicit, we can force them to have a
prefix by using a tagHelperPrefix directive:

@tagHelperPrefix asp:

Finally, we also have the option to disable any possible tag helpers that target a
certain tag. We just prefix it with the ! character:

<!a href="...">link

Dependency injection
Tag helpers are instantiated by the dependency injection mechanism, which means that
they can take registered services in the constructor.

Neither the Init, Process, or ProcessAsync methods offer access to the execution
context, but—similar to POCO controllers and view components—we can inject
ViewContext:

[ViewContext]
public ViewContext ViewContext { get; set; }

Reusable Components Chapter 9

[358]

From here, we have access to HttpContext and ActionDescriptor, as well as the route
data, the view data, and so on.

Studying the included tag helpers
The following tag helpers are included in the Microsoft.AspNetCore.Mvc.TagHelpers
assembly:

AnchorTagHelper (<a>): Renders an anchor
CacheTagHelper (<cache>): Defines an in-memory cached area
ComponentTagHelper (<component>): Renders a Blazor component
DistributedCacheTagHelper (<distributed-cache>): Renders a
distributed cached area
EnvironmentTagHelper (<environment>): Decides whether to render
depending on the current environment
FormActionTagHelper (<form>): Renders a form that renders to a controller
action
FormTagHelper (<form>): Renders a form
ImageTagHelper (): Renders an image
InputTagHelper (<input>): Renders an input element
LabelTagHelper (<label>): Renders a label
LinkTagHelper (<link>): Renders an internal link
OptionTagHelper (<option>): Renders a select option
PartialTagHelper (<partial>): Renders a Razor partial view
RenderAtEndOfFormTagHelper (<form>): Renders content at the end of a form
ScriptTagHelper (<script>): Renders a script
SelectTagHelper (<select>): Renders a select element
TextAreaTagHelper (<textarea>): Renders a text area
ValidationMessageTagHelper (): Renders a validation message
placeholder
ValidationSummaryTagHelper (<div>): Renders a validation summary
placeholder

Reusable Components Chapter 9

[359]

Some of these translate URLs that start with ~ to the server-specific address or add
controller and action attributes, which are in turn translated to controller action URLs:

Root
<a asp-controller="Account" asp-action="Logout">Logout
<form asp-controller="Account" asp-action="Login">
</form>

For example, you can have your application deployed under / or under virtual path, such
as /admin. If you do not know this upfront, you can't just hardcode your links to point to /,
but instead, you can use ~ and the ASP.NET Core framework will make sure it is set to the
right path.

However, some other tags are quite powerful and offer very interesting features.

The <a> tag
The <a> tag helper offers some properties for anchors that allow you to target specific
actions of specific controllers, Razor pages, or named routes:

<a
 asp-action="ActionName"
 asp-controller="ControllerName"
 asp-page="RazorPageName"
 asp-route="RouteName"
 asp-area="AreaName">...

Notice how we can always specify the area name, regardless of whether we are targeting a
controller's action, a Razor page, or a particular route by name.

If you add asp-action but not the asp-controller attribute, it will default to the
current controller.

The properties are as follows:

asp-action (string): The name of an action of a controller.
asp-area (string): The name of an area.
asp-controller (string): The name of a controller, which should be used
with asp-action. If not supplied, it defaults to the current controller.
asp-page (string): The name of a Razor page.
asp-route (string): The name of a route, as specified in the endpoints
definition.

Reusable Components Chapter 9

[360]

You can start the hyperlink with a "~/" instead of "/", which means that local paths with
be mapped according to the base path of the application - for example, if the application is
deployed to "/app", then a URL of "~/file" will be turned to "/app/file".

The <cache> tag
This tag helper caches the contents declared in it in the memory cache (any instance of
IMemoryCache registered in the dependency injection framework). The only options we
have are the duration to keep the cache and whether it is relative, absolute, or sliding. Let's
look at the most basic example of this:

<cache expires-after="TimeSpan.FromMinutes(5)">
@DateTime.Now
</cache>

This will keep the string in the <cache> tag in the memory cache for a certain amount of
time. We also have the following properties:

enabled (bool): Whether it is enabled (which is the default)
expires-after (TimeSpan): A value for relative expiration
expires-on (DateTime): Absolute expiration
expires-sliding (TimeSpan): Sliding expiration, which is almost identical to
relative expiration, except it restarts every time the cache is hit
priority (CacheItemPriority): A priority for the cache, with the default
being Normal
vary-by (string): An arbitrary (and possibly dynamic) string value to vary the
cache by
vary-by-cookie (string): A comma-separated list of cookie names to vary the
cache by
vary-by-header (string): A comma-separated list of header names to vary the
cache by
vary-by-query (string): A comma-separated list of query string parameter
names to vary the cache by
vary-by-route (string): A comma-separated list of route data parameters to
vary the cache by
vary-by-user (bool): Whether to vary the cache as per the logged-in username
(the default is false)

Reusable Components Chapter 9

[361]

Either expires-after, expires-on, or expires-sliding must be supplied, but the
default value is 20 minutes. For vary-by, it is common to set a model value, such as an
order or product ID, as follows:

<cache vary-by="@ProductId">
...
</cache>

The <component> tag
This tag helper was only introduced to .NET Core 3.0 and is related to Blazor, which we
will talk about in more detail in Chapter 17, Introducing Blazor. Essentially, it renders a
Blazor component (a .razor file). It accepts the following parameters:

type (string): The name of the .razor file.
render-mode (RenderMode): One of the possible rendering modes that are
discussed in Chapter 17, Introducing Blazor.
param-XXX (string): Optional parameters to be passed to the Blazor
component; XXX should match the names of the properties on the component.

The tag is as follows:

<component type="typeof(SomeComponent)" render-mode="ServerPrerendered"
param-Text="Hello, World"/>

The <distributed-cache> tag
The <distributed-cache> tag is identical to the <cache> tag helper, except it uses
distributed cache (IDistributedCache). It adds another property to the ones supplied by
<cache>—name (string), which is a unique name for the distributed cache entry. Each
entry should have its own tag:

<distributed-cache name="redis" />

Reusable Components Chapter 9

[362]

The <environment> tag
The <environment> tag is also very handy—it provides the ability to
add content depending on the environment that is running (for example, Development,
Staging, and Production):

<environment names="Development,Staging">
 <script src="development/file.js"></script>
</environment>
<environment names="Production">
 <script src="production/file.js"></script>
</environment>

From ASP.NET Core 2 onward, besides names, we also have two new attributes—include

and exclude. include is exactly the same as names, whereas exclude does what you
would expect—it shows the contents for all the environments except those listed after the
command (comma-separated).

The properties for these attributes are as follows:

include: Provides a list of environments to include for the rendering
exclude: Provides a list of environments to exclude from the rendering

exclude always takes precedence.

The <form> tag
The form tag helper can be used instead of IHtmlHelper.BeginForm(). Both offer the
same features, including posting to specific controller actions and adding anti-forgery
tokens as hidden fields (refer to Chapter 11, Security, for more information). Let's look at
the following example:

<form asp-controller="Home" asp-antiforgery="false" asp-action="Process">

Anti-forgery is turned on by default. Its properties are as follows:

asp-controller: The controller name—if not supplied, it defaults to the
current one (if using MVC).
asp-action: The controller's action method
asp-area: The name of an area where the target controller is located

Reusable Components Chapter 9

[363]

asp-page: A Razor Page that will handle the form
asp-page-hander: The name of a page handler method in an Razor Page that will
handle the form
asp-route: A named route
asp-antiforgery: Decides whether to detect a request forgery—turned on by
default

Notice that asp-controller , asp-area and asp-action can be used together, but it
doesn't make any sense to combine them with asp-route or asp-page, as these are
different ways to specify a destination.

The <script> tag
The <script> tag helper allows test, default, and fallback values to be specified for the
source property. The test is a JavaScript expression; let's look at an example:

<!-- if the current browser does not have the window.Promise property load
a polyfill -->
<script asp-fallback-test="window.Promise" src="file.js" asp-fallback-
src="polyfill.js"></script>

It can also be used to load all the files into a folder at once (with some possible exceptions):

<script asp-src-include="~/app/**/*.js" asp-src-
exclude="~/app/services/**/*.js"></script>

Finally, it can also be used to bust caching by adding a version number to local scripts; this
version reflects the file's timestamp:

<script src="~/file.js" asp-append-version="true"></script>

You might have noticed the leading ~ symbol in the src attribute; it is automatically
replaced by the root folder of your application. For example, if your app is deployed in /, it
will use /, but if it is deployed in /virtualPath, then ~ is replaced by /virtualPath.
This is the base path that is described in Chapter 2, Configuration.

The <link> tag
The <link> tag helper can suffix a local URL with a version to make it cache-friendly:

<link rel="stylesheet" href="~/css/site.min.css" asp-append-
version="true"/>

Reusable Components Chapter 9

[364]

Similar to the <script> tag helper, it includes content conditionally:

<link rel="stylesheet" href="file.css" asp-fallback-href="otherfile.css"
 asp-fallback-test-class="hidden" asp-fallback-test-property
 ="visibility"
 asp-fallback-test-value="hidden" />

The <select> tag
The <select> tag helper knows how to retrieve items from a model property of an
enumerable type or from a collection of SelectListItem objects:

@functions
{
 IEnumerable<SelectListItem> GetItems()
 {
 yield return new SelectListItem { Text = "Red", Value = "#FF0000"
};
 yield return new SelectListItem { Text = "Green",
 Value = "#00FF00" };
 yield return new SelectListItem { Text = "Blue",
 Value = "#0000FF",
 Selected = true };
 }
}
<select asp-items="GetItems()"/>

There are two important properties:

asp-for: The property or method to retrieve the currently selected item (or list
of items) from
asp-items: The property or method to retrieve the items to fill the list from

The <partial> tag
This tag was introduced to ASP.NET 2.1; it renders a partial view, which is pretty much
what the RenderPartial(Async) and Partial(Async) methods do.

<partial name="_PartialFile" for="ModelProperty" model="Model" view-
data="ViewData"></partial>

Reusable Components Chapter 9

[365]

Besides the name partial view (which is the only required property), we can also pass it a
view data object (view-data) and a model (a for property or model). The for property
can be used to pass an expression relative to the model of the containing view; for example,
a property of the model. If you prefer, you can pass a whole new model to the partial view
by assigning a value to the model property. Mind you, for and model are mutually
exclusive; you can only use one of them. If you don't use either, the current model is passed
to the partial view.

The properties are as follows:

for (Expression): An optional expression, relative to the current model, to pass
to the partial view. It cannot be used with model.
model (object): An optional model to pass to the partial view. If set, it must
match its declared model type. It cannot be used with for.
name (string): Required. This is the name of the partial view to render.

Validation message and summary
The ValidationMessageTagHelper and ValidationSummaryTagHelper tag helpers
merely add a validation message for any model properties in a tag and in a
<div> tag for the whole model. For example, say you want to get the current validation
message for the Email model property. You would do the following:

For the whole model, do the following:

<div asp-validation-summary/>

The next topic introduces the concept of tag helpers to a higher level. We will see how the
tag helper components work.

Tag helper components
Tag helper components were introduced to ASP.NET Core 2.0. They are a way of using DI
to insert markup in the output. Imagine, for example, inserting JavaScript or CSS files at
specific locations in your views.

Reusable Components Chapter 9

[366]

Tag helper components must implement ITagHelperComponent and are registered in the
DI framework (the ConfigureServices method):

services.AddSingleton<ITagHelperComponent, HelloWorldTagHelperComponent>();

The ITagHelperComponent interface only specifies one method, ProcessAsync. Each
registered tag helper component has its ProcessAsync method called for every tag found
on the current view, including layouts, giving it a chance to inject custom tag helpers:

public class HelloWorldTagHelperComponent : TagHelperComponent
{
 public override Task ProcessAsync(TagHelperContext context,
 TagHelperOutput output)
 {
 if (context.TagName.ToLowerInvariant() == "head")
 {
 output.Content.AppendHtml("<script>window.alert('Hello,
 World!')</script>");
 }

 return Task.CompletedTask;
 }
}

This example inserts custom JavaScript at the end of the current tag's content, if this tag is
head.

The TagHelperComponent class implements ITagHelperComponent and offers virtual
methods that we can override as we please. We have the same two methods as with
the ITagHelper interface—Init and ProcessAsync—and they are used in the same way.

ProcessAsync takes two parameters, which are the same as the ones the ITagHelper
interface's ProcessAsync method takes.

Tag helper components, as they are instantiated by the DI framework,
fully support constructor injection.

Let's now talk a bit about partial views, which are one of the building blocks of Razor MVC.

Reusable Components Chapter 9

[367]

Partial views
We already covered partial views in Chapter 8, API Controllers. Although they are a very
interesting mechanism for reusing content, they historically have a problem—they could
not be reused across assemblies. There has always been a way around this; the idea is to
mark the view's .cshtml file as an embedded resource:

Reusable Components Chapter 9

[368]

Then, we just need to use a file provider that knows how to retrieve the file contents from
assembly-embedded resources. Add the
Microsoft.Extensions.FileProviders.Embedded NuGet package for this example.

When registering the MVC services in ConfigureServices, we need to register another
file provider, EmbeddedFileProvider, passing it to the assembly that contains the
embedded resource:

services
 .AddMvc()
 .AddRazorOptions(options =>
 {
 var assembly = typeof(MyViewComponent).GetTypeInfo().Assembly;
 var embeddedFileProvider = new EmbeddedFileProvider(assembly,
 "ReusableComponents");
 options.FileProviders.Add(embeddedFileProvider);
 });

In this case, the MyViewComponent class is hosted on the same assembly where the view is
embedded and its default namespace is ReusableComponents. When trying to load a file,
ASP.NET Core will go through all the registered file providers until one returns a non-null
result.

Fortunately, we now have Razor class libraries, which we will cover shortly.

Partial views versus view components
These two mechanisms are similar, but you would choose to use partial views if you have a
somewhat large chunk of HTML that you want to render in view components, as you
would need to manipulate strings and return them by code. On the other hand, partial
views are external files, which can have advantages.

Next, we will talk about something totally different—libraries of code that you can reuse in
projects.

Reusable Components Chapter 9

[369]

Understanding Razor class libraries
Razor class libraries were introduced to ASP.NET Core 2.2. What it means is that all
components—code- or file-based—can be added to an assembly and then referenced by an
application. If, for example, this class library contains multiple .cshtml files, we can refer
to them in our controllers or provide overrides for them in the application, provided that
the same path is respected. Think, for example, of the authentication and registration views
provided by Identity; if you don't like any of them, you can provide an alternative one
while keeping the others.

Razor class libraries can be created using Visual Studio:

Reusable Components Chapter 9

[370]

It essentially produces a .csproj file that uses
the Microsoft.NET.Sdk.Razor SDK (Razor class libraries) instead
of Microsoft.NET.Sdk.Web (for web applications) or Microsoft.NET.Sdk (for .NET
Core assemblies):

<Project Sdk="Microsoft.NET.Sdk.Razor">
 <PropertyGroup>
 <TargetFramework>netstandard3.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.Mvc" />
 </ItemGroup>
</Project>

When referencing a Razor class library assembly, ASP.NET Core knows just what to do,
and you can reference its components without any other effort.

Referencing static content
If you create a wwwroot folder in a Razor class library project, you can access any static
content (such as .js, .css, and images) stored in it in a project that references it. Just create
links by using the following format:

<script src="_content/<ClassLib>/<File>"></script>

Here, <ClassLib> is the name of the referenced Razor class library and <File> is the
name of the static file. One thing to keep in mind is that you need to have support for
loading static files, e.g., in Configure, add this:

app.UseStaticFiles();

Referencing external components
View components and tag helpers can be added by referencing assemblies that contain
them, which is done when a project is created or is being worked on. However, we can add
references at runtime, too. These are called application parts.

In order to register an application part for a Razor class library, here's what we do:

services
 .AddMvc()
 .ConfigureApplicationManager(options =>
 {

Reusable Components Chapter 9

[371]

 var path = "<path-to-razor-class-library-dll>";
 var asm = Assembly.LoadFrom(path);
 options.ApplicationParts.Add(new CompiledRazorAssemblyPart(asm));
 });

CompiledRazorAssemblyPart should be used for Razor class libraries, which also
includes static (file-based) resources. We can also do this for types, in which case the class
to use is AssemblyPart.

Here, we've seen how we can reference parts from external assemblies, which can include
any reusable components. This is the last topic of this chapter. In the next chapter, we will
cover filters.

Summary
In this chapter, we saw that we always use the supplied base classes for view components,
tag helpers, and tag helper components, as they make our life much easier.

It is preferred to use tag helpers over HTML helpers wherever possible and to write our
own tag helpers as they are much easier to read than code. Tag helper components are very
useful for inserting code automatically in specific locations. The <cache>, <distributed-
cache>, and <environment> tag helpers are very interesting and will help you out a lot.

Then, we saw that partial views are preferable to view components when you have a
template that you wish to render that is easier to code in HTML. View components are all
about code and it's harder to implement HTML by string concatenation. On the other hand,
view components let you pass parameters much more easily.

Razor class libraries are a new way of distributing static assets between projects. Make sure
you use them!

We also learned that tag helper components are a very nice way of injecting HTML
elements anywhere from a centralized location. Use them for common CSS and JavaScript.

In this chapter, we looked at techniques for reusing components across projects. Code reuse
is almost always a good idea and you can use view components with parameters to help
achieve this. In the next chapter, we will cover filters, which are a process for intercepting,
and possibly modifying requests and responses.

Reusable Components Chapter 9

[372]

Questions
You should now be able to answer the following questions:

How can we load partial views from a different assembly?1.
What are the two ways of rendering partial views?2.
What is the difference between tag helpers and tag helper components?3.
How can we restrict what is displayed on a view depending on the environment?4.
What is the difference between Razor class libraries and class libraries?5.
What are embedded resources?6.
What are the two syntaxes for executing view components?7.

10
Understanding Filters

Filters are a mechanism that ASP.NET Core makes available to apply cross-cutting
concerns, such as logging, exception handling, enforcing authorization and authentication,
and more. They have been around since the early days of the ASP.NET MVC, but have
been augmented in Core.

Filters in ASP.NET Core are an interception mechanism by which we can execute code
before, instead of after, a request is processed. Think of them as a way to add custom steps
to a pipeline without actually doing so; it remains unchanged but instead, we have finer-
grained control over what we are intercepting. They are useful for implementing cross-
cutting operations, such as access control, caching, or logging. Here, we will discuss the
following:

Learning about the different filter types
Understanding authorization filters
Understanding resource filters
Understanding action filters
Understanding result filters
Understanding exception filters
Understanding page filters
Understanding always-run-result filters

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all the
requirements, but you can also use Visual Studio Code, for example.

The source code can be retrieved from GitHub at https:/ ​/ ​github. ​com/ ​PacktPublishing/
Modern-​Web-​Development- ​with- ​ASP. ​NET- ​Core-​3- ​Second- ​Edition.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Understanding Filters Chapter 10

[374]

Filters in the pipeline
Filters are part of the pipeline. They execute after ASP.NET Core selects the controller (or
Razor page) to run. This is illustrated in the following diagram:

Image obtained from https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters

Filters are an interception mechanism. A filter does something before, after, or instead of a
controller (or Razor page) action. The next section explains what the different filter types
are.

Understanding the filter types
In ASP.NET Core 3 (and version 2, for that matter), we have the following filters:

Authorization (IAuthorizationFilter and IAsyncAuthorizationFilter):
These control whether the user performing the current request has permission to
access the specified resource; if not, then the rest of the pipeline is short-circuited
and an error message is returned.
Resource (IResourceFilter and IAsyncResourceFilter): These execute
after a request is authorized but before action selection and model binding. These
are new to ASP.NET Core.

Understanding Filters Chapter 10

[375]

Action (IActionFilter and IAsyncActionFilter): These are executed before
and after the action method is called.
Result (IResultFilter and IAsyncResultFilter): These occur before and
after the actual execution of an action result (the
IActionResult.ExecuteResultAsync method).
Exception (IExceptionFilter and IAsyncExceptionFilter): These are
called when an exception is thrown during the course of the action being
processed.
Page (IPageFilter and IAsyncPageFilter): These occur before and after a
Razor page handler method is called and are new to ASP.NET Core 2.
Always run result (IAlwaysRunResultFilter and
IAsyncAlwaysRunResultFilter): These are new to ASP.NET Core 2.1 and are
similar to an action filter, but unlike this, the always run result, always runs,
even when there is an exception:

Image obtained from https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters

Filters of these kinds have pre-methods and post-methods that are called before and after
the target event, respectively—authorization, resource, action, result, and page. The pre-
method version always ends in executing and the post-method version ends in
execution. For example, for action filters, the methods are called OnActionExecuting
and& OnActionExecuted. Authorization and exception filters, of course, only offer a
single method—OnAuthorization and OnException, respectively—but you can think of
them as post-event methods.

Understanding Filters Chapter 10

[376]

The only base class for all filters is IFilterMetadata, which offers no methods or
properties and is just meant as a marker interface. Because of this, the ASP.NET Core
framework must check the concrete type of a filter to try to identify the known interfaces
that it implements.

Let's start with the two cross-cutting types of filters, which have types.

Synchronous versus asynchronous
Each filter type offers both a synchronous and an asynchronous version, the latter having
an Async prefix. The difference between the two is that in the asynchronous version, only
the pre-method is defined and it is called asynchronously; for action filters, the
synchronous version offers OnActionExecuting/OnActionExecuted and the
asynchronous version offers a single OnActionExecutionAsync method. Only exception
filters do not offer an asynchronous version.

Choose either asynchronous or synchronous filters, but not both! Now, let's have a look at
the filter applicability scope.

Filter scope
Filters can be applied at different levels:

Global: Global filters apply to all controllers and actions and so they also capture
any exceptions thrown. Global filters are added through the AddMvc method to
the Filters collection of the MvcOptions class:

services.AddMvc(options =>
{
 options.Filters.Add(new AuthorizeAttribute());
});

Controller: Controller-level filters are generally added through resources applied
to the controller class and apply to any actions called on them:

[Authorize]
public class HomeController : Controller { ... }

Understanding Filters Chapter 10

[377]

Action: These filters only apply to the action method where they are declared:

public class HomeController
{
 [Authorize]
 public IActionResult Index() { ... }
}

The Filters collection of MvcOptions can take either a filter type or an instance of a filter.
Use the filter type if you want the filter to be built using the DI framework.

Let's now look at the execution order of filters.

Execution order
Filters are called in the following order:

Authorization
Resource
Action
Page (for Razor Pages only)
Result
Always run result

Exception and page filters, of course, are special, so they are only called on the occurrence
of an exception or when calling a Razor page, respectively.

Because most filters have a pre-method and a post-method, the actual order looks like this:

IAuthorizationFilter.OnAuthorization

IResourceFilter.OnResourceExecuting

IActionFilter.OnActionExecuting

<controller action>

IActionFilter.OnActionExecuted

IResultFilter.OnResultExecuting

IAlwaysRunResultFilter.OnResultExecuting

IAlwaysRunResultFilter.OnResultExecuted

IResultFilter.OnResultExecuted

IResourceFilter.OnResourceExecuted

Understanding Filters Chapter 10

[378]

<Controller action> is, of course, the action method on the controller, in case we are
using the MVC (for Razor Pages, refer to Chapter 7, Implementing Razor Pages).

It is possible to short-circuit some of the filters; for example, if on a resource or
authorization filter we return a result, by setting a value to the Result property of the
context, the action filter or any other filter set to execute after it will not be called. However,
any registered always-run-result filter will always run.

Depending on how the filters are applied, we can influence this order; for example, for
global filters, filters of the same type are ordered according to the index in the
MvcOptions.Filters collection, as follows:

options.Filters.Insert(0, new AuthorizeAttribute()); //first one

For attribute filters, the IOrderedFilter interface provides an Order property, which can
be used to order attributes of the same scope (global, controller, or action):

[Cache(Order = 1)]
[Authorize(Order = 0)]
[Log(Order = 2)]
public IActionResult Index() { ... }

Let's now see how we can apply and order filters through attributes.

Applying filters through attributes
Filter interfaces can be implemented by a regular attribute (the Attribute class) and it will
then act as a filter; there are some abstract base attribute classesActionFilterAttribute
(action and result filters), ResultFilterAttribute (result filters), and
ExceptionFilterAttribute (exception filters) that can be subclassed to implement this
behavior. These classes implement both the synchronous and asynchronous versions and
also support ordering the order by which they will be called—by implementing
IOrderedFilter. So, if you want to have a filter attribute that handles actions and results,
you can inherit from ActionFilterAttribute and implement just one or more of its
virtual methods:

OnActionExecuting

OnActionExecuted

OnActionExecutionAsync

Understanding Filters Chapter 10

[379]

OnResultExecuting

OnResultExecuted

OnResultExecutionAsync

For example, if you wish to override some behavior on the abstract
ActionFilterAttribute filter attribute to do something before an action is invoked, you
can try the following:

public class LogActionAttribute : ActionFilterAttribute
{
 public override void OnActionExecuting(ActionExecutingContext
 context)
 {
 var loggerFactory = context.HttpContext.RequestServices.
 GetRequiredService<ILoggerFactory>();
 var logger = _loggerFactory.CreateLogger
 (context.Controller.GetType());
 logger.LogTrace($"Before {context.ActionDescriptor.
 DisplayName}");
 }
}

Here, we are injecting the logger factory through the attribute's constructor, which inherits
from ActionFilterAttribute, and getting a logger from it.

Filter ordering
Filters of the same kind will be ordered according to either of the following:

The order in which they were inserted into the MvcOptions.Filters collection
If the filter implements IOrderedFilter, its Order property

For example, all global filters of the authorization type will be sorted according to these
rules, then all controller-level filters being applied to a controller, then all action-level
filters.

All of the ActionFilterAttribute, MiddlewareFilterAttribute,
ServiceFilterAttribute, and TypeFilterAttribute classes implement
IOrderedFilter; these are the most common ways by which you can inject filters into
controllers and actions.

Let's now see how filters can be created.

Understanding Filters Chapter 10

[380]

Factories and providers
A filter factory is just an instance of a class that creates filters; the only requisite is that it
implements IFilterFactory, which, because it inherits from IFilterMetadata, can also
be used as a global filter or in a custom attribute. Why would you do that? Well, because
when the filter factory runs, you will probably learn something more from the current
execution context. Let's see an example:

public class CustomFilterFactory : IFilterFactory
{
 public bool IsReusable => true;

 public IFilterMetadata CreateInstance(IServiceProvider
 serviceProvider)
 {
 //get some service from the DI framework
 var svc = serviceProvider.GetRequiredService<IMyService>();
 //create our filter passing it the service
 return new CustomFilter(svc);
 }
}

This filter factory depends on a very specific service that is required to be registered. For
registering this custom filter factory globally, we use the following:

services.AddMvc(options =>
{
 options.Filters.Insert(0, new CustomFilterFactory());
});

Implementing IFilterFactory in an attribute is equally simple, so I won't show it here.

The contract for a filter factory is simple:

IsReusable (bool): Tells the framework if it is safe to reuse the filter factory
across requests.
CreateInstance: This method returns a filter.

The CreateInstance method takes an IServiceProvider instance as its sole parameter
and returns an IFilterMetadata object, meaning you can return any kind of filter you
want (or even another filter factory).

Understanding Filters Chapter 10

[381]

A filter provider (IFilterProvider) is the actual implementation that is registered in the
DI framework as part of the MVC configuration and is the one that fires all the different
filter behaviors. The default implementation is DefaultFilterProvider. The
IFilterProvider interface has a single property:

Order (int): The order by which the provider will be executed. This offers the
following two methods:

OnProvidersExecuting: Called to inject filters in its context
parameter
OnProvidersExecuted: Called after all filters have been executed

What about the DI—is there any way to use it with filters? Oh yes, there is, and we'll see
how just now!

DI
The ways to add filters that we've seen so far—globally through the Filters collection or
by means of attributes—are not DI-friendly; in the first case, you add an already
instantiated object, and for attributes, they are static data that is not instantiated by the DI
framework. However, we have the [ServiceFilter] attribute—it accepts the type of a
filter class (of any kind) as its sole required parameter and it uses the DI framework to
instantiate it; what's more, it even allows ordering:

[ServiceFilter(typeof(CacheFilter), Order = 2)]
[ServiceFilter(typeof(LogFilter), Order = 1)]
public class HomeController : Controller { ... }

The LogFilter class, for example, might look like this:

public class LogFilter : IAsyncActionFilter
{
 private readonly ILoggerFactory _loggerFactory;

 public LogFilter(ILoggerFactory loggerFactory)
 {
 this._loggerFactory = loggerFactory;
 }

 public Task OnActionExecutionAsync(ActionExecutingContext
 context, ActionExecutionDelegate next)
 {
 var logger = this._loggerFactory.CreateLogger

Understanding Filters Chapter 10

[382]

 (context.Controller.GetType());
 logger.LogTrace($"{context.ActionDescriptor.DisplayName}
 action called");
 return next();
 }
}

ILoggerFactory is passed in the controller by the DI framework, as usual, and the
LogFilter class itself must be registered:

services.AddSingleton<LogFilter>();

There is another special attribute, [TypeFilter], which, given a certain type and some
optional arguments, tries to instantiate it:

[TypeFilter(typeof(CacheFilter), Arguments = new object[] { 60 * 1000 * 60
})]

These arguments are passed as parameters to the constructor of the filter type. This time, no
DI is used; it will just pass along any values it receives when attempting to build the
concrete type, in the same way as Activator.CreateInstance does.

If you want, you can change the default filter provider by supplying your own
implementation for the IFilterProvider service:

services.AddSingleton<IFilterProvider, CustomFilterProvider>();

This process is complex because you need to return filters coming from the global
repository (MvcOptions), attributes applied to the class, the method, and more, so you'd
better know what you're doing. If in doubt, keep the existing implementation.

The other way is to use the RequestServices service locator:

var svc = context.HttpContext.RequestServices.GetService<IMyService>();

This is available in every filter that exposes the HttpContext object.

Understanding Filters Chapter 10

[383]

Accessing the context
You can pass the context from one filter to another by using the HttpContext.Items
collection, as follows:

public class FirstFilter : IActionFilter
{
 public void OnActionExecuting(ActionExecutingContext context) { }

 public void OnActionExecuted(ActionExecutedContext context)
 {
 context.HttpContext.Items["WasFirstFilterExecuted"] = true;
 }
}

public class SecondFilter : IActionFilter
{
 public void OnActionExecuted(ActionExecutedContext context) { }

 public void OnActionExecuting(ActionExecutingContext context)
 {
 if (context.HttpContext.Items["WasFirstFilterExecuted"]
 is bool parameter && parameter)
 {
 //proceed accordingly
 }
 }
}

The first filter that is called sets a flag in the current request items, and the second checks
for its presence and carries out an action accordingly. We just need to be certain of the order
by which filters will be applied, and this can be achieved through the
IOrderedFilter.Order property, as mentioned previously, exposed by
ActionFilterAttribute, ServiceFilterAttribute, and TypeFilterAttribute.

Now, let's see how filters actually work.

Understanding Filters Chapter 10

[384]

Applying authorization filters
This kind of filter is used to authorize the current user. The most notorious authorization
attribute is [Authorize] and it can be used for common checks, such as being
authenticated, belonging to a given role, or fulfilling a given policy.

This attribute does not implement either IAuthorizationFilter or
IAsyncAuthorizationFilter, but instead, it implements IAuthorizeData, which lets
us specify either role names (the Roles property), a custom policy name (Policy), or
authentication schemes (AuthenticationSchemes). This attribute is handled by a built-in
filter called AuthorizeFilter, which is added by default when we add the authorization
middleware (AddAuthorization).

Other things that you can check in an authorization attribute include, for example, the
following:

Validating the source IP or domain of the client
Verifying whether a given cookie is present
Validating the client certificate

So, for custom authorization, we either need to implement IAuthorizationFilter or
IAsyncAuthorizationFilter; the first one exposes a single method, OnAuthorization.
The context object passed to the OnAuthorization method exposes HttpContext,
ModelState, RouteData, and ActionDescriptor for the current request and the MVC
action; you can use any of these to perform your own custom authorization. If you do not
wish to authorize access, you can return UnauthorizedResult in the context's Result
property, as follows:

public void OnAuthorization(AuthorizationFilterContext context)
{
 var entry = Dns.GetHostEntryAsync(context.HttpContext.
 Connection.RemoteIpAddress)
 .GetAwaiter()
 .GetResult();

 if (!entry.HostName.EndsWith(".MyDomain",
 StringComparison.OrdinalIgnoreCase))
 {
 context.Result = new UnauthorizedResult();
 }
}

In this case, if the request does not come from a known domain, it is denied access.

Understanding Filters Chapter 10

[385]

The AuthorizationFilterContext class has the following properties:

ActionDescriptor (ActionDescriptor): The descriptor of the action to be
called
Filters (IList<IFilterMetadata>): The filters bound to this request
HttpContext (HttpContext): The HTTP context
ModelState (ModelStateDictionary): The model state (not used for
authorization filters)
Result (IActionResult): An optional result to return to the client, bypassing
the request pipeline
RouteData (RouteData): Route data of the request

You may be tempted to add a global filter that requires users to be authenticated
everywhere; in this case, keep in mind that at least the entry page and the action that takes
the credentials need to allow anonymous access.

As for IAsyncAuthorizationFilter, its OnAuthorizationAsync method also takes an
AuthorizationFilterContext parameter, the only difference being that it is called
asynchronously.

So now, let's look at a few authorization policies that need to be followed.

Authorization policies
In Chapter 9, Reusable Components, we talked about authorization handlers. They can be
added as global filters, too, through the AuthorizeFilter class, which is a filter factory.
Here's one example:

services.AddMvc(options =>
{
 var policy = new AuthorizationPolicyBuilder()
 .RequireAssertion(ctx => true) //let everything pass
 .Build();

 options.Filters.Add(new AuthorizeFilter(policy));
});

Here, we are building a policy with a specific assertion (in this case, we are allowing
everything to be true), and we are adding a global AuthorizeFilter parameter that is
built from this policy. This will then apply to all requests.

OK, we're done with authorization filters, so now let's look at resource filters.

Understanding Filters Chapter 10

[386]

Resource filters
In resource filters, you can apply similar logic as authorization filters but it executes slightly
after the authorization filters, and you have more information. For example, when resource
filters execute, the user has already logged in (if using authentication). Some common uses
for resource filters are the following:

Logging
Caching
Throttling
Modifying model binding

The IResourceFilter interface defines two methods:

OnResourceExecuting: Called before the request reaches the action
OnResourceExecuted: Called after the action is executed

Each of these methods takes a single parameter of the ResourceExecutingContext and
ResourceExecutedContext types for pre-events and post-events, respectively.
ResourceExecutingContext offers the following properties, which reflect the context
prior to the resource being processed:

Result (IActionResult): If you wish to short-circuit the request pipeline, you
can set a value here, and all the other filters and middleware will be bypassed
(except the OnResourceExecuted method), returning this result; if you want to
return a POCO value, wrap it in ObjectResult.
ValueProviderFactories (IList<IValueProviderFactory>): Here, you
can inspect, add, or modify the collection of value provider factories to be used
when providing values to the target action's parameters.

As for ResourceExecutedContext, we have the following:

Canceled (bool): Whether or not a result was set in OnResourceExecuting.
Exception (Exception): Any exception thrown during the processing of the
resource.
ExceptionDispatchInfo (ExceptionDispatchInfo): The exception dispatch
object, used for capturing the stack trace of an exception and, optionally, re-
throwing it, while preserving this context.

Understanding Filters Chapter 10

[387]

ExceptionHandled (bool): Whether the exception was handled or not (if there
was one), the default being false; if not handled, then the framework will re-
throw it.
Result (IActionResult): The action set by the OnExecuting method, which
can also be set here.

If an exception is thrown during the processing of the resource (in the action method or in
another filter) and it is not explicitly marked as handled (ExceptionHandled) by the
resource filter, it will be thrown by the framework, resulting in an error. If you want to
know more, consult the documentation for ExceptionDispatchInfo at https:/ ​/​msdn.
microsoft.​com/​en- ​us/ ​library/ ​system. ​runtime. ​exceptionservices.
exceptiondispatchinfo. ​aspx.

The asynchronous alternative, IAsyncResourceFilter, only declares a single method,
OnResourceExecutionAsync, taking two parameters—ResourceExecutingContext

(the same as for the OnResourceExecuting method) and ResourceExecutionDelegate;
this one is interesting, as you can use it to inject other middleware at runtime to the
pipeline.

Here is an example of a caching filter:

[AttributeUsage(AttributeTargets.Method, Inherited = true, AllowMultiple =
false)]
public sealed class CacheResourceFilter : Attribute, IResourceFilter
{
 public TimeSpan Duration { get; }

 public CacheResourceFilter(TimeSpan duration)
 {
 this.Duration = duration;
 }

 public void OnResourceExecuted(ResourceExecutedContext context)
 {
 var cacheKey = context.HttpContext.Request.Path.ToString()
 .ToLowerInvariant();
 var memoryCache = context.HttpContext.RequestServices.
 GetRequiredService<IMemoryCache>();

 var result = context.Result as ContentResult;

 if (result != null)
 {
 memoryCache.Set(cacheKey, result.Content, this.Duration);
 }

https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.exceptiondispatchinfo(v=vs.110).aspx

Understanding Filters Chapter 10

[388]

 }

 public void OnResourceExecuting(ResourceExecutingContext context)
 {
 var cacheKey = context.HttpContext.Request.Path.ToString()
 .ToLowerInvariant();
 var memoryCache = context.HttpContext.RequestServices.
 GetRequiredService<IMemoryCache>();

 if (memoryCache.TryGetValue(cacheKey, out var cachedValue))
 {
 if (cachedValue != null && cachedValue
 is string cachedValueString)
 {
 context.Result = new ContentResult() {
 Content = cachedValueString };
 }
 }
 }
}

This filter takes the request path and checks that the IMemoryCache service, which it
retrieves from the current context, has a value for it, and if it does, it sets the content from it.
This is before the request is executed (OnResourceExecuting). After the resource is
executed, the filter just stores the content in the memory cache. To make this work, we need
to have the IMemoryCache service registered.

Again, do not implement the synchronous and asynchronous interfaces at the same time as
only the asynchronous interface will be used.

That is it for resource filters; let's move on to action filters.

Understanding action filters
Action filters are invoked before and after an action method is called, so they can be used,
for example, to do the following:

Cache results
Modify parameters
Modify results

Understanding Filters Chapter 10

[389]

Now, we already have the parameters to the action method, which come from the value
providers. Here, the filter interfaces are IActionFilter and IAsyncActionFilter. The
synchronous one offers two methods, OnActionExecuting and OnActionExecuted.
They are for pre-event and post-event notifications. OnActionExecuting takes a single
parameter of the ActionExecutingContext type, offering the following properties:

Result (IActionResult): Set a value here to short-circuit the request
processing pipeline and return a value to the client, without actually executing
the action.
ActionArguments (IDictionary<string, object>): The parameters of the
action method.
Controller (object): The target controller instance.

You may be wondering why the Controller property is not prototyped as
ControllerBase or Controller: do not forget that we can have POCO controllers!

The ActionArguments parameter has entries for each parameter of the target action
method, and its values have been provided by the registered value providers.

The post-event method, OnActionExecuted, takes a parameter of
the ActionExecutedContext type, which exposes the following properties:

Canceled (bool): Whether or not a result was set in OnActionExecuting.
Controller (object): The controller instance.
Exception (Exception): Any exception thrown during the processing of the
resource.
ExceptionDispatchInfo (ExceptionDispatchInfo): The exception dispatch
object, used for capturing the stack trace of an exception and, optionally, re-
throwing it, while preserving this context.
ExceptionHandled (bool): Whether the exception was handled or not (if there
was one), the default being false; if not handled, then the framework will re-
throw it.
Result (IActionResult): The action set by the OnExecuting method, which
can also be set here.

Understanding Filters Chapter 10

[390]

As for IAsyncActionFilter, it offers a single method, which
is, OnActionExecutionAsync. It takes two parameters in the same fashion as
OnResourceExecutionAsync: ActionExecutingContext and
ActionExecutionDelegate. The ActionExecutionDelegate instance points to the next
action filter method in the pipeline.

Now, we will move on to understanding result filters and how they are used in code.

Result filters
Result filters let you execute custom actions before and after the result is processed if an
action executes with success. Action results are represented by IActionResult, and we
can have code run before and after ExecuteResultAsync is called. Some common uses for
result filters include the following:

Caching (as before)
Interception (modification of the response)
Adding response headers
Result formatting

The IResultFilter interface defines the OnResultExecuting and OnResultExecuted
methods. The first takes an instance of ResultExecutingContext as its sole parameter,
which offers the following properties:

Cancel (bool): Whether or not to cancel the processing of the result
Result (IActionResult): The result to process in case we want to bypass the
returned result's execution
Controller (object): The controller instance

As for the post-event method, OnResultExecuted, we have the following properties in
ResultExecutedContext:

Canceled (bool): Whether or not a result was set in OnResultExecuting.
Controller (object): The controller instance.
Exception (Exception): Any exception thrown during the processing of the
resource.
ExceptionDispatchInfo (ExceptionDispatchInfo): The exception dispatch
object, used for capturing the stack trace of an exception and, optionally, re-
throwing it, while preserving this context.

Understanding Filters Chapter 10

[391]

ExceptionHandled (bool): Whether the exception was handled or not (if there
was one), the default being false; if not handled, then the framework will re-
throw it.
Result (IActionResult): The action set by the OnResultExecuting method,
which can also be set here.

These are exactly the same as for ResourceExecutedContext. As usual, we also have an
asynchronous version of the result filters, IAsyncResultFilter, which, following the
same pattern, offers a single method called OnResultExecutionAsync that has two
parameters—one of the ResultExecutingContext type, which has the following
properties:

Cancel (bool): Whether or not to cancel the processing of the result
Result (IActionResult): The result to process in case we want to bypass the
returned result's execution
Controller (object): The controller instance

The other parameter is ResultExecutionDelegate, which will point to the next delegate
of the IAsyncResultFilter type in the pipeline. Here is a simple example of a result
filter:

public class CacheFilter : IResultFilter
{
 private readonly IMemoryCache _cache;

 public CacheFilter(IMemoryCache cache)
 {
 this._cache = cache;
 }

 private object GetKey(ActionDescriptor action)
 {
 //generate a key and return it, for now, just return the id
 return action.Id;
 }

 public void OnResultExecuted(ResultExecutedContext context)
 {
 }

 public void OnResultExecuting(ResultExecutingContext context)
 {
 var key = this.GetKey(context.ActionDescriptor);
 string html;

Understanding Filters Chapter 10

[392]

 if (this._cache.TryGetValue<string>(key, out html))
 {
 context.Result = new ContentResult { Content = html,
 ContentType = "text/html" };
 }
 else
 {
 if (context.Result is ViewResult)
 {
 //get the rendered view, maybe using a TextWriter, and
 //store it in the cache
 }
 }
 }
}

When this filter runs, it checks whether there is an entry in the cache for the current action
and parameters and if so, it just returns it as the result.

Let's have a look now at filters that deal with exceptions.

Exception filters
These are the easiest to understand; whenever there's an exception under the scope of an
exception filter (action, controller, or global), its OnException method is called. This is
pretty useful for logging errors, as you can imagine.

The OnException method takes a parameter of the ExceptionContext type:

Exception (Exception): Any exception thrown during the processing of the
resource.
ExceptionDispatchInfo (ExceptionDispatchInfo): The exception dispatch
object, used for capturing the stack trace of an exception and, optionally, re-
throwing it while preserving this context.
ExceptionHandled (bool): Whether the exception was handled or not (if there
was one), the default being false; if not handled, then the framework will re-
throw it.
Result (IActionResult): Possibly an action result (if one was set) which can
also be set here.

Understanding Filters Chapter 10

[393]

There is no Controller property because the exception may have been thrown outside of
a controller.

The asynchronous interface, IAsyncExceptionFilter, has a single method declared,
OnExceptionAsync, and it also receives a parameter of the ExceptionContext type. The
behavior is exactly the same as its synchronous counterpart, but it is called in another
thread.

Caught exceptions are propagated unless the ExceptionHandled property is set to true.
If you do handle the exception, it is your responsibility to return a result (the Result
property) or write something to the output, as in this example:

public sealed class ErrorFilter : IAsyncExceptionFilter
{
 public async Task OnExceptionAsync(ExceptionContext context)
 {
 context.ExceptionHandled = true;
 await context.HttpContext.Response.WriteAsync($"An
 error occurred: {context.Exception.Message}");
 }
}

This filter should be registered as a global one:

services.AddMvc(options =>
{
 options.Filters.Insert(0, new ErrorFilter());
});

This concludes the section on exception filters. Let's now look at the Razor Pages-specific
filters.

Razor page filters
This is a new filter for Razor Pages. Basically, we can have custom actions that are fired
before or after a Razor Pages model method. As for the other filters, the filter is available in
synchronous (IPageFilter) and asynchronous flavors (IAsyncPageFilter).

Understanding Filters Chapter 10

[394]

Starting with the synchronous version, it declares the following three methods:

OnPageHandlerSelected: Called after the framework selects a target handler
method for the processing of the request, giving developers a chance to change
this
OnPageHandlerExecuting: Called before the handler is invoked
OnPageHandlerExecuted: Called after the handler is invoked

OnPageHandlerSelected takes a parameter of the PageHandlerSelectedContext type,
and this class offers the following properties:

ActionDescriptor (CompiledPageActionDescriptor): Describes the
handler and model classes
HandlerMethod (HandlerMethodDescriptor): The method that will be called,
which can be changed
HandlerInstance (object): The instance that will handle the request

The pre-event handler, OnPageHandlerExecuting, takes a single parameter of
the PageHandlerExecutingContext type with the following properties:

ActionDescriptor (CompiledPageActionDescriptor): The handler and
model classes
Result (IActionResult): The result to return if we want to override the default
processing of the page
HandlerArguments (IDictionary<string, object>): The arguments to be
passed to the handler method
HandlerMethod (HandlerMethodDescriptor): The method that will be called
on the handler instance
HandlerInstance (object): The instance that will handle the request

As for the post-event, OnPageHandlerExecuted, we have a parameter of
the PageHandlerExecutedContext type, which has similar properties
to PageHandlerExecutingContext:

ActionDescriptor (CompiledPageActionDescriptor): The handler and
model classes.
Canceled (bool): Whether or not the current processing has been canceled by
setting a result in the pre-event.
HandlerMethod (HandlerMethodDescriptor): The method that will be called
on the handler instance.

Understanding Filters Chapter 10

[395]

HandlerInstance (object): The instance that will handle the request.
Exception (Exception): Any exception thrown during the processing of the
resource.
ExceptionDispatchInfo (ExceptionDispatchInfo): The exception dispatch
object, used for capturing the stack trace of an exception and, optionally, re-
throwing it.
ExceptionHandled (bool): Whether the exception was handled or not; the
default is false, meaning the framework will re-throw it.
Result (IActionResult): The result to return if we want to override the default
processing of the page.

Finally, the asynchronous interface offers two asynchronous methods, which are the
counterparts to OnPageHandlerSelected (now called OnPageHandlerSelectionAsync
) and OnPageHandlerExecuted (now called OnPageHandlerExecutionAsync)
OnPageHandlerSelectionAsync has an instance of PageHandlerSelectedContext as
its single parameter and OnPageHandlerExecutionAsync takes two
parameters—PageHandlerExecutingContext and PageHandlerExecutionDelegate.
PageHandlerExecutionDelegate is, again, a delegate that points to the next method of
the same type in the pipeline, if one exists.

That is all there is to Razor Pages filters, so let's have a look now at a different, peculiar
kind of filter.

Always-run-result filters
An always-run-result filter (IAlwaysRunResultFilter and
IAsyncAlwaysRunResultFilter) is an interesting filter that was only introduced recently
(to ASP.NET Core 2.1). Its purpose is to always have something run, even when an action
does not run, such as when there is an exception or when an authorization or resource filter
short-circuits the pipeline and returns something directly. It offers two methods—one that
is called before the result is processed and the other after it (or after its short-circuiting at
the end of the request). These methods take one ResultExecutingContext or
ResultExecutedContext parameter, respectively, which we discussed when we
addressed result filters.

Understanding Filters Chapter 10

[396]

One possible usage for an always-run-result filter could be, for example, to check whether a
null value was returned by the controller and if so, replace it with NotFoundResult. We
can achieve this with the following code:

[AttributeUsage(AttributeTargets.Class, Inherited = true, AllowMultiple =
false)]
public sealed class NotFoundAttribute : Attribute, IAlwaysRunResultFilter
{
 public void OnResultExecuted(ResultExecutedContext context)
 {
 if (context.Result is ObjectResult objectResult &&
 objectResult.Value == null)
 {
 objectResult.Value = new {}; //anonymous method,
 //add whatever properties you like
 }
 }

 public void OnResultExecuting(ResultExecutingContext context)
 {
 }
}

This attribute, when applied to a class (which only makes sense in a controller) checks
whether the result is null, in which case it sets it as NotFoundResult.

Summary
In this chapter, we saw that in general, the asynchronous versions of each filter method are
preferred because they are inherently more scalable—a thread does not block while filters
are being invoked—and also that on the same class, threads do not mix the synchronous
and asynchronous versions of a filter interface because only the asynchronous version is
called. It is best not to mix synchronous and asynchronous filters at all! In this section, we
also saw what the filter types are based on.

An important observation is that we can use the DI through the [ServiceFilter]
attribute if we need to inject dependencies into our filters. For global filters, add the filter
type to the MvcOptions.Filters collection in AddMvc, rather than a filter instance.

Understanding Filters Chapter 10

[397]

Then, we saw that we need to be aware of each filter's intended purpose and not use a
resource filter for authorization. Use action filters if you need to intercept action parameters
or carry out caching, and result filters for modifying the output or the format of a result.
Then, we saw that exception filters are crucial for logging failures; these are safe to have at
a global level. We also learned that we need to apply authorization filters to protect any
sensitive resources and choose the best possible authorization (roles, policies, or merely
being authenticated).

Next, we understood that it is crucial to pay attention to the scope of the filter—carefully
opt for a global, controller, or action, whatever best suits your needs.

Overall, in this chapter, we looked at the interception mechanisms of ASP.NET Core, and in
the next chapter, we will talk about securing access and using views and forms.

Questions
You should now be able to answer these questions:

What are the two interfaces used to control authorization to a resource?1.
Why are there two versions of each kind of filter?2.
How can we apply a filter by specifying its type on an action method?3.
How can we apply ordering to the application of filters?4.
What are the different levels to which we can apply filters?5.
How can we pass the context from one filter to another?6.
How can filters make use of a DI?7.

11
Security

Security is a very hot topic nowadays; no company can afford to have their customers' data
exposed as seen in recent times, which is very unfortunate. Security is not just about data; it
covers a lot of aspects. It's not just about restricting access to a website or to specific parts of
it; it is about preventing the upload of malicious content, storing configuration (and other)
data, allowing access to scripts for specific origins, and, most importantly, creating a secure
channel for communicating between clients and the server.

After reading this chapter, you will have a very good understanding of the many aspects of
security surrounding an ASP.NET Core application.

We will cover the following topics in this chapter:

Authenticating users
Authorizing requests
Checking requests for forgery
Applying HyperText Markup Language (HTML) encoding
Working with HyperText Transfer Protocol Secure (HTTPS)
Understanding cross-origin resource sharing (CORS)
Using data protection
Protecting static files
Applying HTTP Strict Transfer Security (HSTS)
Learning about the General Data Protection Regulation (GDPR)
Binding security

We will begin with two topics: authentication—who is who; and authorization—who can
do what. These are the building blocks for any secure web application. Let's study each in
the following sections.

Security Chapter 11

[399]

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 software development kit (SDK) and some form of text editor. Of course, Visual
Studio 2019 (any edition) meets all the requirements, but you can also use Visual Studio
Code, for example.

The source code can be retrieved from GitHub
here: https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Cor
e-3-Second-Edition.

Authenticating users
Authentication is the process by which you tell your application who you are; from this
moment on, the application will know you—for a certain period of time, at least.

Authentication is not the same as—although it is related to—authorization. You probably
need authentication if you have resources that require authorization to access them.

The general authorization flow is as follows:

Someone requests access to a protected resource.1.
The framework checks that the user is not authorized and redirects them to a2.
login page, issuing a 302 code. This is the challenge stage.
The user supplies their credentials.3.
The credentials are checked and, if they are valid, the user is directed to the4.
requested resource (HTTP 302) with a cookie (usually) that identifies them as
being logged in.
Otherwise, the framework redirects to the failed login page.5.
Access to the protected resource is now granted.6.

The following screenshot describes the HTTP flow between the client browser and the
application:

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Security Chapter 11

[400]

Image taken from https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/basic-authentication

In ASP.NET Core, we use the [Authorize] attribute or some form of filter to restrict
access to a resource, either through a controller as a whole or through some specific action
methods, as shown in the following code snippet:

//whole controller is protected
[Authorize]
public class AdminController { }

public class SearchController
{
 //only this method is restricted
 [Authorize]
 public IActionResult Admin() { ... }
}

Beyond this, when we try to access one of these resources, we will end up with a 401
Unauthorized error code. What we need is some form of middleware that is capable of
intercepting this error code and proceeding accordingly.

The next section is only relevant to Windows developers. We will see how authorization
works for Windows first.

Security Chapter 11

[401]

Using claims
Modern authentication and authorization uses the concept of claims for storing information
that the logged-in user will have access to. This will include roles, for example, but it can be
any other information, as dictated by the authentication provider (Windows or a third
party).

In .NET Core, the root class, where all identity information is made available, is
ClaimsPrincipal. A reference to the current identity is available in the HttpContext
class, as HttpContext.User. In it, we can find three important properties, detailed as
follows:

Identity (IIdentity): The main identity associated with the currently logged-
in user
Identities (IEnumerable<ClaimsIdentity>): The collection of identities
associated with the currently logged-in user; it typically only contains one
identity
Claims (IEnumerable<Claim>): The collection of claims associated with the
currently logged-in user

The Identity property contains the following:

Name (string): The name of the logged-in user, if any
IsAuthenticated (bool): Whether or not the current user is authenticated
AuthenticationType (string): The current authentication type, if in use

Don't forget that, as we will see, we can use multiple authentication types on the same
application, each with a different name, and a user will be authenticated against one of
them.

As for the Claims class, a typical collection of claims might contain the following claim
types, which will map to the Type property of the Claim class:

ClaimTypes.Authentication

ClaimTypes.Country

ClaimTypes.DateOfBirth

ClaimTypes.Email

ClaimTypes.Gender

ClaimTypes.GivenName

ClaimTypes.HomePhone

Security Chapter 11

[402]

ClaimTypes.MobilePhone

ClaimTypes.Name

ClaimTypes.Role

ClaimTypes.Surname

ClaimTypes.WindowsAccountName

This will, however, depend on the authentication provider. There are actually a lot more
standardized claims, as you can see from the ClaimTypes class, but nothing prevents
anyone from adding their own claims. Keep in mind that, in general, claims do not mean
anything, but there are a few exceptions: Name and Role can be used for security checks, as
we will see in a moment.

So, the Claim class features the following main properties:

Issuer (string): The claim issuer
Type (string): The type of the claim—typically, one from ClaimTypes, but
might be something else
Value (string): The value for the claim

Let's start our discussion of authentication by talking about Windows authentication.

Windows authentication
ASP.NET Core, because it is platform-agnostic, does not natively support Windows
authentication. Probably the best way to achieve this, if we do need it, is to use Internet
Information Server (IIS)/IIS Express as a reverse proxy, handling all the requests and
directing them to ASP.NET Core.

For IIS Express, we need to configure the launch settings in the project's
Properties\launchSettings.json file as follows, with the changes in bold:

"iisSettings": {
 "windowsAuthentication": true,
 "anonymousAuthentication": false,
 "iisExpress": {
 "applicationUrl": "http://localhost:5000/",
 "sslPort": 0
 }
}

For IIS, we need to make sure that AspNetCoreModule is enabled for our website.

Security Chapter 11

[403]

In any case, we need to configure Windows authentication in the ConfigureServices
method, like this:

services.AddAuthentication(IISDefaults.AuthenticationScheme);

Finally, the AspNetCoreModule makes use of a Web.config file that is not needed or used
by ASP.NET Core itself; it is used for deployment and includes the following content:

<?xml version="1.0" encoding="utf-8"?>
 <configuration>
 <system.webServer>
 <aspNetCore forwardWindowsAuthToken="true"
 processPath="%LAUNCHER_PATH%"
 arguments="%LAUNCHER_ARGS%" />
 <handlers>
 <add name="aspNetCore" path="*" verb="*"
 modules="AspNetCoreModule"
 resourceType="Unspecified" />
 </handlers>
 </system.webServer>
 </configuration>

And that's it. The [Authorize] attribute will require authenticated users and will be
happy with Windows authentication. HttpContext.User will be set to an instance of
WindowsPrincipal, a subset of ClaimsPrincipal, and any Windows groups will be
available as roles and also as claims (ClaimTypes.Role). The Windows name will be set in
ClaimsIdentity.Name in the form of domain\user.

In any place where you want to get the current Windows authentication, you can use the
following code:

var identity = WindowsIdentity.GetCurrent();

Additionally, for example, if you want to know whether the current user belongs to a
specific role, such as the built-in administrators, you can use the following code:

var principal = new WindowsPrincipal(identity);
var isAdmin = principal.IsInRole(WindowsBuiltInRole.Administrator);

This code will return true if the current user is part of the Windows built-in
administrators' group.

Security Chapter 11

[404]

Don't forget that, although this code will compile on any platform, you
can only use Windows authentication on Windows. You can check that by
using System.Runtime.InteropServices.RuntimeInformation.Is
OSPlatform(System.Runtime.InteropServices.OSPlatform.Wind

ows).

Next, let's now see how to bake our own authentication mechanism for all non-Windows
developers.

Custom authentication
ASP.NET Core does not include any authentication provider, unlike previous versions of
ASP.NET that shipped with support for Windows and Structured Query Language (SQL)-
based authentication—the membership provider. This means that we have to implement
everything manually—or not quite, as we will see in a moment.

The method used to register the services is AddAuthentication, which can be followed by
AddCookie, as shown in the following code:

services
 .AddAuthentication(CookieAuthenticationDefaults.AuthenticationScheme)
 .AddCookie(CookieAuthenticationDefaults.AuthenticationScheme, options
=>
 {
 options.LoginPath = "/Account/Login/";
 options.AccessDeniedPath = "/Account/Forbidden/";
 options.LogoutPath = "/Account/Logout";
 options.ReturnUrlParameter = "ReturnUrl";
 });

We add the UseAuthentication method in Configure, like this:

app.UseAuthentication();

The changes in AccountController are minor—we must call the SignInAsync and
SignOutAsync extension methods over the HttpContext instance instead of calling the
old versions in HttpContext.Authorization, as illustrated in the following code block:

[HttpPost]
[AllowAnonymous]
public async Task<IActionResult> PerformLogin(string username, string
password, string returnUrl,
 bool isPersistent)
{

Security Chapter 11

[405]

 //...check validity of credentials
 await this.HttpContext.SignInAsync(CookieAuthenticationDefaults.
 AuthenticationScheme, new ClaimsPrincipal(user), new
 AuthenticationProperties { IsPersistent = isPersistent });
 return this.LocalRedirect(returnUrl);
}

[HttpGet]
public async Task<IActionResult> Logout()
{
 await this.HttpContext.SignOutAsync(CookieAuthenticationDefaults
 .AuthenticationScheme);
 //...
}

Before using these new methods, add a using statement for the
Microsoft.AspNetCore.Authentication namespace.

A minimum login page (Views/Account/Login) could look like this:

using (Html.BeginForm(nameof(AccountController.PerformLogin), "Account",
FormMethod.Post))
{
 <fieldset>
 <p>Username:</p>
 <p><input type="text" name="username" /></p>
 <p>Password:</p>
 <p><input type="password" name="password" /></p>
 <p>Remember me: <input type="checkbox" name="isPersistent"
 value="true" /></p>
 <input type="hidden" name="ReturnUrl" value="@Context.Request.
 Query["ReturnUrl"]"/>
 <button>Login</button>
 </fieldset>
}

Instead of implementing our own authentication mechanism, it is quite often more
convenient to use an existing and well-established one, and that's exactly what we will talk
about next.

Identity
Because you shouldn't have to deal with low-level authentication yourself, there are a
number of packages that can assist you in that task. The one that Microsoft recommends is
Microsoft Identity (http:/ ​/​github. ​com/ ​aspnet/ ​identity).

https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity
https://github.com/aspnet/Identity

Security Chapter 11

[406]

Identity is an extensible library for doing username-password authentication and storing
user properties. It is modular and, by default, it uses Entity Framework (EF) Core for the
data store persistence. Of course, because EF itself is quite extensible, it can use any of its
data providers (SQL Server, SQLite, Redis, and so on). The NuGet packages for Identity
with EF Core are Microsoft.AspNetCore.Identity.EntityFrameworkCore ,
Microsoft.EntityFrameworkCore.Tools,
and Microsoft.AspNetCore.Diagnostics.EntityFramework, and you should also
know that Identity is installed by default with the Visual Studio templates for ASP.NET
Core Web Applications if we choose to use authentication through Individual User Accounts.
The following screenshot shows the Visual Studio screen, where we can select the
authentication method:

Identity supports both user properties and roles. In order to use Identity, we first need to
register its services, as follows:

services
 .AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(this.Configuration.
 GetConnectionString("DefaultConnection")))
 .AddDefaultIdentity<IdentityUser>(options => options.SignIn.
 RequireConfirmedAccount = false)
 .AddEntityFrameworkStores<ApplicationDbContext>();

By all means, do replace the connection string key
(Data:DefaultConnection:ConnectionString) in the configuration to whatever suits
you best, and make sure it points to a valid configuration value.

Security Chapter 11

[407]

It will be something like this:

"ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;
 Database=aspnet-chapter07-2AF3F755-0DFD-4E20-BBA4-9B9C3F56378B;
 Trusted_Connection=True;MultipleActiveResultSets=true"
},

Identity supports a large number of options when it comes to security; these can be
configured on the call to AddDefaultIdentity, as follows:

services.AddDefaultIdentity<IdentityUser>(options =>
{
 options.SignIn.RequireConfirmedAccount = false;
 options.Password.RequireDigit = false;
 options.Password.RequireLowercase = false;
 options.Password.RequiredUniqueChars = 0;
 options.Password.RequiredLength = 0;
 options.Password.RequireNonAlphanumeric = false;
 options.Password.RequireUppercase = false;

 options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes(30);
 options.Lockout.MaxFailedAccessAttempts = 10;
});

This example sets numerous options for login, such as disabling the confirmation of the
email, simplifying the password requirements, and setting the timeout and number
of failed login attempts. I won't go through all of the available options; please refer to the
Identity site for the full picture: https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/
security/​authentication/ ​identity

And, if you need to change the path and cookie options, you need to use
ConfigureApplicationCookie, as per this example:

services.ConfigureApplicationCookie(options =>
{
 options.Cookie.HttpOnly = true;
 options.ExpireTimeSpan = TimeSpan.FromMinutes(20);
 options.SlidingExpiration = true;

 options.LoginPath = "/Account/Login";
 options.AccessDeniedPath = "/Account/Forbidden";
 options.LogoutPath = "/Account/Logout";
 options.ReturnUrlParameter = "ReturnUrl";
});

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity

Security Chapter 11

[408]

This simple example sets the paths to be the same as the ones provided earlier, in the
custom authentication topic, and sets a few cookie properties too, listed as follows:

HttpOnly: Requires that the cookies be sent with the HttpOnly flag set
(see https:/ ​/​owasp. ​org/ ​www- ​community/ ​HttpOnly)
ExpireTimeSpan: The duration of the authentication cookie
SlidingExpiration: Sets the cookie expiration to be sliding—that is, it is
renewed for an equal amount of time for each time the application is accessed

The Identity registration code (the first code listing in this subsection) mentioned the
ApplicationDbContext and IdentityUser classes. A skeleton of these classes is added
automatically when we create a project using the Visual Studio template that uses custom
authentication, but I'm adding them here for your reference, as follows:

public class ApplicationDbContext : IdentityDbContext
{
 public ApplicationDbContext(DbContextOptions options) : base(options) {
}
}

Now, this is very important, you need to create the database before using Identity. To do
that, open Package Manager Console and run these commands:

Add-Migration "Initial"
Update-Database

After this, we can add some additional properties to the model.

Adding custom properties
Nothing fancy here, as you can see. The only thing worth mentioning is that you can add
your own custom properties to the IdentityUser and IdentityRole classes, and these
will be persisted and retrieved as part of the login process. Why would you want to do
that? Well, because these base classes do not contain any useful properties—only username,
email, and phone (for the user), and the role name. These classes map, respectively, a user
and a role, where a user can have a single role and each role can have multiple users
associated with it. You just need to create new classes and have the context use them, as
illustrated in the following code block:

public class ApplicationUser : IdentityUser
{
 public ApplicationUser() {}
 public ApplicationUser(string userName) : base(userName) {}

https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly

Security Chapter 11

[409]

 //add other properties here, with public getters and setters
 [PersonalData]
 [MaxLength(50)]
 public string FullName { get; set; }
 [PersonalData]
 public DateTime? Birthday { get; set; }
}

public class ApplicationRole : IdentityRole
{
 public ApplicationRole() {}
 public ApplicationRole(string roleName) : base(roleName) {}

 //add other properties here, with public getters and setters
}

Notice the [PersonalData] attribute to mark the new properties being added: this is a
requirement so that so it's automatically available for download and deletion. This is a
requirement for GDPR, discussed later on in this chapter. If you don't care about it, you can
leave it out.

You can add validation attributes to this model.

You also need to modify your context to use the new properties, like this:

public class ApplicationDbContext : IdentityDbContext<ApplicationUser,
ApplicationRole, string>
{
 public ApplicationDbContext(DbContextOptions options) : base(options)
{}
}

The names ApplicationUser and ApplicationRole are typical names for custom classes
for identity and role data. Notice the three generic arguments to ApplicationDbContext:
these are the types of Identity user and role, and the type of the primary key, which is
string.

You must also change the registration code in the Startup class to refer to the new Identity
user class, as follows:

services
 .AddDefaultIdentity<ApplicationUser>(options =>
 {

Security Chapter 11

[410]

 //...
 });

Finally, we must create a migration and update the database to reflect the changes, from
inside Visual Studio (Package Manager Console), as follows:

Add-Migration "PersonalData"
Update-Database

Or, we can do this from the command line, like this:

dotnet ef migrations add PersonalData
dotnet ef database update

Of course, if we have custom data, we also need to update the registration forms so that
they include the new properties.

Updating the user interface
Fortunately, ASP.NET Core Identity fully supports this: it is possible to supply all or some
forms, and they will replace the ones provided!

Right-click on the web project and select New Scaffolded Item..., as illustrated in the
following screenshot:

Security Chapter 11

[411]

Then, after it, select Identity, as illustrated in the following screenshot:

Then, we have the choice to pick which pages we want to override in the current project, as
illustrated in the following screenshot:

Security Chapter 11

[412]

Notice that you must select the context (DbContext—derived class) to use. The files will
then, by default, be created under a new folder, Areas/Identity, which will correspond
to a Model-View-Controller (MVC) area. The pages themselves are Razor pages, meaning
that they do not use controllers, but they do use a code-behind file (both a .cshtml and a
.cshtml.cs file).

So, if you followed my example and added FullName and Birthday properties to the
ApplicationUser class and generated pages for the account registration, we need to add
them, in the Areas/Identity/Pages/Account/Manage/Register.cshtml file (changes
in bold), like this:

...
<div asp-validation-summary="All" class="text-danger"></div>
<div class="form-group">
 <label asp-for="Input.FullName"></label>
 <input asp-for="Input.FullName" class="form-control" />

</div>
<div class="form-group">
 <label asp-for="Input.Birthday"></label>
 <input type="date" asp-for="Input.Birthday" class="form-control" />

</div>
<div class="form-group">
 <label asp-for="Input.Email"></label>
 <input asp-for="Input.Email" class="form-control" />

</div>
...

And in, Register.cshtml.cs, we need to add the code to persist the data, like this:

...
[BindProperty]
public InputModel Input { get; set; }

public class InputModel
{
 [Display(Name = "Full Name")]
 [DataType(DataType.Text)]
 [MaxLength(50)]
 public string FullName { get; set; }

 [Display(Name = "Birthday")]
 [DataType(DataType.Date)]
 public DateTime? Birthday { get; set; }

Security Chapter 11

[413]

 [Required]
 [EmailAddress]
 [Display(Name = "Email")]
 public string Email { get; set; }
 ...
}

public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{
 returnUrl = returnUrl ?? Url.Content("~/");

 if (ModelState.IsValid)
 {
 var user = new ApplicationUser { UserName = Input.Email,
 Email = Input.Email,
 Birthday = Input.Birthday, FullName = Input.FullName };
 var result = await _userManager.CreateAsync(user, Input.Password);
 ...
}
...

Essentially, we're just adding the new properties to InputModel, which is just a Plain Old
CLR Object (POCO) class used to bind the form data, and from there to the
ApplicationUser class, which is then passed to the CreateAsync method.

Using the Identity provider
Now, picking up on the previous authentication example, let's see how it goes with
Identity:

public class AccountController : Controller
{
 private readonly IOptions<IdentityOptions> _options;
 private readonly UserManager<ApplicationUser> _userManager;
 private readonly RoleManager<ApplicationRole> _roleManager;
 private readonly SignInManager<ApplicationUser> _signInManager;

 public AccountController(
 IOptions<IdentityOptions> options,
 UserManager<ApplicationUser> userManager,
 RoleManager<ApplicationRole> roleManager,
 SignInManager<ApplicationUser> signInManager)
 {
 this._options = options;
 this._signInManager = signInManager;
 this._userManager = userManager;
 this._roleManager = roleManager;

Security Chapter 11

[414]

 }

 [HttpPost]
 [AllowAnonymous]
 public async Task<IActionResult> PerformLogin(string username,
 string password, string returnUrl)
 {
 var result = await this._signInManager.PasswordSignInAsync
 (username, password,
 isPersistent: true,
 lockoutOnFailure: false);

 if (result.Succeeded)
 {
 return this.LocalRedirect(returnUrl);
 }
 else if (result.IsLockedOut)
 {
 this.ModelState.AddModelError("User", "User is locked out");
 return this.View("Login");
 }

 return this.Redirect(this._options.Value.Cookies.
 ApplicationCookie.AccessDeniedPath);
 }

 [HttpGet]
 public async Task<IActionResult> Logout()
 {
 await this._signInManager.SignOutAsync();
 return this.RedirectToRoute("Default");
 }

 private async Task<ApplicationUser> GetCurrentUserAsync()
 {
 //the current user properties
 return await this._userManager.GetUserAsync
 (this.HttpContext.User);
 }

 private async Task<ApplicationRole> GetUserRoleAsync(string id)
 {
 //the role for the given user
 return await this._roleManager.FindByIdAsync(id);
 }
}

Security Chapter 11

[415]

The classes used to manage the authentication process are UserManager<T>,
SignInManager<T>, and RoleManager<T>, all of which are generic and take as
parameters either the concrete identity user or the identity role class. These classes are
registered to the dependency injection (DI) framework by the call to
AddDefaultIdentity and are, therefore, available to be injected anywhere you need
them. For the record, calling AddDefaultIdentity is the same as adding the following
services:

services
 .AddIdentity() //adds core functionality
 .AddDefaultUI() //adds self-contained Razor Pages UI in
 // an area called /Identity
 .AddDefaultTokenProviders(); //for generating tokens for new
 // passwords, resetting operations

We are calling the following three methods of the UserManager<T> class:

PasswordSignInAsync: This is the method that actually validates the username
and password, returning the status of the user; optionally, it sets the cookie as
persistent (isPersistent), meaning that the user will remain authenticated for
a certain period of time, as specified in the configuration settings, and also
indicating whether or not to lock the user in the case of a number of failed
attempts (lockoutOnFailure)—again, configurable.
SignOutAsync: Signs out the current user by setting an expiration for the
authentication cookie
RefreshSignInAsync: Refreshes the authentication cookie by extending its
expiration (not shown here)

The UserManager<T> class exposes a few useful methods, as follows:

GetUserAsync: Retrieves the data (either IdentityUser or a subclass) for the
current user
CreateAsync: Creates a user (not shown here)
UpdateAsync: Updates a user (not shown here)
DeleteAsync: Deletes a user (not shown here)
AddClaimAsync/RemoveClaimAsync: Adds/removes a claim to/from a user
(not shown here)
AddToRoleAsync/RemoveFromRoleAsync: Adds/removes a user to/from a role
(not shown here)

Security Chapter 11

[416]

ConfirmEmailAsync: Confirms an email for a recently created user (not shown
here)
FindByEmailAsync/FindByIdAsync/FindByNameAsync: Tries to find users by
email/ID/name (not shown here)

As for RoleManager<T>, its only use here is to retrieve the role (IdentityRole—derived)
for the current user by means of its FindByIdAsyncmethod (not shown here).

As you can see, the code is pretty similar to the previous code, but this is just a teaser as
Identity supports lots of other features, including the following:

User registration, including email activation codes
Assigning roles to users
Account locking after a number of failed login attempts
Two-factor authentication
Password retrieval
External authentication providers

Please consult the Identity site for more information: https:/ ​/​www. ​asp. ​net/ ​identity

Now, let's see a very popular server for integrating data sources and serving authentication
requests to multiple clients.

Using IdentityServer
IdentityServer is an open source implementation of the OpenID Connect and OAuth 2.0
protocols for ASP.NET. The version we are interested in, IdentityServer4, was designed
specifically for ASP.NET Core; its source code is made available at https:/ ​/​github. ​com/
IdentityServer/​IdentityServer4 and its documentation at http:/ ​/​docs.
identityserver.​io/ ​. It is so popular that it is, in fact, Microsoft's recommended
implementation for service federation and single sign-on (SSO).

https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://www.asp.net/identity
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/
http://docs.identityserver.io/

Security Chapter 11

[417]

This is the OAuth 2.0 flow for granting access to a resource:

Image taken from https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/external-authentication-services

IdentityServer, loosely speaking, can be used for authentication as a service, meaning it can
accept requests for authentication, validate them against any number of data stores, and
grant access tokens.

Security Chapter 11

[418]

We won't go into the details of setting up IdentityServer as it can be quite complex and has
a huge number of features. What we are interested in is how we can use it to authenticate
users. For this, we will need the
Microsoft.AspNetCore.Authentication.OpenIdConnect and
IdentityServer4.AccessTokenValidation NuGet packages.

We set all the configuration in the ConfigureServices method, as illustrated in the
following code block:

services.AddCookieAuthentication(CookieAuthenticationDefaults.Authenticatio
nScheme);

services.AddOpenIdConnectAuthentication(options =>
{
 options.ClientId = "MasteringAspNetCore";
 //change the IdentityServer4 URL
 options.Authority = "https://servername:5000";
 //uncomment the next line if not using HTTPS
 //options.RequireHttpsMetadata = false;
});

Then, add the authentication middleware, in Configure, like this:

JwtSecurityTokenHandler.DefaultInboundClaimTypeMap.Clear();

app.UseAuthentication();

These two lines will first erase the mapping of claims for JSON Web Token (JWT) and then
add the authentication middleware.

For additional information, consult the wiki article at https:/ ​/ ​social.
technet. ​microsoft. ​com/ ​wiki/ ​contents/ ​articles/ ​37169. ​secure- ​your-
netcore- ​web- ​applications- ​using- ​identityserver- ​4.​aspx and the
IdentityServer Identity documentation at http:/ ​/​docs. ​identityserver.
io/​en/ ​release/ ​quickstarts/ ​6_​aspnet_ ​identity. ​html.

The following sections describe authentication against third-party providers.

https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
https://social.technet.microsoft.com/wiki/contents/articles/37169.secure-your-netcore-web-applications-using-identityserver-4.aspx
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html
http://docs.identityserver.io/en/release/quickstarts/6_aspnet_identity.html

Security Chapter 11

[419]

Using Azure Active Directory
With everything moving to the cloud, it should come as no surprise that ASP.NET Core
also supports authentication with Azure Active Directory (Azure AD). When you create a
new project, you have the option to select Work or School Accounts for authentication and
then enter the details of your Azure cloud, as illustrated in the following screenshot:

You must enter a valid domain!

Essentially, the wizard adds the following two NuGet packages to the
project Microsoft.AspNetCore.Authentication.Cookies and
Microsoft.AspNetCore.Authentication.OpenIdConnect (Azure authentication is
based on OpenID). It also adds the following entry to
the appsettings.json configuration file:

"Authentication": {
 "AzureAd": {
 "AADInstance": "https://login.microsoftonline.com/",
 "CallbackPath": "/signin-oidc",
 "ClientId": "<client id>",
 "Domain": "mydomain.com",
 "TenantId": "<tenant id>"

Security Chapter 11

[420]

 }
}

The authentication uses cookies, so a similar entry is added to the ConfigureServices
method, as illustrated in the following code snippet:

services.AddAuthentication(options =>
 options.SignInScheme = CookieAuthenticationDefaults
 .AuthenticationScheme
);

Finally, the OpenID middleware is added to the pipeline in Configure, as illustrated in the
following code snippet:

app.UseOpenIdConnectAuthentication(new OpenIdConnectOptions
{
 ClientId = this.Configuration["Authentication:AzureAd:ClientId"],
 Authority = this.Configuration["Authentication:AzureAd:AADInstance"] +
 this.Configuration["Authentication:AzureAd:TenantId"],
 CallbackPath = this.Configuration["Authentication:AzureAd:
 CallbackPath"]
});

The relevant methods for signing in (SignIn), logging out (Logout), and showing the
logged-out page (SignedOut) in the AccountController class (from the original listing
presented at the beginning of the chapter) are shown in the following code block:

[HttpGet]
public async Task<IActionResult> Logout()
{
 var callbackUrl = this.Url.Action("SignedOut", "Account",
 values: null,
 protocol: this.Request.Scheme);
 return this.SignOut(new AuthenticationProperties {
 RedirectUri = callbackUrl },
 CookieAuthenticationDefaults.AuthenticationScheme,
 OpenIdConnectDefaults.AuthenticationScheme);
}

[HttpGet]
public IActionResult SignedOut()
{
 return this.View();
}

[HttpGet]
public IActionResult SignIn()
{

Security Chapter 11

[421]

 return this.Challenge(new AuthenticationProperties { RedirectUri = "/"
},
 OpenIdConnectDefaults.AuthenticationScheme);
 });
}

Now, we will see how we can use well-known social networking applications as
authentication providers for our application.

Using social logins
Another option for keeping and maintaining user credentials yourself is to use
authentication information from third parties, such as social networking apps. This is an
interesting option because you don't require users to go through the account creation
process; you just trust the external authentication provider for that.

All external authentication providers follow this flow:

Image taken from https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/external-authentication-services

Security Chapter 11

[422]

For more information, please consult https:/ ​/​docs. ​microsoft. ​com/ ​en-
us/​aspnet/ ​core/ ​security/ ​authentication/ ​social/ ​

This mechanism is based on providers, and there are a number of them made available by
Microsoft; you must be aware that all of these rely on Identity, so you need to configure it
first (UseIdentity). When you create your project, make sure you choose to use
authentication and select individual accounts. This will ensure that the proper template is
used and the required files are present in the project. Let's study a few in the coming
sections.

Facebook
Facebook doesn't really need an introduction. Its provider is available as
a Microsoft.AspNetCore.Authentication.Facebook NuGet package. You will need
to create a developer account with Facebook first, and then use the application ID and user
secret when registering the provider in the Configure method, as follows:

app.UseFacebookAuthentication(new FacebookOptions()
{
 AppId = Configuration["Authentication:Facebook:AppId"],
 AppSecret = Configuration["Authentication:Facebook:AppSecret"]
});

Facebook login details are available here: https:/ ​/​docs. ​microsoft. ​com/
en-​us/ ​aspnet/ ​core/ ​security/ ​authentication/ ​social/ ​facebook- ​logins

Twitter
Twitter is another popular social networking site, and the provider for it is available as
a Microsoft.AspNetCore.Authentication.Twitter NuGet package. You will also
need to register your application in the Twitter developer site. Its configuration goes like
this:

app.UseTwitterAuthentication(new TwitterOptions()
{
 ConsumerKey = Configuration["Authentication:Twitter:ConsumerKey"],
 ConsumerSecret = Configuration["Authentication:Twitter:
 ConsumerSecret"]
});

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins

Security Chapter 11

[423]

Twitter login details are available here: https:/ ​/​docs. ​microsoft. ​com/ ​en-
us/​aspnet/ ​core/ ​security/ ​authentication/ ​social/ ​twitter- ​logins.

Google
The Google provider is contained in the
Microsoft.AspNetCore.Authentication.Google NuGet package. Again, you will
need to create a developer account and register your app beforehand. The Google provider
is configured like this:

app.UseGoogleAuthentication(new GoogleOptions()
{
 ClientId = Configuration["Authentication:Google:ClientId"],
 ClientSecret = Configuration["Authentication:Google:ClientSecret"]
});

For more information about the Google provider, please consult https:/ ​/
docs. ​microsoft. ​com/ ​en- ​us/​aspnet/ ​core/ ​security/ ​authentication/
social/ ​google- ​logins.

Microsoft
Of course, Microsoft makes available a provider for its own authentication service; this is
included in the Microsoft.AspNetCore.Authentication.MicrosoftAccount NuGet
package, and the configuration goes like this:

app.UseMicrosoftAccountAuthentication(new MicrosoftAccountOptions()
{
 ClientId = Configuration["Authentication:Microsoft:ClientId"],
 ClientSecret = Configuration["Authentication:Microsoft:ClientSecret"]
});

Go to https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​aspnet/ ​core/ ​security/
authentication/ ​social/ ​microsoft- ​logins for more information.

All of these mechanisms rely on cookies for persisting authentication, so it makes sense that
we talk a bit about cookie security.

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/twitter-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins

Security Chapter 11

[424]

Cookie security
The CookieAuthenticationOptions class has a few properties that can be used for
configuring extra security, listed as follows:

Cookie.HttpOnly (bool): Whether the cookie should be HTTP-only or not (see
https:/​/ ​www. ​owasp. ​org/ ​index. ​php/ ​HttpOnly); the default is false. If not set,
then the HttpOnly flag is not sent.
Cookie.Secure (CookieSecurePolicy): Whether the cookie should be sent
only over HTTPS (Always), always (None), or according to the request
(SameAsRequest), which is the default; if not set, the Secure flag is not sent.
Cookie.Path (string): An optional path to which the cookie applies; if not set,
it defaults to the current application path.
Cookie.Domain (string): An optional domain for the cookie; if not set, the
site's domain will be used.
DataProtectionProvider (IDataProtectionProvider): An optional data
protection provider, used to encrypt and decrypt the cookie value; by default, it
is null.
CookieManager (ICookieManager): An optional storage for cookies; it might be
useful, for example, to share cookies between applications (see https:/ ​/ ​docs.
microsoft. ​com/ ​en- ​us/ ​aspnet/ ​core/ ​security/ ​data- ​protection/
compatibility/ ​cookie- ​sharing).
IsEssential (bool): Whether or not the cookie is essential, in terms of where
GDPR is concerned (ss).
ClaimsIssuer (string): Who issued the cookie's claims.
ExpireTimeSpan (TimeSpan): The authentication cookie's validity.
SlidingExpiration (bool): Whether or not the cookie's validity specified in
ExpireTimeSpan should be renewed on every request(default).
AccessDeniedPath (string): The path to which the browser is redirected if the
authentication fails, after the challenge stage.
LoginPath (string): The login path to which the browser will be redirected
should there be a need to authenticate (challenge phase).
LogoutPath (string): The logout path, where authentication cookies (and
what-not) are cleaned.
ReturnUrlParameter (string): The query string parameter where, in the
challenge stage, the original Uniform Resource Locator (URL) will be kept; it
defaults to ReturnURL.

https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/compatibility/cookie-sharing

Security Chapter 11

[425]

Sliding expiration means that the period of time specified in the expiration will be extended
every time the server receives a request: a cookie with the same name is returned with the
same expiration that overrides the previous one.

All these properties are available in Identity. In order to set values, you can either build
a CookieAuthenticationOptions instance or use the delegate available as the
AddCookie extension method after calling AddAuthentication, in ConfigureServices,
like this:

services
 .AddAuthentication()
 .AddCookie(options =>
 {
 //set global properties
 options.LoginPath = "/Account/Login";
 options.AccessDeniedPath = "/Account/Forbidden";
 options.LogoutPath = "/Account/Logout";
 options.ReturnUrlParameter = "ReturnUrl";
 });

The HTTP cookie specification is available at https:/ ​/​tools. ​ietf. ​org/
html/ ​rfc6265.

Supporting SameSite cookies
SameSite is an extension to Request for Comments (RFC) 6265, known as RFC 6265bis,
which defines HTTP cookies, and its purpose is to mitigate Cross-Site Request Forgery
(CSRF) attacks by optionally only allowing cookies to be set from the same site context. For
example, imagine your site is located at www.abc.com; then, dev.abc.com is also
considered to be the same site, whereas xpto.com is considered cross-site.

SameSite is sent by the browser together with the rest of the cookie parameters and it has
three options, as listed here:

Strict: A cookie will only be sent if the site for the cookie matches the site
currently viewed on the browser.
Lax: Cookies are only set when the domain in the URL of the browser matches
the domain of the cookie.
None: Must be sent through HTTPS

https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265

Security Chapter 11

[426]

For Edge, FireFox, and Chrome, the default is now Lax, which means third-party cookies
are now blocked.

SameSite security can be set on the CookieOptions class, which means that it can be set
together when we set a cookie explicitly, or on the cookie builder available
on CookieAuthenticationOptions when using cookie-based authentication
mechanisms, as illustrated in the following code:

services
 .AddAuthentication()
 .AddCookie(options =>
 {
 options.Cookie.SameSite = SameSiteMode.Strict;
 });

The possible values that we can pass to SameSite are the following ones:

Lax: The client browser should send cookies with same-site and cross-site top-
level requests.
None: No same-site validation is performed on the client.
Strict: The client browser should only send the cookie with same-site requests.
Unspecified: This is the default, and it will be dictated by the client browser.

We must not forget to add the cookie middleware to the pipeline, before adding the
authentication, like this:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseCookiePolicy();
 app.UseAuthentication();
 //rest goes here
}

Now that we've talked about authentication—namely, building a custom authentication
provider and using IdentityServer or social sites for authentication—and some cookie
security, let's talk a bit about authorization.

Authorizing requests
Here, we will see how we can control access to parts of the application, be it controllers or
more fine-grained.

Security Chapter 11

[427]

So, let's say you want to mark either a whole controller or specific actions as requiring
authentication. The easiest way is to add an [Authorize] attribute to the controller class,
just like that. If you try to access the protected controller or resource, a 401
authorization Required error will be returned.

In order to add authorization support, we must add the required middleware to the
Configure method, after the UseAuthentication call, like this:

app.UseRouting();

app.UseCookiePolicy();
app.UseAuthentication();
app.UseAuthorization();

app.UseEndpoints(endpoints =>
{
 //...
});

Do not forget about this order—UseAuthentication before UseAuthorization—this is
mandatory!

The following sections describe different ways to declare authorization rules for resources
on our web application. Let's start with roles, which are a common way to define groups of
users.

Authorization based on roles
If we want to go a little further in the authorization process, we can request that a protected
resource controller, or action only be accessible when the authenticated user is in a given
role. Roles are just claims and are supported by any authentication mechanism, shown as
follows:

[Authorize(Roles = "Admin")]
public IActionResult Admin() { ... }

It is possible to specify multiple roles, separated by commas. In the following case, access
will be granted if the current user is in at least one of these roles:

[Authorize(Roles = "Admin,Supervisor")]

Security Chapter 11

[428]

If you ever want to know by code whether the current user belongs to a specific role, you
can use the ClaimsPrincipal instance's IsInRole method, as illustrated in the following
code snippet:

var isAdmin = this.HttpContext.User.IsInRole("Admin");

This will return true if the current user is a member of the Admin group.

Another way to define authorization is through policies, which allow a more fine-grained
control over the permissions. Let's now see what this is all about.

Policy-based authorization
Policies are a far more flexible way to grant authorization; here, we can use whatever rule
we want, not just the rule belonging to a certain role or being authenticated.

To use policies, we need to decorate the resources to protect (controllers, actions) with the
[Authorize] attribute and the Policy property, as illustrated in the following code
snippet:

[Authorize(Policy = "EmployeeOnly")]

Policies are configured through the AddAuthorization method, in an
AuthorizationOptions class, as illustrated in the following code snippet

services.AddAuthorization(options =>
{
 options.AddPolicy("EmployeeOnly", policy => policy.RequireClaim
 ("EmployeeNumber"));
});

This code is requiring that the current user has a specific claim, but we can think of other
examples, such as only allowing local requests. RequireAssertion allows us to specify
arbitrary conditions, as illustrated in the following code block:

options.AddPolicy("LocalOnly", builder =>
{
 builder.RequireAssertion(ctx =>
 {
 var success = false;
 if (ctx.Resource is AuthorizationFilterContext mvcContext)
 {
 success = IPAddress.IsLoopback(mvcContext.HttpContext.
 Connection.RemoteIpAddress);
 }

Security Chapter 11

[429]

 return success;
 });
});

Notice that here, we are assuming that the Resource property is
AuthorizationFilterContext. Remember that this will only be true if we are in the
context of an [Authorize] filter; otherwise, it won't be the case.

You can also use policies for specific claims (RequireClaim) or roles (RequireRole), for
being authenticated (RequireAuthenticatedUser), or even for having a specific
username (RequireUserName), and even combine all of them, as follows:

options.AddPolicy("Complex", builder =>
{
 //a specific username
 builder.RequireUserName("admin");
 //being authenticated
 builder.RequireAuthenticatedUser();
 //a claim (Claim) with any one of three options (A, B or C)
 builder.RequireClaim("Claim", "A", "B", "C");
 //any of of two roles
 builder.RequireRole("Admin", "Supervisor");
});

The sky is the limit—you can use whatever logic you want to grant access. The Resource
property is prototyped as object, which means it can take any value; if called as part of
the MVC authorization filter, it will always be an instance of
AuthorizationFilterContext.

Let's now see a way to encapsulate these policies in reusable classes.

Authorization handlers
Authorization handlers are a way to encapsulate business validations in classes. There is an
Authorization API composed of the following:

IAuthorizationService: The entry point for all the authorization checks
IAuthorizationHandler: An implementation of an authorization rule
IAuthorizationRequirement: The contract for a single authorization
requirement, to be passed to an authorization handler
AuthorizationHandler<TRequirement>: An abstract base implementation of
IAuthorizationHandler that is bound to a specific
IAuthorizationRequirement

Security Chapter 11

[430]

We implement an IAuthorizationHandler (perhaps subclassing from
AuthorizationHandler<TRequirement>) and we define our rules in there, like this:

public sealed class DayOfWeekAuthorizationHandler :
AuthorizationHandler<DayOfWeekRequirement>
{
 protected override Task HandleRequirementAsync(
 AuthorizationHandlerContext context,
 DayOfWeekRequirement requirement)
 {
 if ((context.Resource is DayOfWeek requestedRequirement) &&
 (requestedRequirement == requirement.DayOfWeek))
 {
 context.Succeed(requirement);
 }
 else
 {
 context.Fail();
 }

 return Task.CompletedTask;
 }
}

public sealed class DayOfWeekRequirement : IAuthorizationRequirement
{
 public DayOfWeekRequirement(DayOfWeek dow)
 {
 this.DayOfWeek = dow;
 }

 public DayOfWeek DayOfWeek { get; }
}

This handler responds to a requirement of DayOfWeekRequirement type. It is bound
automatically to it when one such requirement is passed to the AuthorizeAsync method.

An authorization pipeline can take a number of requirements, and for the authorization to
succeed, all of the requirements must succeed too. This is a very simple example by which
we have a requirement for a specific day of the week, and the authorization handler either
succeeds or fails, depending on whether the current day of the week matches the given
requirement.

Security Chapter 11

[431]

The IAuthorizationService class is registered with the DI framework; the default
instance is DefaultAuthorizationService. We would fire a check for permission using
the following code:

IAuthorizationService authSvc = ...;

if (await (authSvc.AuthorizeAsync(
 user: this.User,
 resource: DateTime.Today.DayOfWeek,
 requirement: new DayOfWeekRequirement(DayOfWeek.Monday))).Succeeded)
) { ... }

An authorization handler can also be bound to a policy name, as illustrated in the following
code snippet:

services.AddAuthorization(options =>
{
 options.AddPolicy("DayOfWeek", builder =>
 {
 builder.AddRequirements(new DayOfWeekRequirement
 (DayOfWeek.Friday));
 });
});

In this case, the previous call would be the following instead:

if ((await (authSvc.AuthorizeAsync(
 user: this.User,
 resource: DateTime.Today.DayOfWeek,
 policyName: "DayOfWeek"))).Succeeded)
) { ... }

The parameters of these two overloads are the following:

user (ClaimsPrincipal): The currently logged-in user
policyName (string): A registered policy name
resource (object): Any object that will be passed to the authorization pipeline
requirement (IAuthorizationRequirement): One or more requirements that
will be passed along to the authorization handler

If we ever want to override the default authorization handler, we can do so very easily in
ConfigureServices, like this:

services.AddSingleton<IAuthorizationHandler,
DayOfWeekAuthorizationHandler>();

Security Chapter 11

[432]

This will register a custom authorization handler on which we need to perform our own
checks. Beware when replacing the default handler because this can be tricky and it's easy
to forget something!

Now, if we need to use the context for more complex validations, we need to inject it into
the handler. The following example will allow access to requests coming from just the
localhost:

public sealed class LocalIpRequirement : IAuthorizationRequirement
{
 public const string Name = "LocalIp";
}

public sealed class LocalIpHandler :
AuthorizationHandler<LocalIpRequirement>
{
 public LocalIpHandler(IHttpContextAccessor httpContextAccessor)
 {
 this.HttpContext = httpContextAccessor.HttpContext;
 }

 public HttpContext HttpContext { get; }

 protected override Task HandleRequirementAsync(
 AuthorizationHandlerContext context,
 LocalIpRequirement requirement)
 {
 var success = IPAddress.IsLoopback(this.HttpContext.Connection
 .RemoteIpAddress);

 if (success)
 {
 context.Succeed(requirement);
 }
 else
 {
 context.Fail();
 }

 return Task.CompletedTask;
 }
}

Security Chapter 11

[433]

For this to work, we need to do the following:

Register the IHttpContextAccessor service, like this:1.

services.AddHttpContextAccessor();

RegisterLocalIpHandler as a scoped service, like this:2.

services.AddScoped<IAuthorizationHandler, LocalIpHandler>();

When we want to check whether the current request matches the policy, we do it3.
like this:

var result = await authSvc.AuthorizeAsync(
 user: this.User,
 requirement: new LocalIpRequirement(),
 policyName: LocalIpRequirement.Name
);

if (result.Succeeded) { ... }

And we should be fine.

Now, let's look at a way of querying current permissions defined as policies.

Resource-based authorization
We can leverage the authorization handlers to have resource-based authorization. Basically,
we ask the authorization service to check for permission to access a given resource and
policy. We call one of the AuthorizeAsync methods of the IAuthorizationService
instance, as illustrated in the following code snippet:

IAuthorizationService authSvc = ...;

if ((await authSvc.AuthorizeAsync(this.User, resource,
"Policy")).Succeeded) { ... }

The IAuthorizationService instance is normally obtained from the DI framework. The
AuthorizeAsync method takes the following parameters:

user (ClaimsPrincipal): The current user
resource (object): A resource to check for permission against policyName
policyName (string): The name of the policy for which to check permission
for resource

Security Chapter 11

[434]

This method can be called in both the controller and a view to check for fine-grained
permissions. What it will do is execute AuthorizationPolicy registered under the policy
name passing it the resource, which, in turn, will call all the registered authorization
handlers.

A typical example of a fine-grained authorization check would be to ask for edit permission
on a given record—for example, in a view, like this:

@inject IAuthorizationService authSvc
@model Order

@{
 var order = Model;
 }

@if ((await (authSvc.AuthorizeAsync(User, order, "Order.Edit"))).Succeeded)
{
 @Html.EditorForModel()
}
else
{
 @Html.DisplayForModel()
}

Here, we are checking a policy named Order.Edit, which is expecting a resource of
the Ordertype. All of its requirements are run, and, if they all succeed, then we are entitled
to edit the order; otherwise, we just display it.

And what if we need to allow any user to access a protected resource-controller action or
Razor page?

Allowing anonymous access
If, for any reason when using access control, you want to allow access to specific controllers
or a specific action in a controller, you can apply to it the [AllowAnonymous] attribute.
This will bypass any security handlers and execute the action. Of course, in the action or
view, you can still perform explicit security checks by checking the
HttpContext.User.Identity property.

Authorization is one of the two building blocks, and we talked about the different ways in
which we can define rules for web resources or named policies. In the next sections, we will
talk about other aspects of security, starting with request forgery.

Security Chapter 11

[435]

Checking requests for forgery
CSRF (or XSRF) attacks are one of the most common hacks by which a user is tricked into
performing some action in one of the sites to which they are logged in. For example,
imagine you have just visited your e-banking site and then you go to a malicious site,
without having logged out; some JavaScript on the malicious site could have the browser
post to the e-banking site an instruction to transfer some amount of money to another
account. Realizing that this is a serious problem, Microsoft has long supported an anti-
forgery package, Microsoft.AspNetCore.Antiforgery, which implements a mixture of
the Double Submit Cookie and Encrypted Token pattern described in the Open Web
Application Security Project (OWASP) cheat sheet: https:/ ​/​www. ​owasp. ​org/ ​index. ​php/
Cross-​Site_​Request_ ​Forgery_ ​(CSRF)_ ​Prevention_ ​Cheat_ ​Sheet#CSRF_ ​Specific_Defense

OWASP aims to provide a not-for-profit repository of best practices related to security on
the web. It lists common security problems and explains how to address them.

The anti-forgery framework does the following:

Generates a hidden field with an anti-forgery token on every form (this could
also be a header)
Sends a cookie with the same token
Upon postback, checks that it received an anti-forgery token as part of the
payload, and that it is identical to the anti-forgery cookie

The BeginForm method, by default, outputs an anti-forgery token when it produces a
<form> tag, unless called with the antiforgery parameter set to false.

You will need to register the required services by calling AddAntiforgery, as illustrated in
the following code snippet:

services.AddAntiforgery(options =>
{
 options.FormFieldName = "__RequestVerificationToken";
});

The possible options are as follows:

CookieName (string): The name of the cookie to replace the default one; this is
automatically generated with a prefix of .AspNetCore.Antiforgery.
CookiePath (PathString?): An optional path to restrict the applicability of the
cookie; the default is null, meaning that no path setting will be sent with the
cookie

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#CSRF_Specific_Defense

Security Chapter 11

[436]

CookieDomain (string): An optional domain to restrict (or augment) the
applicability of the cookie; the default is null, so no domain setting will be set
FormFieldName (string): The name of the hidden form field where the anti-
forgery token is to be stored; the default is __RequestVerificationToken, and
this is required
HeaderName (string): The header name that will store the token; the default is
RequestVerificationToken

RequireSsl (bool): True if the anti-forgery cookie is to be sent only using
HTTPS; the default is false
SuppressXFrameOptionsHeader (bool): Whether or not the X-Frame-
Options header should be sent; the default is false, which means that a value
of SAMEORIGIN will be sent

The anti-forgery service is registered under the IAntiforgery interface.

There are a number of attributes that can be used to control the default behavior, listed as
follows:

[ValidateAntiforgeryToken]: Adds anti-forgery validation to a specific
controller or action
[IgnoreAntiforgeryToken]: Disables anti-forgery validation on a specific
controller or action, if it has been globally enabled
[AutoValidateAntiforgeryToken]: Adds anti-forgery validation to any
unsafe requests (POST, PUT, DELETE, PATCH)

All of these can be added as global filters beside attributes, as illustrated in the following
code snippet:

services.AddMvc(options =>
{
 options.Filters.Add(new AutoValidateAntiforgeryTokenAttribute());
});

The difference between [ValidateAntiforgeryToken] and
[AutoValidateAntiforgeryToken] is that the latter is designed to be used as a global
filter; there is no need to apply it everywhere explicitly.

Check out https:/ ​/ ​docs. ​microsoft. ​com/ ​en- ​us/​aspnet/ ​core/ ​security/
anti- ​request- ​forgery for a more in-depth explanation of the anti-forgery
options available.

https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery

Security Chapter 11

[437]

What if you want to use it with AJAX, to also protect these kinds of requests? Well, first,
you need to get a token from the server and the name of the header to use so that you can
add it to each AJAX request. You can inject the token into a view and then add it to the
AJAX headers—for example, using jQuery, as illustrated in the following code block:

@using Microsoft.AspNetCore.Antiforgery
@inject IAntiforgery AntiForgery;

var headers = {};
headers['RequestVerificationToken'] = '@AntiForgery.GetAndStoreTokens
(HttpContext).RequestToken';

$.ajax({
 type: 'POST',
 url: url,
 headers: headers}
)
.done(function(data) { ... });

Here, we are sending the anti-forgery token with every AJAX request seamlessly, so the
ASP.NET Core framework catches it and is happy with it.

Next, we will see how to prevent script injection by using HTML coding.

Applying HTML encoding
The views engine in ASP.NET Core uses HTML encoders to render HTML, in an effort to
prevent script injection attacks. The RazorPage class, the base for all Razor views, features
an HtmlEncoder property of HtmlEncoder type. By default, it is obtained from DI
as DefaultHtmlEncoder , but you can set it to a different instance, although it is probably
not needed. We ask for content to be encoded explicitly by using the @("...") Razor
syntax, like this:

@("<div>encoded string</div>")

This will render the following HTML-encoded string:

<div>encoded string</div>

You can also explicitly do it using the Encode method of the IHtmHelper object, like this:

@Html.Encode("<div>encoded string</div>")

Security Chapter 11

[438]

Lastly, if you have a helper method that returns a value of IHtmlContent, it will
automatically be rendered using the registered HtmlEncoder.

If you want to learn more about script injection, please consult https:/ ​/
www.​owasp. ​org/ ​index. ​php/ ​Code_ ​Injection.

So much for script injection protection. Now, let's move on to HTTPS.

Working with HTTPS
The usage of HTTPS is becoming more and more common these days—not only is the
performance penalty that existed in the early days now gone, but it is also significantly
cheaper to get a certificate; in some cases, it may even be free—for example, Let's Encrypt
(https:/​/​letsencrypt. ​org) offers such certificates. Plus, search engines such as Google
boost results for sites served through HTTPS. Of course, ASP.NET Core fully supports
HTTPS. We will now see how to add certificates so that we can serve our sites using
HTTPS, and how to restrict access to HTTPS only.

Let's begin with certificates.

Certificates
In order to use HTTPS, we need a valid certificate—one that browsers accept as valid. We
can either acquire one from a root certificate provider or we can generate one, for
development purposes. This won't be recognized as coming from a trusted source.

In order to generate a certificate and install it on the machine's store (on Windows and
macOS), we run the following code:

dotnet dev-certs https --clean
dotnet dev-certs https --trust

If we need to, we can export the certificate file to the filesystem, like this:

dotnet dev-certs https --trust -ep .\certificate.pfx

https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org

Security Chapter 11

[439]

Keep in mind that the certificate serves the following two purposes:

Encrypting the communication
Ensuring that the web server is trustworthy

A development certificate such as the one generated by the dotnet tool only serves the first
purpose.

After we have obtained a certificate, we must now use it, and this depends on our hosting
choice. This is covered next.

Hosting our app
The way to proceed depends on whether we are connecting to the ASP.NET Core host
(such as Kestrel) directly or through a reverse proxy such as IIS Express. IIS Express is the
light version of IIS that you can run locally for development purposes. It offers all the
features of full-blown IIS, but not quite the same performance and scalability. Let's see what
IIS Express is.

IIS Express
If we are to use IIS Express, we just need to configure its settings to enable Secure Sockets
Layer (SSL), shown as follows:

Security Chapter 11

[440]

Kestrel
If, on the other hand, we are going with Kestrel, things are a bit different. First, we will
need the Microsoft.AspNetCore.Server.Kestrel.Https NuGet package and a
certificate file. In the bootstrap code, it is used implicitly. We need to run the following
code:

Host
 .CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(builder =>
 {
 builder.ConfigureKestrel(options =>
 {
 options.ListenAnyIP(443, listenOptions =>
 {
 listenOptions.UseHttps("certificate.pfx", "<password>");
 });
 });
 builder.UseStartup<Startup>();
 });

You will observe the following:

A certificate is loaded from a file called certificate.pfx, protected by a
password of <password>.
We listen on port 443 for any of the local IP addresses.

If we just want to change the default port and hosting server (Kestrel) but not use a
certificate, it's easy to do by code, as follows:

builder.UseSetting("https_port", "4430");

This can also happen through the ASPNETCORE_HTTPS_PORT environment variable.

HTTP.sys
For HTTP.sys, we will need the Microsoft.AspNetCore.Server.HttpSys package, and
instead of ConfigureKestrel, we call UseHttpSys, like this:

.UseHttpSys(options =>
{
 options.UrlPrefixes.Add("https://*:443");
});

Security Chapter 11

[441]

A certificate for use with HTTP.sys needs to be configured on Windows, for the specific
port and host header that you wish to serve.

In the modern web, we are likely to want to use HTTPS only, so let's see how we can
enforce this.

Forcing HTTPS
Sometimes, we may require that all calls are made through HTTPS, and all other requests
are rejected. For that we can use a global filter, RequireHttpsAttribute, as illustrated in
the following code block:

services.Configure<MvcOptions>(options =>
{
 options.SslPort = 443; //this is the default and can be omitted
 options.Filters.Add(new RequireHttpsAttribute());
});

We also need to tell MVC which port we are using for HTTPS, just for cases where we use a
non-standard one (443 is the standard).

Another option is to do it controller by controller, like this:

[RequireHttps]
public class SecureController : Controller
{
}

Or, this can happen action by action, like this:

public class SecureController : Controller
{
 [HttpPost]
 [RequireHttps]
 public IActionResult ReceiveSensitiveData(SensitiveData data) { ... }
}

Mind you, using [RequireHttps] in web APIs might not be a good
idea—if your API client is not expecting it, it will fail and you may not
know what the problem is.

What if we have the two versions, HTTP and HTTPS, and want to silently direct our clients
to using HTTPS?

Security Chapter 11

[442]

Redirecting to HTTPS
ASP.NET Core includes a redirection middleware. It is similar in functionality to the
ASP.NET IIS Rewrite module (see https:/ ​/​www. ​iis. ​net/ ​learn/ ​extensions/ ​url- ​rewrite-
module). Its description is beyond the scope of this chapter, but it is sufficient to explain
how we can force a redirect from HTTP to HTTPS. Have a look at the following code
snippet:

var options = new RewriteOptions()
 .AddRedirectToHttps();

app.UseRewriter(options);

This simple code in Configure registers the redirection middleware and instructs it to
redirect all traffic coming to HTTP to the HTTPS protocol. It's as simple as that, but it can
even be simpler: since version 2.1 of ASP.NET Core, all we need to do is call
UseHttpsRedirection in the Configure method, like this:

app.UseHttpsRedirection();

And should we want to specify additional information, we call AddHttpsRedirection
with options in ConfigureServices, like this:

services.AddHttpsRedirection(options =>
{
 options.RedirectStatusCode = StatusCodes.Status307TemporaryRedirect;
 options.HttpsPort = 4430;
});

Again, redirecting to HTTPS with web APIs might not be a good idea
because API clients may be configured to not follow redirects.

Still on the HTTPS track, let's now study another mechanism for directing users to HTTPS.

Using HSTS
HSTS is a web security policy mechanism that helps protect websites against protocol
downgrade attacks (HTTPS -> HTTP) and cookie hijacking. It allows web servers to declare
that web browsers should only interact with it using secure HTTPS connections, and never
via the insecure HTTP protocol. Browsers memorize this definition.

https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module
https://www.iis.net/learn/extensions/url-rewrite-module

Security Chapter 11

[443]

To learn more about HSTS, please consult https:/ ​/​developer. ​mozilla.
org/​en- ​US/ ​docs/ ​Web/ ​HTTP/ ​Headers/ ​Strict- ​Transport- ​Security.

HSTS is added to the Configure method, like this:

app.UseHsts();

It adds a header to the response, like this:

Strict-Transport-Security: max-age=31536000

As you can see, it has a max-age parameter. We configure it through a call to AddHsts, in
ConfigureServices, like this:

services.AddHsts(options =>
{
 options.MaxAge = TimeSpan.FromDays(7);
 options.IncludeSubDomains = true;
 options.ExcludedHosts.Add("test");
 options.Preload = true;
});

HSTS preload
If a site sends the preload directive in an HSTS header, it is considered to be requesting
inclusion in the preload list and may be submitted via the form on the https:/ ​/
hstspreload.​org site.

So, in this section, we've seen how to use HTTPS, from building a certificate, to using it, and
forcing redirection from HTTP to HTTPS. Now, let's move on to other aspects of security,
starting with CORS.

Understanding CORS
CORS is essentially the ability to request a resource from one domain from a page being
served by a different domain: think, for example, of a page at http://mysite.com
requesting a JavaScript file from http://javascriptdepository.com. This is done in all
big portals—for example, for including visitor tracking or ad scripts. Modern browsers
forbid this by default, but it is possible to enable it on a case-by-case basis.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://hstspreload.org
https://hstspreload.org
https://hstspreload.org
https://hstspreload.org
https://hstspreload.org
https://hstspreload.org

Security Chapter 11

[444]

If you want to learn more about CORS, please consult https:/ ​/
developer. ​mozilla. ​org/ ​en/​docs/ ​Web/ ​HTTP/ ​Access_control_CORS.

ASP.NET Core supports CORS servicing. You first need to register the required services (in
ConfigureServices), like this:

services.AddCors();

Or, a slightly more complex example involves defining a policy, like this:

services.AddCors(options =>
{
 options.AddPolicy("CorsPolicy", builder =>
 builder
 .AllowAnyOrigin()
 .AllowAnyMethod()
 .AllowAnyHeader()
 .AllowCredentials()
);
});

A policy can take specific URLs; there is no need to support any origin. Have a look at the
following code example:

builder
 .WithOrigins("http://mysite.com", "http://myothersite.com")

A more complete example, with headers, methods, and origins, would be this:

var policy = new CorsPolicy();
policy.Headers.Add("*");
policy.Methods.Add("*");
policy.Origins.Add("*");
policy.SupportsCredentials = true;

services.AddCors(options =>
{
 options.AddPolicy("CorsPolicy", policy);
});

https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS

Security Chapter 11

[445]

The Headers, Methods, and Origins collections contain all the values that should be
allowed explicitly; adding * to them is the same as calling AllowAnyHeader,
AllowAnyMethod, and AllowAnyOrigin. Setting SupportsCredentials to true means
that an Access-Control-Allow-Credentials header will be returned, meaning that the
application allows login credentials to be sent from a different domain. Beware of this
setting because it means that a user in a different domain can try to log in to your app,
probably even as the result of malicious code. Use this judiciously.

And then, add the CORS middleware in Configure, which will result in globally allowing
CORS requests. The code can be seen in the following snippet:

app.UseCors(builder => builder.WithOrigins("http://mysite.com"));

Or, do this with a specific policy, like this:

app.UseCors("CorsPolicy");

All of this requires the Microsoft.AspNetCore.Cors NuGet package, mind you. You can
add as many URLs as you like, using the WithOrigins method, and it can be called
sequentially with all the addresses that are to be granted access. You can restrict it to
specific headers and methods too, as follows:

app.UseCors(builder =>
 builder
 .WithOrigins("http://mysite.com", "http://myothersite.com")
 .WithMethods("GET")
);

One thing to keep in mind is that UseCors must be called before UseMvc!

If, on the other hand, you want to enable CORS on a controller by controller or action by
action basis, you can use the [EnableCors] attribute, as illustrated in the following code
snippet:

[EnableCors("CorsPolicy")]
public class HomeController : Controller { ... }

Here, you need to specify a policy name and not individual URLs. Likewise, you can
disable CORS for a specific controller or action by applying the [DisableCors] attribute.
This one does not take a policy name; it just disables CORS completely.

Now for something completely different. Let's study the providers available to ASP.NET
Core for encrypting and decrypting data on the fly.

Security Chapter 11

[446]

Using data protection
ASP.NET Core uses data protection providers to protect data that is exposed to third
parties, such as cookies. The IDataProtectionProvider interface defines its contract and
ASP.NET Core ships with a default instance registered in the DI framework of
KeyRingBasedDataProtector, as illustrated in the following code snippet:

services.AddDataProtection();

The data protection provider is used by the cookies' authentication and also the cookie
temp data provider APIs. A data protection provider exposes a method,
CreateProtector, that is used to retrieve a protector instance, which can then be used to
protect a string, as illustrated in the following code snippet:

var protector = provider.CreateProtector("MasteringAspNetCore");
var input = "Hello, World";
var output = protector.Protect(input);
//CfDJ8AAAAAAAAAAAAAAAAAAAAA...uGoxWLjGKtm1SkNACQ

You can certainly use it for other purposes, but for the two presented previously, you just
need to pass a provider instance to the CookiesAuthenticationOptions instance, in the
ConfigureServices method, as illustrated in the following code snippet:

services.AddCookieAuthentication(CookieAuthenticationDefaults.Authenticatio
nScheme, options =>
{
 options.DataProtectionProvider = instance;
});

The CookieTempDataProvider class already receives an instance of
IDataProtectionProvider in its constructor, so when the DI framework builds it, it
passes in the registered instance.

A data protection provider is very useful if you are using a clustered solution and you want
to share a state among the different machines of the cluster in a secure way. In that case,
you should use both a data protection and a distributed cache provider
(IDistributedCache implementation), such as Redis, where you will store the shared
key. If, for some reason, you need to go without a distributed provider, you can store the
shared key file locally. It goes like this:

services
 .AddDataProtection()
 .PersistKeysToFileSystem(new DirectoryInfo("<location>"));

Security Chapter 11

[447]

If you wish, you can set the <location> on the configuration file, like this:

{
 "DataProtectionSettings": {
 "Location": "<location>"
 }
}

Here, <location> refers to the path where the data file will be stored.

Data protection providers is a big topic and one that is outside the scope
of this book. For more information, please consult https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​aspnet/ ​core/ ​security/ ​data- ​protection/ ​.

So, we've seen how we can protect arbitrary data, and let's now see how we can protect
static files.

Protecting static files
There is no way to protect static files on ASP.NET Core. It goes without saying, however,
that that doesn't mean you can't do it. Essentially, you have the following two options:

Keeping the files that you want to serve outside the wwwroot folder and using a
controller action to retrieve them; this action should enforce any security
mechanism you want
Using a middleware component to check access to your files and optionally
restrict access to them

We will see each process in the next sections.

Using an action to retrieve files
So, you want to use an action method to retrieve a file. Either decorate this action method
with an [Authorize] attribute or check for fine-grained access inside it
(IAuthorizationService.AuthorizeAsync). Have a look at the following code:

private static readonly IContentTypeProvider _contentTypeProvider =
 new FileExtensionContentTypeProvider();

[Authorize]
[HttpGet]

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/

Security Chapter 11

[448]

public IActionResult DownloadFile(string filename)
{
 var path = Path.GetDirectoryName(filename);

 //uncomment this if fine-grained access is not required
 if (this._authSvc.AuthorizeAsync(this.User, path, "Download"))
 {
 _contentTypeProvider.TryGetContentType("filename",
 out var contentType);

 var realFilePath = Path.Combine("ProtectedPath", filename);

 return this.File(realFilePath, contentType);
 }

 return this.Challenge();
}

This will only allow GET requests by authenticated users, and the download policy is
checked for the path of the file to retrieve. Then, the requested file is combined with a
ProtectedPath in order to get the real filename. An instance
of FileExtensionContentTypeProvider is used to infer the content type for the file
based on its extension.

Using middleware to enforce security
You know about the ASP.NET Core/Open Web Interface for .NET (OWIN) pipeline from
Chapter 1, Getting Started with ASP.NET Core. Each middleware component in it can affect
the others, even by preventing their execution. This other option will intercept any file.
Let's add a configuration class and an extension method, as follows:

public class ProtectedPathOptions
{
 public PathString Path { get; set; }
 public string PolicyName { get; set; }
}

public static IApplicationBuilder UseProtectedPaths(
 this IApplicationBuilder app, params ProtectedPathOptions [] options)
{
 foreach (var option in options ??
 Enumerable.Empty<ProtectedPathOptions>())
 {
 app.UseMiddleware<ProtectedPathsMiddleware>(option);
 }

Security Chapter 11

[449]

 return app;
}

Next, the code for the actual middleware component needs to be added quite early in the
pipeline (Configure method), like this:

public class ProtectedPathsMiddleware
{
 private readonly RequestDelegate _next;
 private readonly ProtectedPathOptions _options;

 public ProtectedPathsMiddleware(RequestDelegate next,
 ProtectedPathOptions options)
 {
 this._next = next;
 this._options = options;
 }

 public async Task InvokeAsync(HttpContext context)
 {
 using (context.RequestServices.CreateScope())
 {
 var authSvc = context.RequestServices.GetRequiredService
 <IAuthorizationService>();

 if (context.Request.Path.StartsWithSegments
 (this._options.Path))
 {
 var result = await authSvc.AuthorizeAsync(
 context.User,
 context.Request.Path,
 this._options.PolicyName);

 if (!result.Succeeded)
 {
 await context.ChallengeAsync();
 return;
 }
 }
 }

 await this._next.Invoke(context);
 }
}

This middleware goes through all registered path protection options and checks whether
the policy they specify is satisfied by the request path. If not, they challenge the response,
effecting redirection to the login page.

Security Chapter 11

[450]

To activate this, you need to add this middleware to the pipeline, in the Configure
method, like this:

app.UseProtectedPaths(new ProtectedPathOptions { Path = "/A/Path",
PolicyName = "APolicy" });

If, by any chance, you need to lock down your app—meaning bring it
offline—you can do so by adding an app_offline.htm file to the root of
your app (not the wwwroot folder!). If this file exists, it will be served, and
any other requests will be ignored. This is an easy way to temporarily
disable access to your site, without actually changing anything.

We've seen how we can apply authorization policies for static files. In the next section, we
see an explanation of what the GDPR is.

Learning about the GDPR
The European Union (EU) adopted the GDPR in 2018. Although this is mostly for
European countries, all sites that are available there should also comply with it. I won't go
into the technical aspects of this regulation, but essentially, it ensures that users grant
permission for others to access their personal data and are free to revoke this access, and
therefore have them destroy this information at any time they like. This can impact
applications in many ways, even forcing the adoption of specific requirements. At the very
least, for all applications that use cookies for tracking personal information, they are forced
to warn users and get their consent.

Read more about the GDPR here: https:/ ​/​gdpr- ​info. ​eu/ ​

Required cookies
The default ASP.NET Core templates, as of version 3.x, include support for getting user's
approval for using cookies. The CookieOptions class, used to supply cookie data such as
expiration, now has a new property, IsEssential, depending on an application's cookie
policy, as dictated by its CookiePolicy instance's CheckConsentNeeded property. This is
actually a function, and if it returns true but the user has not explicitly granted permission,
some things will not work: TempData and Session cookies won't work.

https://gdpr-info.eu/
https://gdpr-info.eu/
https://gdpr-info.eu/
https://gdpr-info.eu/
https://gdpr-info.eu/
https://gdpr-info.eu/
https://gdpr-info.eu/
https://gdpr-info.eu/
https://gdpr-info.eu/
https://gdpr-info.eu/
https://gdpr-info.eu/

Security Chapter 11

[451]

The actual consent is achieved by setting a client cookie (who could be able to tell?),
through the ITrackingConsentFeature feature, as illustrated in the following code
snippet:

HttpContext.Features.Get<ITrackingConsentFeature>().GrantConsent();

Or, should we wish to deny this consent, we would run the following code:

HttpContext.Features.Get<ITrackingConsentFeature>().WithdrawConsent();

At any point, we can check the current state of the grant by running the following code:

var feature = HttpContext.Features.Get<ITrackingConsentFeature>();
var canTrack = feature.CanTrack;
var hasConsent = feature.HasConsent;
var isConsentNeeded = feature.IsConsentNeeded;

The properties' meanings are as follows:

CanTrack: Whether consent has been given or it is not required
HasConsent: Whether consent has been given
IsConsentNeeded: Whether the application has demanded consent for cookies

The configuration should be done in the ConfigureServices method, as illustrated in the
following code snippet:

services
 .Configure<CookiePolicyOptions>(options =>
 {
 options.CheckConsentNeeded = (context) => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 options.HttpOnly = HttpOnlyPolicy.Always;
 options.Secure = CookieSecurePolicy.SameAsRequest;
 });

As you can see, CheckConsentNeeded is a delegate that takes as its sole parameter an
HttpContext instance and returns a Boolean value; this way, you can decide on a case-by-
case basis what to do.

MinimumSameSitePolicy, HttpOnly, and Secure behave exactly the same as in the
CookieOptions class, used in setting individual cookies' options.

After the configuration, we need to enforce this by adding the middleware to the pipeline;
this goes in the Configure method, like this:

app.UseCookiePolicy();

Security Chapter 11

[452]

Personal data
Another thing that we already talked about is that, when using the Identity authentication
provider, you should mark any personal properties that you add to the user model with the
[PersonalData] attribute. This is a hint for you that these properties will need to be
supplied to the user, should they ask for that, and, likewise, deleted together with the rest
of the user data if the user asks you to.

Keep in mind the GDPR is a requirement in Europe and, generally speaking, is something
that is expected all around the world, so this is definitely something that you should be
prepared for.

Now, another aspect of security, related to model binding.

Binding security
A whole different subject now. We know that ASP.NET Core automatically binds
submitted values to model classes, but what would happen if we hijacked a request and
asked ASP.NET to bind a different user or role than the one we have? For example,
consider if we have a method that updates the user profile using the following model:

public class User
{
 public string Id { get; set; }
 public bool IsAdmin { get; set; }
 //rest of the properties go here
}

If this model is committed to the database, it is easy to see that if we pass a value
of IsAdmin=true, then we would become administrators instantly! To prevent this
situation, we should do either of the following:

Move out sensitive properties from the public model, the one that is retrieved
from the data sent by the user
Apply [BindNever] attributes to these sensitive properties, like this:

[BindNever]
public bool IsAdmin { get; set; }

In the latter case, we need to populate these properties ourselves, using the right logic.

Security Chapter 11

[453]

As a rule of thumb, never use as the MVC model the domain classes that
you use in your object-relational mapping (O/RM); it is better to have a
clear distinction between the two and map them yourself (even if with the
help of a tool such as AutoMapper), taking care of sensitive properties.

Be careful with the properties that you are binding because you do not want users to have
access to everything. Review your model and binding rules carefully.

Summary
This chapter talked about the many aspects of security. Here, we learned how to make our
application more secure and resilient to attacks.

We understood the use of authorization attributes to protect sensitive resources of your
application. It's better to use policies than actual named claims or roles because it's so much
easier to change a policy configuration, and you can do pretty much everything.

Then, we saw how to use identity for authentication rather than rolling out your own
mechanism. If your requirements so allow it, use social logins, as this is probably widely
accepted since most people use social networking apps.

Be careful with binding sensitive data to your model; prevent it from happening
automatically and use different models for MVC and the actual data storage. We saw that
we always HTML-encode data that comes from a database, to prevent the possibility that a
malicious user has inserted JavaScript into it.

We saw that we need to be wary of static files as they are not protected by default. It is
preferable to retrieve the files.

Finally, in the last part of the chapter, we understood that we should consider moving the
entirety of your site to HTTPS, as it significantly reduces the chances of eavesdropping on
your data.

This was quite an extensive topic that covered many aspects of security. If you stick to these
recommendations, your app will be somewhat safer, but this is not enough. Always follow
the security recommendation rules for the APIs you use, and make sure you know what
their implications are.

In the next chapter, we shall see how we can extract information as to what is happening
inside ASP.NET Core

Security Chapter 11

[454]

Questions
So, by the end of this chapter, you should know the answers to the following questions:

What attribute can we use to mark a method or controller so that it can only be1.
called through HTTPS?
What is the difference between role-based and policy-based authorization?2.
What is the purpose of CORS?3.
What is the purpose of HSTS?4.
What is the challenge stage of the authentication process?5.
Why should we take care when binding requests to model classes?6.
What is the sliding expiration of a cookie?7.

3
Section 3: Advanced Topics

This section will cover advanced topics, looking at proven techniques to improve code
performance.

This section has the following chapters:

Chapter 12, Logging, Tracing, and Diagnostics
Chapter 13, Understanding How Testing Works
Chapter 14, Client-Side Development
Chapter 15, Improving Performance and Scalability
Chapter 16, Real-Time Communication
Chapter 17, Introducing Blazor
Chapter 18, gRPC and Other Topics
Chapter 19, Application Deployment
Chapter 20, Appendix A: The dotnet Tool

12
Logging, Tracing, and

Diagnostics
Logging, tracing, and metrics are essential features of any non-trivial application, for the
following reasons:

Logging tells us what the system is doing, what it is about to do, the errors it
encounters, and so on.
Tracing is about collecting transactional information about journeys and how
they flow in a distributed system.
Metrics involves getting information in real time about what is happening and
possibly producing alerts from it.

In this chapter, we will have a look at some of the options we have at hand, from the
simplest to the most complex.

We will cover the following topics in this chapter:

Introducing the .NET Core Common Logging framework
Writing custom logging middleware
Using tracing and diagnostics
Using performance (event) counters for obtaining metrics
Using telemetry with Microsoft Azure AppInsights, Amazon Web Services
(AWS) CloudWatch, and New Relic
Performing ASP.NET Core health checks

Logging, Tracing, and Diagnostics Chapter 12

[457]

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 software development kit (SDK) and some form of text editor. Of course, Visual
Studio 2019 (any edition) meets all the requirements, but you can also use Visual Studio
Code, for example.

For using Azure, AWS, or New Relic, you will need working accounts with these providers.

The source code can be retrieved from GitHub here: https:/ ​/​github. ​com/
PacktPublishing/​Modern- ​Web- ​Development- ​with- ​ASP. ​NET- ​Core- ​3-​Second- ​Edition.

Introducing the .NET Core Common Logging
framework
Logging is an integral part of .NET Core, which provides several abstractions to support it;
needless to say, it is fully pluggable and extensible. The infrastructure classes, interfaces,
abstract base classes, enumerations, and so on are contained in the
Microsoft.Extensions.Logging.Abstractions NuGet package and the built-in
implementations are contained in the Microsoft.Extensions.Logging package. When
you log a message, it is routed to all registered logging providers.

Here, we will see the following:

Using logging services
Defining log levels
Using logging providers
Filtering logs
Writing custom log providers
Using dependency injection (DI) with the log providers
Using logging attributes

We will study each of these in the coming sections.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Logging, Tracing, and Diagnostics Chapter 12

[458]

Using logging services
We register the logging services by calling AddLogging in the ConfigureServices
method. This is actually done by other methods, such as AddMvc, so there is usually no
need to call it manually—except, of course, if we are not using Model-View-Controller
(MVC). There is no harm in doing so, though. Manually, it can be done as follows:

services.AddLogging();

In order to log into .NET Core, you need an instance of the ILogger (or ILogger<T>)
interface. You normally inject one into your class—controller, view component, tag helper,
and middleware—using the DI framework, which fully supports it. This is illustrated in the
following code snippet:

public class HomeController : Controller
{
 private readonly ILogger<HomeController> _logger;

 public HomeController(ILogger<HomeController> logger)
 {
 this._logger = logger;
 }
}

But you can also request an instance of the interface from the ILoggerFactory method, as
follows:

var logger1 = loggerFactory.CreateLogger<MyClass>();
//or
var logger2 = loggerFactory.CreateLogger("MyClass");

The category name is taken from the full type name of the generic class parameter.

The ILogger interface only offers three methods, plus a number of extension methods. The
core methods are listed here:

BeginScope: Starts a block to which all logs made inside it are related
IsEnabled: Checks whether a given log level is enabled to be logged
Log: Writes a log message to a specific log level, with an event ID and optional
formatter

Logging, Tracing, and Diagnostics Chapter 12

[459]

Defining log levels
Log levels are defined in the LogLevel enumeration, as follows:

Level Numeric
value Purpose

Trace 0 Logs that contain the most detailed messages. These messages may contain
sensitive application data.

Debug 1
Logs that are used for interactive investigation during development. These
logs should primarily contain information useful for debugging and have no
long-term value.

Information 2 Logs that track the general flow of the application. These logs should have
long-term value.

Warning 3 Logs that highlight an abnormal or unexpected event in the application flow,
but do not otherwise cause the application execution to stop.

Error 4
Logs that highlight when the current flow of execution is stopped due to a
failure. These should indicate a failure in the current activity, not an
application-wide failure.

Critical 5 Logs that describe an unrecoverable application or system crash, or a
catastrophic failure that requires immediate attention.

None 6 Specifies that a logging category should not write any messages.

As you can see, these log levels have ascending numeric values, starting with the most
verbose and potentially uninteresting (except for debugging purposes) and ending in the
most severe. The logging framework is designed so that we can filter out levels below a
given one, so as to avoid unnecessary clutter in the logging. To check whether a given level
is enabled, we use IsEnabled.

The Log generic method is usually the most interesting one, and it takes the following
parameters:

logLevel (LogLevel): The desired log level
eventId (EventId): An event ID
state (TState): The state to log
exception (Exception): An exception to log
formatter (Func<TState, Exception, string>): A formatting function
based on the state and the possible exception

Each log entry has the following information:

Log level
Timestamp

Logging, Tracing, and Diagnostics Chapter 12

[460]

Category
State of exception
Event ID
Scope name (if called from inside a scope)

When we request a logger instance from ILoggerFactory, which is normally done
automatically by declaring an ILogger<T> instance in the constructor of a class, the T
parameter is the category name; it is the same as the fully qualified type name.

By far the most common message kind that we want to log is strings (or exceptions), so
there are a few extension methods that do just that, as follows:

LogTrace

LogDebug

LogInformation

LogWarning

LogError

LogCritical

As you can see, all of these methods are bound to a specific log level, and each has three
overloads for taking a combination of these parameters, as follows:

message (string): A message to log, with optional parameter placeholders (for
example, {0}, {1}, and so on)
parameters (params object []): The optional parameters for the message to
log
eventId (EventId): A correlation ID
exception (Exception): An exception to log, if there is one

Every one of the three overloads takes message plus its optional parameters, another one
takes eventId, and the other takes exception.

What is the event ID used for?, I hear you ask. Well, it is a correlation ID, an identifier that is
possibly unique among requests and which correlates several logging messages together so
that someone analyzing them can find out whether they are related. Event IDs are
essentially a number plus an optional name. If not supplied, they are not used.

A scope merely includes the given scope name in all the logging messages until the scope is
ended. As BeginScope returns an IDisposable instance, calling its Dispose method
ends the scope.

Logging, Tracing, and Diagnostics Chapter 12

[461]

Using logging providers
A logging provider is a class that implements the ILoggerProvider interface. Logging
providers need to be registered with the logging framework so that they can be used.
Normally, this is done by either the ILoggerFactory.AddProvider method or an
extension method supplied by the provider.

Microsoft ships .NET Core with the following providers:

Provider NuGet package Purpose

Azure App
Service Microsoft.Extensions.Logging.AzureAppServices

Logs to Azure Blob
storage or to the
filesystem

Console Microsoft.Extensions.Logging.Console Logs to the console

Debug Microsoft.Extensions.Logging.Debug
Logs using
Debug.WriteLine

EventLog Microsoft.Extensions.Logging.EventLog Logs to the Windows
EventLog

EventSource Microsoft.Extensions.Logging.EventSource
Logs to Event Tracing
for Windows (ETW)

TraceSource Microsoft.Extensions.Logging.TraceSource
Logs using
TraceSource

Normally, we register these providers in the Startup class of ASP.NET Core during its
bootstrap, but we can also do it earlier, in the Program class; this has the benefit of
capturing some early events that may be raised before Startup comes along. For that, we
need to add an extra step to the IHostBuilder call, as illustrated in the following code
snippet:

Host
 .CreateDefaultBuilder(args)
 .ConfigureLogging(builder =>
 {
 builder
 .AddConsole()
 .AddDebug();
 })
 //rest goes here

Logging, Tracing, and Diagnostics Chapter 12

[462]

From ASP.NET Core 2 onward, the configuration of the logging mechanism is done earlier,
in the ConfigureServices method, when we register the logging providers with the DI
framework, as illustrated in the following code snippet:

services
 .AddLogging(options =>
 {
 options
 .AddConsole()
 .AddDebug();
 });

Azure App Service logging has, of course, much more to it than the other
built-in providers. For a good introduction to it, outside the scope of this
book, please have a look at https:/ ​/​blogs. ​msdn. ​microsoft. ​com/​webdev/
2017/ ​04/ ​26/ ​asp- ​net- ​core- ​logging.

There are several other providers for .NET Core out there, including the following:

Provider NuGet package Source

AWS AWS.Logger.AspNetCore
https:/ ​/​github. ​com/ ​aws/ ​aws- ​logging-
dotnet

Elmah.io Elmah.Io.Extensions.Logging
https:/ ​/​github. ​com/ ​elmahio/ ​Elmah. ​Io.
Extensions. ​Logging

Log4Net log4net
https:/ ​/​github. ​com/ ​apache/ ​logging-
log4net

Loggr Loggr.Extensions.Logging
https:/ ​/​github. ​com/ ​imobile3/ ​Loggr.
Extensions. ​Logging

NLog NLog https:/ ​/​github. ​com/ ​NLog
Serilog Serilog https:/ ​/​github. ​com/ ​serilog/ ​serilog

Of these packages, Serilog can do structured logging, something else besides just strings.

Filtering logs
We can restrict (filter) logging based on the following criteria:

Log level
Category name

This means that, for a specific provider, we can log events of all levels above or equal to a
given one, for categories starting with a particular name.

https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://blogs.msdn.microsoft.com/webdev/2017/04/26/asp-net-core-logging
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/apache/logging-log4net
https://github.com/apache/logging-log4net
https://github.com/apache/logging-log4net
https://github.com/apache/logging-log4net
https://github.com/apache/logging-log4net
https://github.com/apache/logging-log4net
https://github.com/apache/logging-log4net
https://github.com/apache/logging-log4net
https://github.com/apache/logging-log4net
https://github.com/apache/logging-log4net
https://github.com/apache/logging-log4net
https://github.com/apache/logging-log4net
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/NLog
https://github.com/NLog
https://github.com/NLog
https://github.com/NLog
https://github.com/NLog
https://github.com/NLog
https://github.com/NLog
https://github.com/NLog
https://github.com/NLog
https://github.com/serilog/serilog
https://github.com/serilog/serilog
https://github.com/serilog/serilog
https://github.com/serilog/serilog
https://github.com/serilog/serilog
https://github.com/serilog/serilog
https://github.com/serilog/serilog
https://github.com/serilog/serilog
https://github.com/serilog/serilog
https://github.com/serilog/serilog
https://github.com/serilog/serilog

Logging, Tracing, and Diagnostics Chapter 12

[463]

Since ASP.NET Core 2, we can configure default global filters, per category and log level;
the lambda expression lets us return a Boolean value to denote whether or not the log
should be processed, as illustrated in the following code snippet:

services
 .AddLogging(options =>
 {
 options.AddFilter((category, logLevel) => logLevel >=
 LogLevel.Warning);
 });

Or, just filter by category, as in this example, where the lambda just takes the category
name:

services
 .AddLogging(options =>
 {
 options.AddFilter("Microsoft", LogLevel.Warning);
 });

If we want to filter the logging output for a specific provider, we add it as a generic
template method to AddFilter, as follows:

services
 .AddLogging(options =>
 {
 options.AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Warning);
 //or, with a lambda
 options.AddFilter<ConsoleLoggerProvider>((categoryName,
 logLevel) => true);
 });

This can also be done per provider, category, and log level, like this:

services
 .AddLogging(options =>
 {
 options.AddFilter<ConsoleLoggerProvider>("System", logLevel =>
 logLevel >= LogLevel.Warning);
 //same as this
 options.AddFilter((provider, category, logLevel) =>
 {
 //you get the picture
 });
 });

Logging, Tracing, and Diagnostics Chapter 12

[464]

Additionally, providers can be configured in the Program class, as part of the host building
process, as illustrated in the following code snippet:

Host
 .CreateDefaultBuilder(args)
 .ConfigureLogging((hostingContext, builder) =>
 {
 builder.AddConfiguration(hostingContext.Configuration.
 GetSection("Logging"));
 builder.AddConsole(LogLevel.Warning);
 builder.AddDebug();
 })
 //rest goes here

Writing custom log providers
A provider that does not come out of the box—that is, is not included in ASP.NET Core—is
one that writes to a file. A (somewhat simple) file logging provider could look like this:

public sealed class FileLoggerProvider : ILoggerProvider
{
 private readonly Func<string, LogLevel, bool> _func;

 public FileLoggerProvider(Func<string, LogLevel, bool> func)
 {
 this._func = func;
 }

 public FileLoggerProvider(LogLevel minimumLogLevel) :
 this((category, logLevel) => logLevel >= minimumLogLevel)
 {
 }

 public ILogger CreateLogger(string categoryName)
 {
 return new FileLogger(categoryName, this._func);
 }

 public void Dispose()
 {
 }
}

public sealed class FileLogger : ILogger
{
 private readonly string _categoryName;

Logging, Tracing, and Diagnostics Chapter 12

[465]

 private readonly Func<string, LogLevel, bool> _func;

 public FileLogger(string categoryName, Func<string, LogLevel,
 bool> func)
 {
 this._categoryName = categoryName;
 this._func = func;
 }

 public IDisposable BeginScope<TState>(TState state)
 {
 return new EmptyDisposable();
 }

 public bool IsEnabled(LogLevel logLevel)
 {
 return this._func(this._categoryName, logLevel);
 }

 public void Log<TState>(
 LogLevel logLevel,
 EventId eventId,
 TState state,
 Exception exception,
 Func<TState, Exception, string> formatter)
 {
 if (this.IsEnabled(logLevel))
 {
 var now = DateTime.UtcNow;
 var today = now.ToString("yyyy-MM-dd");
 var fileName = $"{this._categoryName}_{today}.log";
 var message = formatter(state, exception);

 File.AppendAllText(fileName, $"{message}\n");
 }
 }
}

internal sealed class EmptyDisposable : IDisposable
{
 public void Dispose() { }
}

public static class LoggerFactoryExtensions
{
 public static ILoggerFactory AddFile(this ILoggerFactory
 loggerFactory,
 Func<string, LogLevel, bool> func)

Logging, Tracing, and Diagnostics Chapter 12

[466]

 {
 loggerFactory.AddProvider(new FileLoggerProvider(func));
 return loggerFactory;
 }

 public static ILoggerFactory AddFile(this ILoggerFactory
 loggerFactory, LogLevel minimumLogLevel)
 {
 return AddFile(loggerFactory, (category, logLevel) => logLevel >=
 minimumLogLevel);
 }

 public static ILoggingBuilder AddFile(this ILoggingBuilder
 loggingBuilder,
 Func<string, LogLevel, bool> func)
 {
 return loggingBuilder.AddProvider(new FileLoggerProvider(func));
 }

 public static ILoggingBuilder AddFile(this ILoggingBuilder
 loggingBuilder, LogLevel minimumLogLevel)
 {
 return AddFile(loggingBuilder, (category, logLevel) =>
 logLevel >= minimumLogLevel);
 }
}

This example is composed of the following:

A logger factory class, FileLoggerFactory, that is responsible for creating
actual loggers
The FileLogger class, which logs to a file
A helper class, EmptyDisposable, that is used to mock scopes
Some extension methods in the LoggerFactoryExtensions class, to make
registering the file provider easier, either through an ILoggerFactory instance
or an ILoggingBuilder instance.

The FileLoggerFactory class needs to take a single parameter that is the minimum log
level to accept, which is then passed along to any created logger. The file to be created has a
name in the format {categoryName}-{yyyy-MM-dd}.log, where categoryName is the
value passed to the CreateLogger method and yyyy-MM-dd is the current date. Simple,
don't you think?

Logging, Tracing, and Diagnostics Chapter 12

[467]

Using DI with the log providers
As we've seen, we can inject into our classes either a logger or the logger factory itself.
Passing the logger is by far the most common scenario, but we can also pass the logger
factory if we want to do some additional configuration, such as register a new logging
provider.

Be warned: you cannot inject an ILogger instance, only an
ILogger<T> instance, where T is an actual type—class or struct, abstract
or concrete; it doesn't matter. Since ASP.NET Core 2, you do not need to
call AddLogging explicitly in your ConfigureServices method, as the
logging services are automatically registered.

Using logging attributes
An interesting use of the filter mechanism explained in Chapter 7, Implementing Razor
Pages, is to add logging through filter attributes. Depending on where we want to add this
logging, we could use resource, result, or action filters, but I'm going to give an example
involving action filters, as these have the ability to inspect the model that is going to be
passed to the action method and also the result of its invocation.

The following code block shows an attribute that, when applied to a class or a method, will
cause a log message to be issued:

[AttributeUsage(AttributeTargets.Method | AttributeTargets.Class,
AllowMultiple = true,
 Inherited = true)]
public sealed class LoggerAttribute : ActionFilterAttribute
{
 public LoggerAttribute(string logMessage)
 {
 this.LogMessage = logMessage;
 }

 public string LogMessage { get; }
 public LogLevel LogLevel { get; set; } = LogLevel.Information;

 private EventId _eventId;

 private string GetLogMessage(ModelStateDictionary modelState)
 {
 var logMessage = this.LogMessage;

 foreach (var key in modelState.Keys)

Logging, Tracing, and Diagnostics Chapter 12

[468]

 {
 logMessage = logMessage.Replace("{" + key + "}",
 modelState[key].RawValue?.ToString());
 }

 return logMessage;
 }

 private ILogger GetLogger(HttpContext context,
 ControllerActionDescriptor action)
 {
 var logger = context
 .RequestServices
 .GetService(typeof(ILogger<>)
 .MakeGenericType(action.ControllerTypeInfo.
 UnderlyingSystemType)) as ILogger;
 return logger;
 }

 public override void OnActionExecuted(ActionExecutedContext context)
 {
 var cad = context.ActionDescriptor as ControllerActionDescriptor;
 var logMessage = this.GetLogMessage(context.ModelState);
 var logger = this.GetLogger(context.HttpContext, cad);
 var duration = TimeSpan.FromMilliseconds(Environment.
 TickCount - this._eventId.Id);

 logger.Log(this.LogLevel, this._eventId,
 $"After {cad.ControllerName}.{cad.ActionName} with
 {logMessage} and result {context.HttpContext.Response.StatusCode}
 in {duration}", null, (state, ex) => state.ToString());

 base.OnActionExecuted(context);
 }

 public override void OnActionExecuting(ActionExecutingContext context)
 {
 var cad = context.ActionDescriptor as ControllerActionDescriptor;
 var logMessage = this.GetLogMessage(context.ModelState);
 var logger = this.GetLogger(context.HttpContext, cad);

 this._eventId = new EventId(Environment.TickCount, $"{cad.
 ControllerName}.{cad.ActionName}");

 logger.Log(this.LogLevel, this._eventId, $"Before {cad.
 ControllerName}.{cad.ActionName} with {logMessage}", null,
 (state, ex) => state.ToString());

Logging, Tracing, and Diagnostics Chapter 12

[469]

 base.OnActionExecuting(context);
 }
}

This example depicts an attribute that can be applied to methods or classes. It inherits from
ActionFilterAttribute, which means that it is a filter (see Chapter 10, Understanding
Filters, for a refresher on filters). What this means is that before the action execution
(OnActionExecuting) and after it (OnActionExecuted), this attribute performs some
action. In this case, it retrieves a logger for the current controller from the DI (please adapt
this if you are not using MVC) and it logs a message to it. This attribute needs to take a
logMessage parameter from its constructor. This parameter can take model names
enclosed in brackets (for example, {email}) that will then be replaced in the logging
message. It uses as the event ID the number of milliseconds that have elapsed since the
system restarted (Environment.TickCount), and, as the event name, a combination of
controller and action names; this event ID is reused in the pre-events and post-events. A
message is logged with the log level provided before and after each action method is called.
Here is an example declaration:

[Logger("Method called with {email}", LogLevel = LogLevel.Information)]
public IActionResult AddToMailingList(string email) { ... }

This may be handy if we wish to add custom logging transparently to some action methods
to log out model values.

Now, we will see another, more advanced way to log all requests.

Writing custom logging middleware
We've seen in the previous section how we can write custom attributes to perform actions
before and after a controller action, and, in Chapter 1, Getting Started with ASP.NET
Core, how we can write middleware. Now, a simple middleware class to log all requests can
be written as follows:

public class LoggingMiddleware
{
 private readonly RequestDelegate _next;
 private readonly ILoggerFactory _loggerFactory;

 public LoggingMiddleware(RequestDelegate next, ILoggerFactory
 loggerFactory)
 {
 this._next = next;
 this._loggerFactory = loggerFactory;

Logging, Tracing, and Diagnostics Chapter 12

[470]

 }

 public async Task InvokeAsync(HttpContext context)
 {
 var logger = this._loggerFactory.CreateLogger<LoggingMiddleware>
 ();
 using (logger.BeginScope<LoggingMiddleware>(this))
 {
 logger.LogInformation("Before request");
 await this._next.Invoke(context);
 logger.LogInformation("After request");
 }
 }
}

Notice that the category of the logger is set to the LoggingMiddleware type's full name,
and we are starting a scope for each invocation, which is here just as an example. The way
to register this middleware is by calling UseMiddleware in Configure, like this:

app.UseMiddleware<LoggingMiddleware>();

This adds our middleware to the pipeline, but we must be sure to add it before anything
else that we wish to monitor, or else we won't be able to capture it.

And this completes this short section on writing middleware for logging. Now, let's have a
look at some tools.

Using tracing and diagnostics
We have mentioned the diagnostics functionality of ASP.NET Core in Chapter 5, Views.
Diagnostics is comparable to logging, but it has a number of advantages, listed as follows:

Tracing operates on a higher level, capturing a whole journey, not just a moment
in time.
It can do structured logging—that is, it can call methods in the trace loggers that
take parameters, not just strings.
It's easy to plug in new adapters, merely by adding an attribute to a class; even
classes in referenced assemblies can be used.

Logging, Tracing, and Diagnostics Chapter 12

[471]

Please refer to Chapter 5, Views, for a more in-depth explanation. Here, we will cover a
Microsoft package, Microsoft.AspNetCore.MiddlewareAnalysis. When it is used, it
traces all middleware components that execute on the pipeline, through the diagnostics
feature. It is configured by a simple call to AddMiddlewareAnalysis, as follows:

services.AddMiddlewareAnalysis();

Then, we register a listener for some new events, as follows:

Microsoft.AspNetCore.MiddlewareAnalysis.MiddlewareStarting:
Called when the middleware is starting
Microsoft.AspNetCore.MiddlewareAnalysis.MiddlewareFinished:
Called when the middleware has finished
Microsoft.AspNetCore.MiddlewareAnalysis.MiddlewareException:
Called whenever an exception occurs while the middleware is executed

Here is how to register the diagnostic source listener:

public void Configure(
 IApplicationBuilder app,
 IWebHostEnvironment env,
 DiagnosticListener diagnosticListener)
{
 var listener = new TraceDiagnosticListener();
 diagnosticListener.SubscribeWithAdapter(listener);

 //rest goes here
}

The TraceDiagnosticListener class has methods that will be automatically wired to
these events, as illustrated in the following code block:

public class TraceDiagnosticListener
{
 [DiagnosticName("Microsoft.AspNetCore.MiddlewareAnalysis.
 MiddlewareStarting")]
 public virtual void OnMiddlewareStarting(HttpContext
 httpContext, string name)
 {
 //called when the middleware is starting
 }

 [DiagnosticName("Microsoft.AspNetCore.MiddlewareAnalysis.
 MiddlewareException")]
 public virtual void OnMiddlewareException(Exception exception,
 string name)

Logging, Tracing, and Diagnostics Chapter 12

[472]

 {
 //called when there is an exception while processing
 //a middleware component
 }

 [DiagnosticName("Microsoft.AspNetCore.MiddlewareAnalysis.
 MiddlewareFinished")]
 public virtual void OnMiddlewareFinished(HttpContext
 httpContext, string name)
 {
 //called when the middleware execution finishes
 }
}

Note that this is called for both middleware classes (refer to Chapter 1, Getting Started with
ASP.NET Core) or for middleware that is added to the pipeline as a custom delegate. The
code is shown in the following snippet:

app.Properties["analysis.NextMiddlewareName"] = "MyCustomMiddleware";
app.Use(async (context, next) =>
{
 //do something
 await next();
});

Notice the line where we set the analysis.NextMiddlewareName property—because this
middleware does not have a name, it is an anonymous delegate; the property is used for the
name parameter of each of the TraceDiagnosticListener class's methods.

If you want to visually analyze all this activity, you can add another Microsoft package,
Microsoft.AspNetCore.Diagnostics.Elm. ELM stands for Error Logging
Middleware and is added in the usual way—first, by registering services
(ConfigureServices method), like this:

services.AddElm();

Then, add the middleware to the pipeline (Configure), like this:

app.UseElmPage();
app.UseElmCapture();

Logging, Tracing, and Diagnostics Chapter 12

[473]

You may want to add these just for development, by checking the current environment and
adding this middleware conditionally. After you do, when you access /elm, you will get a
nice trace of what is going on, as illustrated in the following screenshot:

You can see all the events that take place when a request is processed. All of these come
from the diagnostic feature.

There's another final step: you must enable synchronous input/output (I/O) because ELM
uses it. In the Program class, add the following content to
the ConfigureWebHostDefaults method:

.ConfigureWebHostDefaults(builder =>
{
 builder.UseKestrel(options =>
 {
 options.AllowSynchronousIO = true;
 });
 builder.UseStartup<Startup>();
});

If you want to set the Uniform Resource Locator (URL) that ELM uses, or filter the results,
you can certainly do so, like this:

services.Configure<ElmOptions>(options =>
{
 options.Path = "/_Elm";
 options.Filter = (name, logLevel) =>

Logging, Tracing, and Diagnostics Chapter 12

[474]

 {
 return logLevel > LogLevel.Information;
 };
});

This small code fragment sets the configuration for ELM, as follows:

The request path is set to /_Elm (must start with a /).
Only events with a log level higher than Information are shown.

We will now learn about a very important feature that has existed since the initial days of
Windows and is now available to .NET Core: event counters.

Using performance (event) counters for
obtaining metrics
Performance (event) counters have existed since the beginning of Windows but they have
not been implemented in the other operating systems in the same way, which makes them
not cross-platform. The idea is that applications emit lightweight, unobtrusive code that is
picked up by the operating system and can be used to monitor the application in real time,
as it is working, or to generate dump files for post-mortem analysis.

.NET Core 3.0 started supporting event counters to its full extent by introducing
the dotnet-trace, dotnet-dump, and dotnet-counters cross-platform global tools. We
will see what these do in the following sections.

Included counters
An event counter is a class that emits a value for a named counter. .NET includes the
following counters, grouped into two providers:

System.Runtime (default)

Microsoft.AspNetCore.Hosting

The available counters in each provider are shown as follows:

System.Runtime

cpu-usage
Amount of time the process has utilized the central processing
unit (CPU) (ms) (mean)

working-set Amount of working set used by the process (MB) (mean)

Logging, Tracing, and Diagnostics Chapter 12

[475]

gc-heap-size
Total heap size reported by the garbage collector (GC) (MB)
(mean)

gen-0-gc-count Number of Generation 0 GCs/second (sum)
gen-1-gc-count Number of Generation 1 GCs/second (sum)
gen-2-gc-count Number of Generation 2 GCs/second (sum)
time-in-gc % time in GC since the last GC (mean)
gen-0-size Generation 0 heap size (mean)
gen-1-size Generation 1 heap size (mean)
gen-2-size Generation 2 heap size (mean)
loh-size Large object heap (LOH) heap size (mean)
alloc-rate Allocation rate (sum)
assembly-count Number of assemblies loaded (mean)
exception-count Number of exceptions/second (sum)
threadpool-thread-count Number of ThreadPool threads (mean)
monitor-lock-contention-count Monitor lock contention count
threadpool-queue-length ThreadPool work items' queue length (mean)
threadpool-completed-items-count ThreadPool completed work items' count
active-timer-count Active timers' count
Microsoft.AspNetCore.Hosting
requests-per-second Request rate (mean)
total-requests Total number of requests (sum)
current-requests The current number of requests (sum)
failed-requests Failed number of requests (sum)

The System.Runtime provider contains counters that are independent of the kind of
application—web, console, service, or whatnot. Microsoft.AspNetCore.Hosting, of
course, only contains web-specific counters.

As you can imagine, by monitoring these counters, we can get a good insight as to what is
going on inside our ASP.NET Core apps, from a system perspective. In the next sections,
we will see how to do this.

Custom counters
We can write code for creating our own counters. Here is an example:

[EventSource(Name = SourceName)]
public sealed class LogElapsedUrlEventSource : EventSource
{
 private readonly EventCounter _counter;

Logging, Tracing, and Diagnostics Chapter 12

[476]

 public static readonly LogElapsedUrlEventSource Instance = new
LogElapsedUrlEventSource();

 private const int SourceId = 1;
 private const string SourceName = "LogElapsedUrl";

 private LogElapsedUrlEventSource() : base(EventSourceSettings.
 EtwSelfDescribingEventFormat)
 {
 this._counter = new EventCounter(SourceName, this);
 }

 [Event(SourceId, Message = "Elapsed Time for URL {0}: {1}",
 Level = EventLevel.Informational)]
 public void LogElapsed(string url, float time)
 {
 this.WriteEvent(SourceId, url, time);
 this._counter.WriteMetric(time);
 }
}

You need to add the System.Diagnostics.PerformanceCounter NuGet package in
order to be able to compile this.

This sample code logs the time that it took to open an arbitrary URL. It takes a URL as a
parameter and time as a floating-point value. It essentially is a singleton because it has a
private constructor, and should only be accessed by its public static Instance field. The
LogElapsed method writes to both the underlying EventCounter instance (which takes
any number of arguments) and to the base EventSource class (which only takes the
numeric value). In the end, for the performance counter, what is used is the numeric value.

To use this sample, we do this:

LogElapsedUrlEventSource.Instance.LogElapsed("http://google.com", 0.1F);

This references the single instance of our newly created event source and logs a value of
0.1 for the http://google.com URL. It will be written to the event counter underneath.

Logging, Tracing, and Diagnostics Chapter 12

[477]

Performance monitoring
There is a free tool for Windows called PerfView (https:/ ​/ ​github. ​com/ ​microsoft/
perfview) that can be used to visualize performance counters, but, unfortunately, it is not
cross-platform. Instead, we need to go with another solution. Let's install the dotnet-
counters global tool. For that, run the following command:

dotnet tool install -g dotnet-counters

After the dotnet-counters tool is installed (globally, as per this command), we can now
use it to monitor existing applications. First, let's see those that can be monitored (running
.NET Core apps), as follows:

dotnet-counters ps

This will give a list of process IDs of running .NET Core apps, regardless of what they are.
After you have found the one you're interested in, you feed it to the tool, like this:

dotnet-counters monitor -p 3527

If you don't specify a provider name after the process ID, it will default to
System.Runtime. You should get something like this:

https://github.com/microsoft/perfview
https://github.com/microsoft/perfview
https://github.com/microsoft/perfview
https://github.com/microsoft/perfview
https://github.com/microsoft/perfview
https://github.com/microsoft/perfview
https://github.com/microsoft/perfview
https://github.com/microsoft/perfview
https://github.com/microsoft/perfview
https://github.com/microsoft/perfview

Logging, Tracing, and Diagnostics Chapter 12

[478]

So, for example, if you want to monitor our sample counter, you would run this code:

dotnet-counters monitor -p 3527 LogElapsedUrl

The dotnet-counters tool will update continuously until you exit it (Ctrl + C).

For additional information on dotnet-counters and real-time
performance monitoring of .NET Core apps, please refer to https:/ ​/
github. ​com/ ​dotnet/ ​diagnostics/ ​blob/ ​master/ ​documentation/ ​dotnet-
couunters- ​instructions. ​md. The documentation is available at https:/ ​/
docs. ​microsoft. ​com/ ​dotnet/ ​core/ ​diagnostics/ ​dotnet- ​counters.

So, here, we've seen how to monitor events in real time in the console. Now, let's see how
we can collect them in a file.

Tracing
Another tool that was introduced with .NET Core 3 is dotnet-trace. It is similar to
dotnet-counter but, instead of outputting the current event counter values to the
console, it writes them to a trace file. This has the advantage that it can be read at a later
time so as to extract runtime information from it, including its association with meaningful
events (contextual information). It can also run in the background and does not require
someone to be watching the console.

To install this trace, use the following command:

dotnet tool install -g dotnet-trace

Similar to dotnet-counters, dotnet-trace can detect the .NET Core processes that are
running on the system, and it also needs to be attached to a process, as follows:

dotnet-trace collect -p 3527

Now, after the process ID, the dotnet-trace command can take the name of a trace
profile. By default, there is a trace profile defined that includes a number of event counters,
but you can also define your own. The providers included are the following ones:

Microsoft-Windows-DotNETRuntime (default)
Microsoft-DotNETCore-SampleProfiler

https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-counters-instructions.md
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters

Logging, Tracing, and Diagnostics Chapter 12

[479]

I won't go into the details of creating trace profiles, as this is a complex
topic.

To create a trace file for the Microsoft-Windows-DotNETRuntime profile, we run the
following command:

dotnet-trace collect -p 3527 --providers Microsoft-Windows-DotNETRuntime

This will result in something like this:

Besides profiles, which include a number of items of information other than performance
counters, you can just request individual performance counter providers by specifying a
provider name as the trace profile, like this:

dotnet-trace collect -p 3527 --providers
System.Runtime:0:1:EventCounterIntervalSec=1

In this case, dotnet-trace will output the performance counter values for all the counters
belonging to the System.Runtime provider every second.

Trace files have the trace.nettrace name and are, by default, created in the same folder
where the dotnet-trace command was run. To see these files, we have a couple of
options.

On Windows systems, we can use Visual Studio, as shown in the following screenshot:

Logging, Tracing, and Diagnostics Chapter 12

[480]

For PerfView, we can use the following:

Logging, Tracing, and Diagnostics Chapter 12

[481]

For non-Windows systems that support .NET Core (Linux and macOS), there is, for the
time being, no native solution for reading trace files, but a possible alternative is the free
Speedscope site (http:/ ​/​speedscope. ​app). In order to use it, however, we must tell
dotnet-trace to generate the trace file in the appropriate format, by running the
following code:

dotnet-trace collect -p 3527 --providers Microsoft-Windows-DotNETRuntime --
format speedscope

Or, if we have a file in the .nettrace format, we can convert it afterward so that we can
pass it to the Speedscope app. To do this, you would need to run the following code:

dotnet-trace convert trace.nettrace --format speedscope

The output file will then be called trace.speedscope.json instead, as shown in the
following screenshot:

For additional information on dotnet-trace and the tracing of .NET
Core apps, please refer to https:/ ​/​github. ​com/ ​dotnet/ ​diagnostics/
blob/ ​master/ ​documentation/ ​dotnet- ​trace- ​instructions. ​md. The
documentation is available at https:/ ​/​docs. ​microsoft. ​com/ ​dotnet/
core/ ​diagnostics/ ​dotnet- ​trace.

We will now look at another tool, but this time, one for more advanced users.

http://speedscope.app
http://speedscope.app
http://speedscope.app
http://speedscope.app
http://speedscope.app
http://speedscope.app
http://speedscope.app
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-trace

Logging, Tracing, and Diagnostics Chapter 12

[482]

Trace dumps
The third tool that was made available with .NET Core 3 is dotnet-dump. This one is more
for advanced users, as it requires an in-depth knowledge of IL (which stands for
Intermediate Language), .NET's own assembly. In a nutshell, it can collect a memory dump
of a running .NET Core process and write it to disk so that it can be analyzed offline. This
may help discover how the application is behaving in terms of memory usage.

dotnet-dump only works on Windows and Linux, not macOS, for
generating dumps.

To install it, run the following command:

dotnet tool install -g dotnet-dump

Unlike the previous tools, it cannot list the running processes, so, if you need this
capability, you will need to rely on dotnet-counters or dotnet-trace. Once you locate
the one you want, you ask for it to create a dump of the processes' current running state, as
follows:

dotnet-dump collect -p 3527

The dump file will be created on the same folder and will be named
core_YYYYMMDD_hhmmss.

After you produce a dump file, you can also use dotnet-dump to analyze it, like this:

dotnet-dump analyze core_20191103_234821

This will start an interactive shell (in operating systems that support it) that allows the
dump to be explored and Son of Strike (SOS) commands to be run (https:/ ​/​docs.
microsoft.​com/​dotnet/ ​core/ ​diagnostics/ ​dotnet- ​dump#analyze- ​sos- ​commands).

dotnet-dump only allows dumps to be analyzed on Linux. For additional
information on dotnet-dump, please refer to https:/ ​/​github. ​com/
dotnet/ ​diagnostics/ ​blob/ ​master/ ​documentation/ ​dotnet- ​dump-
instructions. ​md. The documentation is available at https:/ ​/​docs.
microsoft. ​com/ ​dotnet/ ​core/ ​diagnostics/ ​dotnet- ​dump.

Let's now leave the console and explore some of the options we have for remote monitoring
of our apps.

https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump#analyze-sos-commands
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-dump-instructions.md
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump

Logging, Tracing, and Diagnostics Chapter 12

[483]

Using telemetry
Telemetry consists of transparently collecting usage data from software over the internet. It
can be very helpful in the sense that all your applications are monitored centrally, and
telemetry packages usually supply handy tools, such as rich user interfaces for selecting
exactly what we want to see, or creating alarms. There are a few alternatives, and we will
only touch on a few of the most popular ones in the following sections.

Using trace identifiers
ASP.NET Core provides an IHttpRequestIdentifierFeature feature that generates a
unique ID per each request. This ID may help you correlate events that happen in the
context of a request. Here are three ways to get this ID:

//using the TraceIdentifier property in ASP.NET Core 2.x
var id1 = this.HttpContext.TraceIdentifier;

//accessing the feature in earlier versions of ASP.NET Core
var id2 =
this.HttpContext.Features.Get<IHttpRequestIdentifierFeature>().TraceIdentif
ier;

//another way
var id3 = Activity.Current.Id;

A trace identifier is just an opaque reference—such as 0HL8VHQLUJ7CM:00000001—that is
guaranteed to be unique among requests. Interestingly, this implements the Trace
Context World Wide Web Consortium (W3C) specification (https:/ ​/ ​www.​w3. ​org/ ​TR/
trace-​context), which means that ASP.NET Core 3 honors the Request-Id HTTP header.
This is the value that is mapped to these properties.

Make sure you enable the standard W3C format using the following lines, right in the
beginning of the app, maybe in Main or in Startup:

Activity.DefaultIdFormat = ActivityIdFormat.W3C;
Activity.ForceDefaultIdFormat = true;

https://www.w3.org/TR/trace-context
https://www.w3.org/TR/trace-context
https://www.w3.org/TR/trace-context
https://www.w3.org/TR/trace-context
https://www.w3.org/TR/trace-context
https://www.w3.org/TR/trace-context
https://www.w3.org/TR/trace-context
https://www.w3.org/TR/trace-context
https://www.w3.org/TR/trace-context
https://www.w3.org/TR/trace-context
https://www.w3.org/TR/trace-context
https://www.w3.org/TR/trace-context
https://www.w3.org/TR/trace-context
https://www.w3.org/TR/trace-context

Logging, Tracing, and Diagnostics Chapter 12

[484]

Now, whenever you issue an HTTP request to some microservice, make sure you include
this trace identifier. For example, if you are using HttpClient, you can
use DelegatingHandler for this purpose, as illustrated in the following code block:

public class TraceIdentifierMessageHandler : DelegatingHandler
{
 private readonly IHttpContextAccessor _httpContextAccessor;

 public TraceIdentifierMessageHandler(IHttpContextAccessor
 httpContextAccessor)
 {
 this._httpContextAccessor = httpContextAccessor;
 }

 protected override Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request, CancellationToken cancellationToken)
 {
 var httpContext = this._httpContextAccessor.HttpContext;
 request.Headers.Add("Request-Id", httpContext.TraceIdentifier);
 request.Headers.Add("X-SessionId", httpContext.Session.Id);
 return base.SendAsync(request, cancellationToken);
 }
}

A delegating handler is called to handle the sending of a message, and, in this case, it is
used to set a header—Request-Id. It gets this header from the context, which is obtained
from the IHttpContextAccessor service, injected into the constructor.

We register one or many HttpClient instances, one for each microservice that we will be
calling in the ConfigureServices method, as follows:

//this is required for the TraceIdentifierMessageHandler
services.AddHttpContextAccessor();

services
 .AddHttpClient("<service1>", options =>
 {
 options.BaseAddress = new Uri("<url1>");
 })
 .AddHttpMessageHandler<TraceIdentifierMessageHandler>();

Of course, you will need to replace <service1> and <url1> with the appropriate values.

Logging, Tracing, and Diagnostics Chapter 12

[485]

When you want to obtain an instance of HttpClient to send messages to this microservice,
inject an IHttpClientFactory instance and request the name under which you registered
your client, as illustrated in the following code block:

public class HomeController : Controller
{
 private readonly IHttpClientFactory _clientFactory;

 public HomeController(IHttpClientFactory clientFactory)
 {
 this._clientFactory = clientFactory;
 }

 public async Task<IActionResult> Index()
 {
 var client = clientFactory.CreateClient("<service1>");
 var result = await client.GetAsync("GetData");

 //do something with the response

 return this.Ok();
 }
}

Using this approach, we can ensure that we are keeping the same trace identifier on all
requests, there's creating a context. This is very important to maintain the state and is used
by the logging frameworks that I'm going to present next.

Azure Application Insights
When you create an ASP.NET project using Visual Studio, you are presented with the
option to add support for Application Insights (AI). AI is an Azure service that lets you
monitor your web application for availability, performance, and usage, including errors.
When you add support for AI to your web app, you can go to the AI console and monitor
the behavior of your application in real time, see how it behaved recently, and even get
notified in case something unusual happens.

Logging, Tracing, and Diagnostics Chapter 12

[486]

We won't cover AI in full here, but will just give you an overview of how to use it in your
ASP.NET Core projects.

The following screenshot shows a typical combined view, displaying response and page
load times:

Before you can use AI, you need to have a working Azure account (https:/ ​/​portal.
azure.​com) and you need to create an AI resource.

https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com

Logging, Tracing, and Diagnostics Chapter 12

[487]

You can create one from inside Visual Studio, as shown in the following screenshot:

For detailed instructions, please consult https:/ ​/​github. ​com/​Microsoft/
ApplicationInsights- ​aspnetcore/ ​wiki/ ​Getting- ​Started- ​with- ​Application- ​Insights-
for-​ASP.​NET-​Core. AI relies on the Microsoft.ApplicationInsights.AspNetCore
NuGet package, and you will need to add a configuration setting with the instrumentation
key that is provided to you in the AI console, once you create an AI resource. If you use a
JavaScript Object Notation (JSON) configuration file, you will need something like this:

{
 "ApplicationInsights": {
 "InstrumentationKey": "11111111-2222-3333-4444-555555555555"
 }
}

https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core
https://github.com/Microsoft/ApplicationInsights-aspnetcore/wiki/Getting-Started-with-Application-Insights-for-ASP.NET-Core

Logging, Tracing, and Diagnostics Chapter 12

[488]

In any case, you will need to register the AI services directly from your configuration, like
this:

services.AddApplicationInsightsTelemetry(this.Configuration);

Or, you can pass the instrumentation key directly, like this:

services.AddApplicationInsightsTelemetry(
 instrumentationKey: "11111111-2222-3333-4444-555555555555");

For more advanced options, you can pass in an instance of
ApplicationInsightsServiceOptions, as illustrated in the following code snippet:

services.AddApplicationInsightsTelemetry(new
ApplicationInsightsServiceOptions
{
 InstrumentationKey = "11111111-2222-3333-4444-555555555555",
 DeveloperMode = true,
 EnableDebugLogger = true
});

When running in development mode, it is often useful to use the developer mode of AI as
you can see results immediately (not in batches).

You do not need to enable exceptions and request telemetry explicitly; as this is done for
you automatically, and the code for _ViewImports.cshtml looks like this:

@using Microsoft.ApplicationInsights.AspNetCore
@inject JavaScriptSnippet snippet

In the layout view (probably _Layout.cshtml), we must render the script with this line of
code:

@Html.Raw(snippet.FullScript)

This explained how to enable the AI functionality, but the next topic will show how to send
actual events to it.

Sending custom events
You can send custom data using the TelemetryClient application programming
interface (API). Essentially, you build an instance of TelemetryClient, as follows:

var client = new TelemetryClient();
client.InstrumentationKey =
this.Configuration["ApplicationInsights:InstrumentationKey"];

Logging, Tracing, and Diagnostics Chapter 12

[489]

You have the following methods, taken from the documentation (https:/ ​/​docs.
microsoft.​com/​azure/ ​application- ​insights/ ​app- ​insights- ​api- ​custom- ​events-
metrics):

TrackPageView: Pages
TrackEvent: User actions and custom events
TrackMetric: Performance measurements
TrackException: Exceptions
TrackRequest: Frequency and duration of server requests for performance
analysis
TrackTrace: Diagnostic log messages
TrackDependency: Duration and frequency of calls to external components that
your app depends on

You can call one of its Track methods mentioned in the preceding list. For now, let's begin
with TrackEvent, as follows:

client.TrackEvent("Product added to basket");

You can also call a specific metric for a single value, like this:

client.TrackMetric("TotalCost", 100.0);

You can request information, like this:

var now = DateTimeOffset.Now;
var timer = Stopwatch.StartNew();
//issue call
client.TrackRequest("Searching for product", now, timer.Elapsed, "OK",
true);

To send an exception, execute the following code:

client.TrackException(ex);

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics

Logging, Tracing, and Diagnostics Chapter 12

[490]

To send a dependency (any called code that is not our own) elapsed time (similar to request
tracking), execute the following code:

var success = false;
var startTime = DateTime.UtcNow;
var timer = Stopwatch.StartNew();
var id = Guid.NewGuid();

try
{
 success = orderService.ProcessOrder();
}
finally
{
 timer.Stop();
 telemetry.TrackDependency("Order Service", $"Order id {id}", startTime,
timer.Elapsed, success);
}

To send a custom trace message, execute the following code:

client.TrackTrace("Processing order", SeverityLevel.Warning, new
Dictionary<string,string> { {"Order", id} });

For a page view, execute the following code:

client.TrackPageView("ShoppingBag");

You can also group together several related events inside a scope, as follows:

using (var operation = telemetry.StartOperation<RequestTelemetry>("Order
Processing"))
{
 //one or more of Track* methods
}

Because AI batches data to send, at any point you can force this to be flushed to Azure by
running the following command:

client.Flush();

Logging, Tracing, and Diagnostics Chapter 12

[491]

All of these events will be made available in the AI console, as shown in the following
screenshot:

The AppInsights dashboard can display a different visualization of events (for example,
grouping the events by name), as can be seen in the following screenshot:

AI can track distributed calls by using the trace identifier that was discussed earlier.

In the next section, I will present the other major cloud provider's log service: AWS
CloudWatch.

Logging, Tracing, and Diagnostics Chapter 12

[492]

AWS CloudWatch
AWS CloudWatch is an AWS application and infrastructure monitoring service. It allows
you to write semi-structured content to a log that can then be queried and monitored
online.

In order to write to it from a .NET Core app, you need to add a reference to
the AWSSDK.Core and AWSSDK.CloudWatch NuGet packages. There is no need to add
custom logging frameworks; the built-in logging will do. Register its services in
ConfigureServices using the application configuration—this is required so that we can
inject the services. This can be done by running the following code:

services.AddDefaultAWSOptions(this.Configuration.GetAWSOptions());
services.AddAWSService<IAmazonCloudWatch>();

The GetAWSOptions extension returns the required entries from the
configuration—possibly made available in the appsettings.json file. These should look
something like the following:

{
 "AWS": {
 "Profile": "local-profile",
 "Region": "eu-west-1"
 }
}

You will, of course, replace local-profile and eu-west-1 for, respectively, the name of
the profile you have in your AWS configuration file and the name of the region you want to
use, which should be the closest region to where you are located.

You will also need to enable logging to the console. Add
the Microsoft.Extensions.Logging.Console NuGet package, if you don't already
have it, and run this code:

services.AddLogging(options =>
{
 options.AddConsole();
});

Once the AWS service is registered, as soon as you log in to the console, you will be logging
in to AWS CloudWatch as well.

Logging, Tracing, and Diagnostics Chapter 12

[493]

Here is a sample AWS CloudWatch log from the AWS site:

In the next section, I will talk about a very popular commercial tool for real-time
monitoring of web applications that can be applied to any site, even those hosted on the
cloud.

New Relic
New Relic is a software analytics product for application performance monitoring of web
apps. It delivers real-time data regarding the behavior of your web application, such as the
number of simultaneous users, memory usage, and errors. You will need to install the New
Relic agent on your deployment machine, be this Windows or Linux.

Please follow the instructions available at https:/ ​/​docs. ​newrelic. ​com/
docs/ ​agents/ ​net- ​agent/ ​installation/ ​introduction- ​net- ​agent-
install to set up the New Relic agent on your platform of choice.

After it is installed, New Relic intercepts and instruments your .NET Core calls on your
machine and adds telemetry to it. New Relic can also be installed on Docker, which makes
it perfect for self-contained, automated deployments.

https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install
https://docs.newrelic.com/docs/agents/net-agent/installation/introduction-net-agent-install

Logging, Tracing, and Diagnostics Chapter 12

[494]

All of the resulting calls are then made available on the New Relic console, as can be seen in
the following screenshot from the New Relic site:

Mind you, New Relic is extremely powerful, and I wouldn't even dare to go through it as
this would require a book on its own. Please do take a look at the New Relic site and see
whether it suits your needs.

Next, we will have a look at a functionality that is new to ASP.NET Core for monitoring the
state of the services inside an application.

Performing health checking
Microsoft has been working on a health checking framework called
Microsoft.AspNetCore.Diagnostics.HealthChecks, and released it as part of
ASP.NET Core 2.2. It provides a standard and pluggable way to check the state of services
on which your app depends. This is not a feature of ASP.NET itself, but since any complex
web app normally has external dependencies, this may come in handy for checking their
statuses before taking any action.

Logging, Tracing, and Diagnostics Chapter 12

[495]

After adding the core NuGet package, you will need to add the ones for the checks that
you're interested in, such as those for SQL Server. We register those in the
ConfigureServices method, as follows:

services
 .AddHealthChecks()
 .AddCheck("Web Check", new WebHealthCheck("http://
 google.com"), HealthStatus.Unhealthy)
 .AddCheck("Sample Lambda", () => HealthCheckResult.Healthy
 ("All is well!"))
 .AddDbContextCheck<MyDbContext>("My Context"); //check
 //a database through EF Core

In this example, we are registering three checks, as follows:

A custom check class, WebHealthCheck, that implements the IHealthCheck
interface
A lambda-based check
A check that uses an Entity Framework (EF) Core context to check a database for
access

For the EF Core check, you'll need to add a reference to the.EntityFrameworkCore
NuGet package of Microsoft.Extensions.Diagnostics.HealthChecks.

The WebHealthCheck class looks like this:

public class WebHealthCheck : IHealthCheck
{
 public WebHealthCheck(string url)
 {
 if (string.IsNullOrWhiteSpace(url))
 {
 throw new ArgumentNullException(nameof(url));
 }

 this.Url = url;
 }

 public string Url { get; }

 public async Task<HealthCheckResult> CheckHealthAsync(
 HealthCheckContext context,
 CancellationToken cancellationToken = default(CancellationToken))
 {
 var client = new HttpClient();
 var response = await client.GetAsync(this.Url);

Logging, Tracing, and Diagnostics Chapter 12

[496]

 if (response.StatusCode < HttpStatusCode.BadRequest)
 {
 return HealthCheckResult.Healthy("The URL is up and running");
 }

 return HealthCheckResult.Unhealthy("The URL is inaccessible");
 }
}

This class issues an HTTP request for the provided URL and returns Healthy or
Unhealthy, depending on the HTTP response status code.

On Configure, we register an endpoint for the monitoring of these checks, as follows:

app.UseRouting();
app.UseEndpoints(endpoints =>
{
 endpoints
 .MapHealthChecks("/health")
 .RequireHost("localhost")
 .RequireAuthorization();
});

Notice the call to MapHealthChecks, with the endpoint name of /health.

We can then have an instance of IHealthCheckService injected into our classes and see
whether everything is OK, like this:

var timedTokenSource = new
CancellationTokenSource(TimeSpan.FromSeconds(3));
var checkResult = await
_healthCheck.CheckHealthAsync(timedTokenSource.Token);

if (checkResult.CheckStatus != CheckStatus.Healthy)
{
 //Houston, we have a problem!
}

This code waits for, at most, 3 seconds while checking the status of all the registered health
checks. The result can be one of the following:

Unknown: The status is unknown, possibly due to a timeout.
Unhealthy: At least one of the services is not OK.
Healthy: Everything seems to be OK.
Warning: Everything is OK, but with a number of warnings.

Logging, Tracing, and Diagnostics Chapter 12

[497]

Now, the health checking framework enables an endpoint from which you can find the
global state of all the check; as we've seen before, we set it as /health. If we access it using
the browser, we get one of these values.

If, however, we want to have detailed information of all the checks that were executed, and
their state, we can modify the endpoint's registration code to something like this:

endpoints
 .MapHealthChecks("/health", new HealthCheckOptions
 {
 ResponseWriter = async (context, report) =>
 {
 var result = JsonSerializer.Serialize(new
 {
 Status = report.Status.ToString(),
 Checks = report.Entries.Select(e => new
 {
 Check = e.Key,
 Status = e.Value.Status.ToString()
 })
 });
 context.Response.ContentType = MediaTypeNames.Application.Json;
 await context.Response.WriteAsync(result);
 }
 });

This way, we are sending a JSON response with all the individual checks' statuses, besides
the global status, as can be seen in the following code snippet:

{"Status":"Healthy","Checks":[{"Check":"Web
Check","Status":"Healthy"},{"Check":"Sample
Lambda","Status":"Healthy"},{"Check":"My Context","Status":"Healthy"}]}

In this chapter, we've looked at the new health checking feature of ASP.NET Core. It is a
pluggable system that allows you to write your own health checks and check them from a
centralized endpoint. It is a valuable asset for checking the state of your web application,
and I hope it comes in useful!

Logging, Tracing, and Diagnostics Chapter 12

[498]

Summary
This chapter began with Common Logging, which is a must-have in .NET Core. The
infrastructure, although limited, does not support structured logging out of the box—for
example, it is built-in, pluggable, and DI-friendly. Use it for the most Common Logging
uses. Please explore all the logging providers available to see whether there is one that
meets your requirements. Special hosting providers, such as Azure or AWS, offer their own
packages, which you should leverage for the best results.

Next, we saw that diagnostic tracing offers the advantage that you can call methods with
discrete parameters, which is an advantage as it can lead to more meaningful logs. You can
use it to see exactly what middleware is being executed and how much time each step
takes.

The other options shown, adding middleware or action filters, are also probably worth
exploring, especially action filters.

Then, we saw that telemetry is essential for enterprise applications working 24/7 because it
gives you an overview of how things behave during long periods of time, and you can set
alerts to respond to emergency situations.

Finally, we also had a look at the different logging and diagnostic options available in
ASP.NET Core, helping us to sort issues.

In the next chapter, we will see how we can perform unit tests for all the features discussed
in the previous chapters.

Questions
You should now be able to answer these questions:

What are event counters?1.
What is the benefit of telemetry?2.
How can we filter logging?3.
What are health checks?4.
How is middleware useful in logging?5.
What is ELM?6.
What are the benefits of diagnostics over Common Logging?7.

13
Understanding How Testing

Works
In previous chapters, we looked at how to build things in ASP.NET Core. We are aware
that we should be testing our applications before we consider them done. What happens is
that applications evolve and stuff that used to work at one point in time may no longer
work now. So, to ensure that these applications do not fail on us, we set up tests that can
run automatically and check whether everything is still working as it should.

We will cover the following topics in this chapter:

Unit testing principles
Using xUnit, NUnit, and MSTest
Mocking objects
Assertions
User interface tests
Working on integration tests

In this chapter, we will have a look at two approaches for executing these tests and how
they help us ensure that we write well-integrated code.

Understanding How Testing Works Chapter 13

[500]

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all the
requirements, but you can also use Visual Studio Code, for example.

The source code can be retrieved from GitHub at https:/ ​/ ​github. ​com/ ​PacktPublishing/
Modern-​Web-​Development- ​with- ​ASP. ​NET- ​Core-​3- ​Second- ​Edition.

Getting started with unit tests
Unit tests are not new. Essentially, a unit test is designed to test a feature of your system in
isolation to prove that it is working as it should. The F.I.R.S.T principles of unit
testing state that unit tests should be the following:

Fast: They should execute fast, meaning they shouldn't carry out any complex or
lengthy operations.
Isolated/independent: A unit test should not depend on other systems and
should provide results independent of any specific context.
Repeatable: A unit test should yield the same result whenever it executes if
nothing is changed on the implementation.
Self-validating: They should be self-sufficient—that is, they should not require
any manual inspection or analysis.
Thorough/timely: They should cover all the important stuff, even if not required
for 100% of the code.

In a nutshell, a unit test should run fast so that we don't have to wait a long time for the
results, and should be coded so that the essential features are tested and do not depend on
external variables. Also, unit tests should not produce any side effects and it should be
possible to repeat them and get the same results all the time.

Some people even advocate starting to implement unit tests before the actual code. This has
the benefit of making the code testable—after all, it was designed with testing in mind, and
once we have implemented it, we already have the unit tests to go along with it. This is
called Test-Driven Development (TDD). While I am not a die-hard defender of TDD, I see
the advantages of it.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Understanding How Testing Works Chapter 13

[501]

Development using TDD usually goes in a cycle known as red-green-refactor, which means
that tests are first red (meaning, they fail), then they are green (they pass), and only then,
when everything is working properly, do we need to refactor the code to improve it. You
can read more about TDD at https:/ ​/​technologyconversations. ​com/ ​2014/ ​09/ ​30/​test-
driven-​development- ​tdd.

We usually rely on unit test frameworks to help us perform these tests and get their results.
There are several of these frameworks for .NET Core, including the following:

MSTest: This is Microsoft's own test framework; it is open source and made
available at https:/ ​/ ​github. ​com/ ​Microsoft/ ​testfx.
xUnit: A popular framework that is even used by Microsoft, available at https:/
/​xunit.​github. ​io.
NUnit: One of the oldest unit test frameworks, ported from Java's JUnit,
available at http:/ ​/​nunit. ​org.

These are all open source and their features are similar. You can find a good comparison of
the three frameworks at https:/ ​/ ​xunit. ​github. ​io/ ​docs/ ​comparisons. ​html.

If you prefer to start your projects from the console instead of Visual Studio, dotnet has
templates for MSTest, NUnit, and xUnit—just pick one:

dotnet new mstest
dotnet new xunit
dotnet new nunit

Let's now get our hands on the code.

Writing unit tests
Here, we will see how we can use some of the most popular unit test frameworks with
.NET Core. This won't be an in-depth coverage of the frameworks, just the basics to get you
started.

Unit tests are first-class citizens in .NET Core and have their own project types. Essentially,
a unit test project uses the Microsoft.NET.Sdk SDK, but must reference
Microsoft.NET.Test.Sdk. The dotnet tool knows about these projects and has special
options for them, as we will see.

First, we need to create a unit test project using one of the supported frameworks.

https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://technologyconversations.com/2014/09/30/test-driven-development-tdd
https://github.com/Microsoft/testfx
https://github.com/Microsoft/testfx
https://github.com/Microsoft/testfx
https://github.com/Microsoft/testfx
https://github.com/Microsoft/testfx
https://github.com/Microsoft/testfx
https://github.com/Microsoft/testfx
https://github.com/Microsoft/testfx
https://github.com/Microsoft/testfx
https://github.com/Microsoft/testfx
https://github.com/Microsoft/testfx
https://xunit.github.io
https://xunit.github.io
https://xunit.github.io
https://xunit.github.io
https://xunit.github.io
https://xunit.github.io
https://xunit.github.io
https://xunit.github.io
http://nunit.org
http://nunit.org
http://nunit.org
http://nunit.org
http://nunit.org
http://nunit.org
http://nunit.org
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html
https://xunit.github.io/docs/comparisons.html

Understanding How Testing Works Chapter 13

[502]

Unit test frameworks
There are a number of unit test frameworks out there, but I picked the ones that are most
often used, including by Microsoft.

MSTest
MSTest is Microsoft's own test framework, recently made open source. To use MSTest, you
need to add a reference to the following NuGet packages:

MSTest.TestFramework

MSTest.TestAdapter

Microsoft.NET.Test.Sdk

The first reference is for the framework itself and the second is the one that allows Visual
Studio to interact with MSTest; yes, all of these frameworks integrate nicely with Visual
Studio!

Visual Studio offers a template project for MSTest projects, but you can also create one
using dotnet:

dotnet new mstest

Add a reference to your your web app project and create a class called ControllerTests
with the following content:

[TestClass]
public class ControllerTests
{
 [TestMethod]
 public void CanExecuteIndex()
 {
 var controller = new HomeController();
 var result = controller.Index();

 Assert.IsNotNull(result);
 Assert.IsInstanceOfType(result, typeof(ViewResult));
 }
}

This is a simple unit test that will check that the result of invoking the Index method on the
HomeController class is not null.

Understanding How Testing Works Chapter 13

[503]

Notice the [TestMethod] attribute in the CanExecuteIndex method; it is an indication
that this method contains a unit test and it is captured by the Test Explorer feature of
Visual Studio:

Visual Studio will be able to find any test method, provided that the following is true:

It is declared in a non-abstract class.
The class is decorated with a [TestClass] attribute.
It is public.
It has either the [TestMethod] or [DataRow] attributes (more on this in a
moment).

From here, you can run or debug your tests; try placing a breakpoint inside the
CanExecuteIndex method and debugging the tests. It is called automatically by Visual
Studio and it considers whether the test passes if no exception is thrown. Controllers are
usually good candidates for unit testing, but you should also unit test your services and
business objects as well. Remember, focus on the most critical classes first and then, if you
have the resources, time, and developers, proceed to the less critical code.

Besides [TestMethod], you can also decorate your unit test methods with one or more
[DataRow] attributes. This allows you to pass arbitrary values for parameters and return
values for your method to be supplied automatically by the unit test framework:

[TestClass]
public class CalculatorTest
{
 [DataTestMethod]
 [DataRow(1, 2, 3)]
 [DataRow(1, 1, 2)]
 public void Calculate(int a, int b, int c)
 {
 Assert.AreEqual(c, a + b);
 }
}

Understanding How Testing Works Chapter 13

[504]

In this example, we can see that we are providing two sets of values—1, 2, and 3, and 1, 1,
and 2. These are tested automatically.

If you want to execute code before or after any tests in the same class, you can apply the
following:

[TestClass]
public class MyTests
{
 [ClassInitialize]
 public void ClassInitialize()
 {
 //runs before all the tests in the class
 }

 [ClassCleanuç]
 public void ClassCleanup()
 {
 //runs after all the tests in the class
 }
}

Alternatively, for running code just before and after each test, apply the following:

[TestInitialize]
public void Initialize()
{
 //runs before each test
}

[TestCleanup]
public void Cleanup()
{
 //runs after each test
}

If you want to ignore a specific test method, apply the following:

[Ignore("Not implemented yet")]
public void SomeTest()
{
 //will be ignored
}

Understanding How Testing Works Chapter 13

[505]

The Assert class offers a number of useful utility methods to be used in unit tests:

AreEqual: The items to compare are identical.
AreNotEqual: The items to compare are not identical.
AreNotSame: The items to compare have not got the same reference.
AreSame: The items to compare have the same reference.
Equals: The items are equal.
Fail: The assertion failed.
Inconclusive: The assertion was inconclusive.
IsFalse: The condition is expected to be false.
IsInstanceOfType: The instance is expected to be of a given type.
IsNotInstanceOfType: The instance is not expected to be of a given type.

Please refer to the MSTest documentation at https:/ ​/​docs. ​microsoft.
com/​en- ​us/ ​visualstudio/ ​test/ ​using- ​microsoft- ​visualstudio-
testtools- ​unittesting- ​members- ​in- ​unit- ​tests? ​view= ​vs- ​2019 for more
information.

Next, we have NUnit.

NUnit
NUnit is one of the oldest unit test frameworks. To use it in your code, you need to add the
following NuGet packages as references:

nunit

NUnit3TestAdapter

Microsoft.NET.Test.Sdk

Again, the first one is the framework itself and the second is the integration with Visual
Studio. To create an NUnit project, besides using the Visual Studio template, you can create
one with dotnet:

dotnet new nunit

Add a reference to your web app project and add a class such as this one to a file called
ControllerTests.cs:

[TestFixture]

https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019

Understanding How Testing Works Chapter 13

[506]

public class ControllerTests
{
 [Test]
 public void CanExecuteIndex()
 {
 var controller = new HomeController();
 var result = controller.Index();

 Assert.AreNotEqual(null, result);
 }
}

Visual Studio is able to automatically find unit tests, provided the following is true:

They are declared in a non-abstract class.
The class is decorated with a [TestFixture] attribute.
They are public and non-abstract.
They have either the [Test] or [TestCase] attributes.

[TestCase] allows us to pass multiple arguments automatically, as well as an expected
return value (which is optional):

public class CalculatorTest
{
 [TestCase(1, 1, ExpectedResult = 2)]
 public int Add(int x, int y)
 {
 return x + y;
 }
}

Notice that in this example, we don't even need to specify an assertion—one is inferred
automatically if you specify ExpectedResult.

Now, if you want something to run before any tests in your code, you need to have the
following in your code:

[SetUpFixture]
public class InitializeTests
{
 [OneTimeSetUp]
 public void SetUpOnce()
 {
 //run before all tests have started
 }

Understanding How Testing Works Chapter 13

[507]

 [OneTimeTearDown]
 public void TearDownOnce()
 {
 //run after all tests have finished
 }
}

The names of the class and methods are irrelevant, but the class needs to be public and
have a public parameterless constructor, and the methods also need to be public and non-
abstract (can be static or instance). Notice the attributes on both the class and the SetUp
(runs before) and TearDown (runs after) methods. Not all of them need to be provided, just
one.

Likewise, if you wish to have code run before each test, you need to have a method marked
as follows:

[SetUp]
public void BeforeTest()
{
 //runs before every test
}

The difference between the two is that the method marked as [SetUp] runs before every
test, while [OneTimeSetUp] and [OneTimeTearDown] only run once for each test
sequence (all the tests).

If you wish to ignore a test for some reason, such as if it is failing or not yet complete, you
can mark it with another attribute:

[Ignored("Not implemented yet")]
public void TestSomething()
{
 //will be ignored
}

As in other frameworks, there is a class called Assert that contains some helper methods:

IsFalse: The given condition is false.
IsInstanceOf: The passed instance is an instance of a given type.
IsNaN: The passed expression is not a number.
IsNotAssignableFrom: The passed instance is not assignable from a given
type.

Understanding How Testing Works Chapter 13

[508]

IsNotEmpty: The collection is not empty.
IsNotInstanceOf: The passed instance is not an instance of the given type.
IsNotNull: The instance is not null.
IsNull: The instance is null.
IsTrue: The condition is true.

For more information, please consult the NUnit documentation at https:/
/​github. ​com/ ​nunit/ ​docs/ ​wiki/ ​NUnit- ​Documentation.

Next is xUnit.

xUnit
In order to use xUnit, you need to add a couple of NuGet packages:

xunit

xunit.runner.visualstudio

Microsoft.NET.Test.Sdk

The first is the framework itself and the other two are required for Visual Studio
integration. Visual Studio 2019 even provides xUnit test project templates, which is even
better!

Let's create a unit test project; because we will be targeting ASP.NET Core features and
.NET Core apps, we need to create a unit test project that also targets .NET Core
apps—netcoreapp3.0. As mentioned, you can do this through Visual Studio or by using
the dotnet tool to create a template project:

dotnet new xunit

In this project, we add a reference to our web app and we create a class. Let's call it
ControllerTests. In this class, we add the following code:

public class ControllerTests
{
 [Fact]
 public void CanExecuteIndex()
 {
 var controller = new HomeController();
 var result = controller.Index();

https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation

Understanding How Testing Works Chapter 13

[509]

 Assert.NotNull(result);
 }
}

This is a very simple test. We are creating a HomeController instance, executing its Index
method, and checking that no exception is thrown (implicit, otherwise the test would fail)
and that its result is not null.

Unlike other frameworks, with xUnit, you do not need to decorate a class
that contains unit tests.

Visual Studio discovers unit tests automatically—it shows them in the Test Explorer
window—provided the following is true:

They are declared in a non-abstract class.
They are public.
They have either the [Fact] or [Theory] attributes.

[Theory] is even more interesting as you can supply parameters to your test method and
xUnit will take care of calling it with them! See for yourself:

[Theory]
[InlineData(1, 2, 3)]
[InlineData(0, 10, 10)]
public void Add(int x, int y, int z)
{
 Assert.Equals(x + y, z);
}

This example is a bit simple, but I think you get the picture! [InlineData] should have as
many parameters as the method it is declared on. As we have two [InlineData]
attributes, we have two datasets, so the method will be called twice—once for each of the
values in one of the [InlineData] attributes.

Alternatively, if you want to test an action method model, you could have the following:

var controller = new ShoppingController();
var result = controller.ShoppingBag();
var viewResult = Assert.IsType<ViewResult>(result);
var model = Assert.IsType<ShoppingBag>(viewResult.ViewData.Model);

Understanding How Testing Works Chapter 13

[510]

You can have as many test methods as you like and you can run one or more from the
Visual Studio Test Explorer window. Each of your methods should be responsible for
testing one feature, so make sure you don't forget that! Normally, unit tests are set up
according to Arrange-Act-Assert (AAA), meaning first we set up (arrange) our objects, then
we call some code on them (act), and then we check its results (assert). Do keep this
mnemonic in mind!

If the class where you have the unit tests implements IDisposable, its Dispose method
will be called automatically at the end of all the tests. Also, the constructor of the class will
be run, of course, so it needs to be public and have no parameters.

If you have your test class implement IClassFixture<T>, xUnit will expect it to contain a
public constructor that takes an instance of T (which must, therefore, be a public and
instantiable type) and it will pass an instance of it to all unit test classes that implement the
same interface:

public class MyTests : IClassFixture<SharedData>
{
 private readonly SharedData _data;

 public MyTests(SharedData data)
 {
 this._data = data;
 }
}

Finally, if you wish to ignore a unit test, just set the Skip property on the [Fact] or
[Theory] attributes:

[Fact(Skip = "Not implemented yet")]
public void TestSomething()
{
 //will be ignored
}

There are several utility methods in the xUnit Assert class that will throw an exception if a
condition is not met:

All: All the items in the collection match a given condition.
Collection: All the items in the collection match all of the given conditions.
Contains: The collection contains a given item.
DoesNotContain: The collection does not contain a given item.
DoesNotMatch: The string does not match a given regular expression.
Empty: The collection is empty.

Understanding How Testing Works Chapter 13

[511]

EndsWith: The string ends with some content.
Equal: Two collections are equal (contain exactly the same elements).
Equals: Two items are equal.
False: The expression is false.
InRange: A comparable value is in a range.
IsAssignableFrom: An object is assignable from a given type.
IsNotType: An object is not of a given type.
IsType: An object is of a given type.
Matches: A string matches a given regular expression.
NotEmpty: A collection is not empty.
NotEqual: Two objects are not equal.
NotInRange: A comparable value is not in range.
NotNull: The value is not null.
NotSame: Two references are not the same object.
NotStrictEqual: Verifies that two objects are not equal using the default
comparer (Object.Equals).
Null: Checks that a value is null.
ProperSubset: Verifies that a set is a proper subset (is contained) of another set.
ProperSuperset: Verifies that a set is a proper superset of (contains) another
set.
PropertyChanged/PropertyChangedAsync: Verifies that a property was
changed.
Raises/RaisesAsync: Verifies that an action raises an event.
RaisesAny/RaisesAnyAsync: Verifies that an action raises one of the given
events.
Same: Two references point to the same object.
Single: The collection contains one—and only one—item.
StartsWith: Verifies that a string starts with another string.
StrictEqual: Verifies whether two objects are equal using the default comparer
(Object.Equals).
Subset: Verifies that a set is a subset (is contained) of another set.

Understanding How Testing Works Chapter 13

[512]

Superset: Verifies that a set is a superset (contains) of another set.
Throws/ThrowsAsync: Verifies that an action throws an exception.
ThrowsAny/ThrowsAnyAsync: Verifies that an action throws one of the given
exceptions.
True: The expression is true.

Essentially, all of these methods are variations of True; you want to assert whether a
condition is true. Do not have lots of assertions in your unit test method; make sure only
the essentials are tested—for example, check whether a method returns a non-empty or
non-null collection in a test and have other test checks for the correctness of the values
returned. If you want to test different scenarios or return values, create another unit test.

For more information, please consult the xUnit documentation at https:/
/​xunit. ​net/ ​#documentation.

Let's now see how we can prepare a unit test using xUnit.

Test setup
The examples in this chapter will all use xUnit as the unit test framework.

Injecting dependencies
It may not always be simple; for example, the class you wish to test may contain
dependencies. By far the best way to inject dependencies into your controller is through its
controller. Here is an example of a controller that carries out logging:

ILogger<HomeController> logger = ...;
var controller = new HomeController(logger);

Fortunately, the RequestServices property of HttpContext is itself settable, meaning
you can build your own instance with the services that you want. Check the following code:

var services = new ServiceCollection();
services.AddSingleton<IMyService>(new MyServiceImplementation());

var serviceProvider = services.BuildServiceProvider();

controller.HttpContext.RequestServices = serviceProvider;

https://xunit.net/#documentation
https://xunit.net/#documentation
https://xunit.net/#documentation
https://xunit.net/#documentation
https://xunit.net/#documentation
https://xunit.net/#documentation
https://xunit.net/#documentation
https://xunit.net/#documentation

Understanding How Testing Works Chapter 13

[513]

If your code depends on the current user being authenticated or possessing certain claims,
you need to set up an HttpContext object, which you can do like this:

controller.ControllerContext = new ControllerContext
{
 HttpContext = new DefaultHttpContext
 {
 User = new ClaimsPrincipal(new ClaimsIdentity(new Claim[]
 {
 new Claim(ClaimTypes.Name, "username")
 }))
 }
};

This way, inside your controller, the HttpContext and User properties will be initialized
properly. In the DefaultHttpContext class's constructor, you can also pass along a
collection of features (the HttpContext.Features collection):

var features = new FeatureCollection();
features.Set<IMyFeature>(new MyFeatureImplementation());

var ctx = new DefaultHttpContext(features);

By using a custom features collection, you can inject values for lots of features, such as the
following:

Sessions: ISessionFeature
Cookies: IRequestCookiesFeature, IResponseCookiesFeature
Request: IHttpRequestFeature
Response: IResponseCookiesFeature
Connections: IHttpConnectionFeature
Form: IFormFeature

Either by providing your own implementation in the features collection or by assigning
values to the existing one, you can inject values for your tests so as to simulate real-life
scenarios. For example, suppose your controller needs a specific cookie:

var cookies = new RequestCookieCollection(new Dictionary<string, string> {
{ "username", "dummy" } });

var features = new FeatureCollection();
features.Set<IRequestCookiesFeature>(new RequestCookiesFeature(cookies));

var context = new DefaultHttpContext(features);

Understanding How Testing Works Chapter 13

[514]

RequestCookieCollection used to be public, but now it's internal, which means that to
mock cookies, we need to implement them ourselves. Here is the simplest implementation:

class RequestCookieCollection : IRequestCookieCollection
{
 private readonly Dictionary<string, string> _cookies;

 public RequestCookieCollection(Dictionary<string, string> cookies)
 {
 this._cookies = cookies;
 }

 public string this[string key] => _cookies[key];

 public int Count => _cookies.Count;

 public ICollection<string> Keys => _cookies.Keys;

 public bool ContainsKey(string key)
 {
 return _cookies.ContainsKey(key);
 }

 public IEnumerator<KeyValuePair<string, string>> GetEnumerator()
 {
 return _cookies.GetEnumerator();
 }

 public bool TryGetValue(string key, out string value)
 {
 return _cookies.TryGetValue(key, out value);
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return this.GetEnumerator();
 }
}

Now, you should note that you cannot change the HttpContext object on
ControllerBase—it is read-only. However, it turns out that it actually comes from the
ControllerContext property, which is itself settable. Here is a full example:

var request = new Dictionary<string, StringValues>
{
 { "email", "rjperes@hotmail.com" },
 { "name", "Ricardo Peres" }

Understanding How Testing Works Chapter 13

[515]

};

var formCollection = new FormCollection(request);
var form = new FormFeature(formCollection);
var features = new FeatureCollection();
features.Set<IFormFeature>(form);

var context = new DefaultHttpContext(features);

var controller = new HomeController();
controller.ControllerContext = new ControllerContext { HttpContext =
context };

This example allows us to set the contents of the form request so that they can be accessed
in a unit test from inside a controller, as follows:

var email = this.Request.Form["email"];

To do that, we had to create a form collection (IFormCollection) and a feature
(IFormFeature), build up an HTTP context (HttpContext) using this feature, assign a
controller context (ControllerContext) with the HTTP context, and assign it to the
controller that we want to test (HomeController). This way, all of its internal
properties—HttpContext and Request—will have the dummy values that we passed as
the request.

One of the challenges of dependencies is that because we are executing a limited subset of
our system, it may not be easy to get proper functioning objects; we may need to replace
them with substitutes. We will now see how we can resolve this.

Mocking
Mocks, fakes, and stubs are similar concepts that essentially mean that an object is
substituted for another one that mimics its behavior. Why would we do that? Well, because
we are testing our code in isolation and we are assuming that third-party code works as
advertised, we do not care about it, so we can just replace these other dependencies with
dummies.

For a comparison of these terms, please refer to https:/ ​/​blog.
pragmatists. ​com/ ​test- ​doubles- ​fakes- ​mocks- ​and-​stubs- ​1a7491dfa3da.

https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da

Understanding How Testing Works Chapter 13

[516]

We use mocking frameworks for this purpose, and there are a few available for .NET Core
as well, such as the following:

Moq: https:/ ​/​github. ​com/ ​moq/​moq4

NSubstitute: http:/ ​/​nsubstitute. ​github. ​io

FakeItEasy: https:/ ​/​fakeiteasy. ​github. ​io

Let's pick Moq. In order to use it, add the Moq NuGet package to your project. Then, when
you need to mimic the functionality of a given type, you can create a mock of it and set up
its behavior, as shown:

//create the mock
var mock = new Mock<ILogger<HomeController>>();
//setup an implementation for the Log method
mock.Setup(x => x.Log(LogLevel.Critical, new EventId(), "", null, null));

//get the mock
ILogger<HomeController> logger = mock.Object;
//call the mocked method with some parameters
logger.Log(LogLevel.Critical, new EventId(2), "Hello, Moq!", null, null);

You set up a method by passing an expression consisting of a method or property call with
appropriate parameter types, regardless of its actual value. You can pass the mocked object
as a dependency of your services or controllers, run your tests, and then make sure that the
mocked method was called:

mock.Verify(x => x.Log(LogLevel.Critical, new EventId(), "", null, null));

It is also possible to set up a response object—for example, if we are mocking
HttpContext:

var mock = new Mock<HttpContext>();
mock.Setup(x => x.User).Returns(new ClaimsPrincipal(new
ClaimsIdentity(new[] { new
 Claim(ClaimTypes.Name, "username"), new Claim(ClaimTypes
 .Role, "Admin") }, "Cookies")));

var context = mock.Object;
var user = context.User;

Assert.NotNull(user);
Assert.True(user.Identity.IsAuthenticated);
Assert.True(user.HasClaim(ClaimTypes.Name, "username"));

Here, you can see that we are supplying the return value for a call to the User property and
we are returning a pre-built ClaimsPrincipal object with all the bells and whistles.

https://github.com/moq/moq4
https://github.com/moq/moq4
https://github.com/moq/moq4
https://github.com/moq/moq4
https://github.com/moq/moq4
https://github.com/moq/moq4
https://github.com/moq/moq4
https://github.com/moq/moq4
https://github.com/moq/moq4
https://github.com/moq/moq4
https://github.com/moq/moq4
http://nsubstitute.github.io
http://nsubstitute.github.io
http://nsubstitute.github.io
http://nsubstitute.github.io
http://nsubstitute.github.io
http://nsubstitute.github.io
http://nsubstitute.github.io
http://nsubstitute.github.io
http://nsubstitute.github.io
https://fakeiteasy.github.io
https://fakeiteasy.github.io
https://fakeiteasy.github.io
https://fakeiteasy.github.io
https://fakeiteasy.github.io
https://fakeiteasy.github.io
https://fakeiteasy.github.io
https://fakeiteasy.github.io
https://fakeiteasy.github.io

Understanding How Testing Works Chapter 13

[517]

Of course, there's so much more to Moq, but I think this should be enough to get you
started.

Assertions
Your unit test will fail if an exception is thrown. So, you can either roll out your own
exception-throwing code or you can rely on one of the assertion methods, which actually
throw exceptions themselves, provided by your unit test framework; all of them offer
similar methods.

For more complex scenarios, it may be useful to use an assertion library.
FluentAssertions is one such library that happens to work nicely with
.NET Core. Get it from NuGet as FluentAssertions and from GitHub at
https:/ ​/​github. ​com/ ​fluentassertions/ ​fluentassertions.

With the code, you can have assertions such as the following:

int x = GetResult();
x
 .Should()
 .BeGreaterOrEqualTo(100)
 .And
 .BeLessOrEqualTo(1000)
 .And
 .NotBe(150);

As you can see, you can combine lots of expressions related to the same object type;
numeric values have comparisons, strings have matches, and more. You can also throw in
property change detection as well:

svc.ShouldRaisePropertyChangeFor(x => x.SomeProperty);

Also, execution time can be added:

svc
 .ExecutionTimeOf(s => s.LengthyMethod())
 .ShouldNotExceed(500.Milliseconds());

There's a lot more to it, so I advise you to have a look at the
documentation, available at http:/ ​/​fluentassertions. ​com.

Next, we have the user interface.

https://github.com/fluentassertions/fluentassertions
https://github.com/fluentassertions/fluentassertions
https://github.com/fluentassertions/fluentassertions
https://github.com/fluentassertions/fluentassertions
https://github.com/fluentassertions/fluentassertions
https://github.com/fluentassertions/fluentassertions
https://github.com/fluentassertions/fluentassertions
https://github.com/fluentassertions/fluentassertions
https://github.com/fluentassertions/fluentassertions
https://github.com/fluentassertions/fluentassertions
https://github.com/fluentassertions/fluentassertions
http://fluentassertions.com
http://fluentassertions.com
http://fluentassertions.com
http://fluentassertions.com
http://fluentassertions.com
http://fluentassertions.com
http://fluentassertions.com

Understanding How Testing Works Chapter 13

[518]

User interface
The unit tests we've seen so far are for testing APIs, such as business methods, and logic.
However, it is also possible to test the user interface. Let's see how using Selenium helps
with this. Selenium is a portable software testing framework for web applications of which
there is a .NET port of Selenium.WebDriver. As well as this, we will need the following:

Selenium.Chrome.WebDriver: For Chrome
Selenium.Firefox.WebDriver: For Firefox
Selenium.WebDriver.MicrosoftWebDriver: For Internet Explorer and Edge

We start by creating a driver:

using (var driver = (IWebDriver) new
ChromeDriver(Environment.CurrentDirectory))
{
 //...
}

Notice the Environment.CurrentDirectory parameter; this specifies the path where the
driver can find the chromedriver.exe file—geckodriver.exe for Firefox or
MicrosoftWebDriver.exe in the case of Internet Explorer/Edge (for Windows, of
course!). These executables are added automatically by the NuGet packages. Also, if you
don't dispose of the driver, the window will remain open after the unit test finishes. You
can also call Quit at any time to close the browser.

Now, we can navigate to any page:

driver
 .Navigate()
 .GoToUrl("http://www.google.com");

We can find an element from its name:

var elm = driver.FindElement(By.Name("q"));

Besides the name, we can also search by the following parameters:

ID: By.Id
CSS class: By.ClassName
CSS selector: By.CssSelector
Tag name: By.TagName

Understanding How Testing Works Chapter 13

[519]

Link text: By.LinkText
Partial link text: By.PartialLinkText
XPath: By.XPath

Once we find an element, we can access its properties:

var attr = elm.GetAttribute("class");
var css = elm.GetCssValue("display");
var prop = elm.GetProperty("enabled");

We can also send keystrokes:

elm.SendKeys("asp.net");

Instead of keystrokes, we can also click on the following:

var btn = driver.FindElement(By.Name("btnK"));
btn.Click();

As we know, page loading can take some time, so we can configure the default time to wait
for it to load, probably before we do GoToUrl:

var timeouts = driver.Manage().Timeouts();
timeouts.ImplicitWait = TimeSpan.FromSeconds(1);
timeouts.PageLoad = TimeSpan.FromSeconds(5);

ImplicitWait is just the time that Selenium waits before searching for an element; I'm
sure you can guess what PageLoad does.

If we need to wait for a period of time, such as until an AJAX request finishes, we can do
this:

var waitForElement = new WebDriverWait(driver, TimeSpan.FromSeconds(5));
var logo =
waitForElement.Until(ExpectedConditions.ElementIsVisible(By.Id("hplogo")));

The condition passed to ExpectedConditions can be one of the following:

AlertIsPresent

AlertState

ElementExists

ElementIsVisible

ElementSelectionStateToBe

ElementToBeClickable

Understanding How Testing Works Chapter 13

[520]

ElementToBeSelected

FrameToBeAvailableAndSwitchToIt

InvisibilityOfElementLocated

InvisibilityOfElementWithText

PresenceOfAllElementsLocatedBy

StalenessOf

TextToBePresentInElement

TextToBePresentInElementLocated

TextToBePresentInElementValue

TitleContains

TitleIs

UrlContains

UrlMatches

UrlToBe

VisibilityOfAllElementsLocatedBy

As you can see, there is a wealth of conditions that you can use. If the condition is not met
before the timer expires, then the value returned by Until is null.

Hopefully, with this, you will be able to write unit tests that can check the user interface
aspects of your sites. Of course, they need to point to a live environment, so in this case, the
tests won't be self-contained. When we talk about integration tests, we will see how to
overcome this.

For more information about Selenium, please refer to https:/ ​/​selenium.
dev.

This is as much as we'll cover about the user interface. Let's see now how we can run tests
from the command line.

https://selenium.dev
https://selenium.dev
https://selenium.dev
https://selenium.dev
https://selenium.dev
https://selenium.dev

Understanding How Testing Works Chapter 13

[521]

Using the command line
The dotnet command-line tool is the Swiss army knife of .NET Core development and, as
such, it has full support for running unit tests. If you are in the project folder where you
have your unit tests, just run dotnet test and off you go:

C:\Users\Projects\MyApp\UnitTests>dotnet test
Build started, please wait...
Build completed.

Test run for
C:\Users\Projects\MyApp\UnitTests\bin\Debug\netcoreapp3.0\UnitTests.dll(.NE
TCoreApp,Version=v3.0)

Microsoft (R) Test Execution Command Line Tool Version 16.3.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
[xUnit.net 00:00:00.3769248] Discovering: UnitTests
[xUnit.net 00:00:00.4364853] Discovered: UnitTests
[xUnit.net 00:00:00.4720996] Starting: UnitTests
[xUnit.net 00:00:00.5778764] Finished: UnitTests

Total tests: 10. Passed: 10. Failed: 0. Skipped: 0.
Test Run Successful.
Test execution time: 1,0031 Seconds

Since the project is set up to use xUnit (the
xunit.runner.visualstudio package), dotnet is happy to use it
automatically.

If you wish to see all the tests that are defined, run dotnet test --list-tests instead:

Test run for
C:\Users\Projects\MyApp\UnitTests\bin\Debug\netcoreapp3.0\UnitTests.dll(.NE
TCoreApp,Version=v3.0)

Microsoft (R) Test Execution Command Line Tool Version 16.3.0
Copyright (c) Microsoft Corporation. All rights reserved.

The following Tests are available:

 CanExecuteIndex
 Add(1, 2, 3)
 Add(0, 10, 10)

Understanding How Testing Works Chapter 13

[522]

Let's now look at some of the limitations of unit tests.

Limitations of unit tests
As useful as unit tests are, keep in mind that they are essentially used for regression testing
and that they have some limitations:

They generally do not cover user interfaces, although some frameworks exist that
can do so (at the time of writing, there aren't any for .NET Core).
You cannot test some ASP.NET features, such as filters or views.
External systems are mocked, so you only have a limited view of a small part of
the system.

We saw previously how we can perform tests over the user interface. In the next section, we
will see how we can overcome the last two limitations.

Working on integration tests
Here, we will not just think of an integration test as a test that executes a test method with
some input parameters and asserts the result or whether or not it throws an exception, but
also as something that executes real code. An integration test tests different modules of
code together, not just a single one.

As part of ASP.NET Core, Microsoft has made the
Microsoft.AspNetCore.Mvc.Testing NuGet package available. Essentially, it lets us
host a web application so that we can execute tests over it as we would in a real-life server,
taking out, of course, performance and scalability issues.

In your unit test project, create a class such as this (again, we're using xUnit):

public class IntegrationTests :
IClassFixture<WebApplicationFactory<Startup>>
{
 private readonly WebApplicationFactory<Startup> _factory;

 public IntegrationTests(WebApplicationFactory<Startup> factory)
 {
 this._factory = factory;
 }

 [Theory]
 [InlineData("/")]

Understanding How Testing Works Chapter 13

[523]

 public async Task CanCallHome(string url)
 {
 //Arrange
 var client = this._factory.CreateClient();

 //Act
 var response = await client.GetAsync(url);

 //Assert
 response.EnsureSuccessStatusCode();

 var content = await response.Content.ReadAsStringAsync();

 Assert.Contains("Welcome", content);
 }
}

So, what do we have here? If you remember from the xUnit section, we have a unit test
class where we are injecting WebApplicationFactory using the same Startup class that
is used for the proper app. We then issue a request for a URL, which is injected as inline
data. After we get the response, we validate its status code (EnsureSuccessStatusCode
checks that we don't have 4xx or 5xx) and we actually have a look at the returned contents.
Mind you, here, we do not work with IActionResults or similar, but with HTTP
responses. Because WebApplicationFactory uses conventions, it knows where to load
the configuration files and assemblies from.

The advantage of this approach is that we are really testing our controllers (and all their
services) in a web-like scenario, meaning filters will be run, authentication will be checked,
the configuration will be loaded as usual, and all that jazz. This plays nicely with unit tests,
as you can see from this example.

Notice that in this example, the unit test method is asynchronous; this is
supported by xUnit and the other unit test frameworks.

You will notice that we are reading the response as a string
(response.Content.ReadAsStringAsync). This means that we get the response as plain
HTML, which may or may not be what we want. We can use libraries such as AngleSharp
to parse this HTML and build a DOM from it. Then, you can query it using methods similar
to those that you have on the browser. AngleSharp is available as a NuGet package.

Understanding How Testing Works Chapter 13

[524]

A final word—you may want to tweak the WebApplicationFactory class to add some
additional configuration or behavior. It's just a matter of inheriting from it and overriding
its virtual methods. For example, suppose you want to disable all of the background
services registered on the dependency injection framework:

class MyCustomWebApplicationFactory : WebApplicationFactory<Startup>
{
 protected override IHostBuilder CreateHostBuilder()
 {
 return base
 .CreateHostBuilder()
 .ConfigureServices(services =>
 {
 services.RemoveAll<IHostedService>();
 });
 }
}

As you can see, after we run the base class's CreateHostBuilder parameter, we are
removing all registered instances of IHostBuilder. We could also change the start up class
to a different one or perform any other kind of customization. It's just a matter of specifying
this class instead of WebApplicationFactory<Startup> on IClassFixture<T>.

We've seen how to use unit test frameworks to actually perform integration tests. Be aware
that, of course, doing this in an automated way will cause your tests to run for longer and
possibly have side effects, something that goes against the philosophy of unit tests.

Summary
You definitely should carry out unit tests for your apps. Whether you follow TDD strictly
or not, they can be very useful, especially for regression tests. Most continuous integration
tools out there fully support running unit tests. Just don't try to cover everything; focus on
the critical parts of your app and, if time allows, then proceed to the other parts. It is
unreasonable to think that we will have 100% coverage in most projects, so we need to
make decisions. Mocking frameworks play an essential role here as they allow us to
simulate third-party services nicely.

Automated integration tests, as we saw here, allow us to test features that aren't available in
unit tests, and these cover other parts of our needs.

Understanding How Testing Works Chapter 13

[525]

This chapter covered ways to test our apps, either part of them in isolation or the system as
a whole. Unit tests are useful as they can ensure that our application still works the way it
is supposed to, even though we are making changes to it.

In the next chapter, we will talk about client-side development with ASP.NET Core.

Questions
So, by the end of this chapter, you should know the answers to the following questions:

What are the more popular unit test frameworks?1.
What is the benefit of mocking?2.
What is the difference between unit and integration testing?3.
What is TDD?4.
What are some limitations of unit tests?5.
How can we pass data automatically to unit tests?6.
What does red-green-refactor mean?7.

14
Client-Side Development

Although this book is about ASP.NET Core—a server-side development framework,
nowadays, pretty much nothing can be achieved without client-side technologies.
Fortunately, ASP.NET Core also includes a number of application programming interfaces
(APIs) and libraries that can help us use third-party, client-side libraries to build modern
apps. These apps include single-page applications (SPAs), which provide a much more
user-friendly experience to that offered by old-school sites that need navigating from one
page to another. There is also TypeScript, a superset of JavaScript, that can be used to build
strongly typed, object-oriented code very similar to what you would write with C#.

Visual Studio also includes some features that make our life easier, and ASP.NET Core
introduced interoperability with Node.js, something that wasn't possible earlier, including
built-in package managers for Node package manager (npm). This includes the ability to
run npm scripts from .NET code, for example.

We will cover the following topics in this chapter:

Introducing client-side development
Using Library Manager (LibMan)
Using Node.js
Using TypeScript

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 software development kit (SDK) and some form of text editor. Of course, Visual
Studio 2019 (any edition) meets all the requirements, but you can also use Visual Studio
Code, for example.

Client-Side Development Chapter 14

[527]

The source code can be retrieved from GitHub
here: https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Cor
e-3-Second-Edition.

Introducing client-side development
Client-side development is the counterpart to server-side development. In modern web
applications, one cannot exist without the other. Although this book is primarily about
ASP.NET Core, a server-side technology, chances are we will be working with JavaScript or
Cascading Style Sheets (CSS). Visual Studio (and Visual Studio Code, too) includes some
features that make our life easier, and ASP.NET Core introduced interoperability with
Node.js, something that wasn't possible earlier, including built-in package managers
(https:/​/​docs.​microsoft. ​com/ ​en- ​us/ ​visualstudio/ ​javascript/ ​npm-​package-
management).

Let's see how it functions in the following sections.

Using LibMan
LibMan is a new open source tool by Microsoft for managing client-side libraries. It
consists of a Visual Studio extension and a command-line tool. Both read information from
a libman.json configuration file. A sample file looks like this:

{
 "version": "1.0",
 "defaultProvider": "cdnjs",
 "libraries": [{
 "library": "jquery@3.4.1",
 "destination": "wwwroot/lib"
 },
 {
 "library": "jquery-validation-unobtrusive@3.2.11",
 "destination": "wwwroot/lib"
 }]
}

As you can see from the preceding code snippet, in the file, we specify one or more libraries
(in this case, jQuery and jQuery Validation Unobtrusive) in specific versions, and,
for each, we tell the library where to install it (wwwroot/lib for both). From inside Visual
Studio (for Windows only—Mac does not have support for LibMan), we even have code
completion for libraries and their versions, as can be seen in the following screenshot:

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management

Client-Side Development Chapter 14

[528]

Then, we can use the command-line tool to retrieve these libraries and install them as
configured. The command-line tool is a dotnet global tool, which first needs to be installed
by running the following command:

dotnet tool install -g microsoft.web.librarymanager.cli

After that, from the folder containing the libman.json file, all we need to do is to restore
all configured libraries, as follows:

libman restore

For additional information, please consult the Microsoft official
documentation at https:/ ​/​devblogs. ​microsoft. ​com/ ​aspnet/ ​library-
manager- ​client- ​side- ​content- ​manager- ​for-​web- ​apps and the GitHub
project page at https:/ ​/ ​github. ​com/ ​aspnet/ ​LibraryManager.

Having learned about the new package manager, used to retrieve client-side libraries, it's
now time to talk about Node.js, the server-side JavaScript engine, and see how we can
interact with it from .NET Core.

Using Node.js
Most of you will be familiar with Node.js by now—it is essentially JavaScript on the server
side. It is an open source project that, at least for now, uses Chrome's V8 JavaScript engine
to run JavaScript out of the context of a browser. It has become extremely popular, arguably
due to its use of the JavaScript language (some may not agree), but essentially because of its
speed and the huge amount of libraries made available through npm—currently, more than
550,000.

https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://devblogs.microsoft.com/aspnet/library-manager-client-side-content-manager-for-web-apps
https://github.com/aspnet/LibraryManager
https://github.com/aspnet/LibraryManager
https://github.com/aspnet/LibraryManager
https://github.com/aspnet/LibraryManager
https://github.com/aspnet/LibraryManager
https://github.com/aspnet/LibraryManager
https://github.com/aspnet/LibraryManager
https://github.com/aspnet/LibraryManager
https://github.com/aspnet/LibraryManager
https://github.com/aspnet/LibraryManager
https://github.com/aspnet/LibraryManager

Client-Side Development Chapter 14

[529]

You can find more information about Node.js and npm on their respective
sites, https:/ ​/ ​nodejs. ​org and https:/ ​/​www. ​npmjs. ​com, and about the
Visual Studio support for npm here: https:/ ​/​docs. ​microsoft. ​com/ ​en-
us/​visualstudio/ ​javascript/ ​npm- ​package- ​management

You can install the Node.js support for Visual Studio through the VS installer tool, but you
will also need to have Node.js itself installed, which you can get from https:/ ​/​nodejs. ​org.
You get Visual Studio templates for creating Node.js projects, as illustrated in the following
screenshot:

You can also add Node.js files to an ASP.NET Core project, but there is no obvious npm
explorer in Visual Studio until you add a package.json file and reference some package.
The npm node appears under the Dependencies project, as illustrated in the following
screenshot:

https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://docs.microsoft.com/en-us/visualstudio/javascript/npm-package-management?
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org

Client-Side Development Chapter 14

[530]

Node.js files are kept in a node_modules folder outside wwwroot; this is because these files
are usually not meant to be served to the browser. You need to explicitly restore the
packages before you can use them.

The next section explains how we can call Node.js code from inside .NET Core code.

Calling Node from .NET Core
Steve Sanderson, of Knockout.js (http:/ ​/​knockoutjs. ​com/ ​) fame, started a pet project
called NodeServices a few years ago. It was made available as
Microsoft.AspNetCore.NodeServices a few years ago from NuGet, and it is now part
of the ASP.NET Core ecosystem. In a nutshell, it allows us to call Node.js code from
ASP.NET Core. Just think about it—we get all the benefits of both ASP.NET Core and
Node.js (and npm) at the same time!

http://knockoutjs.com/
http://knockoutjs.com/
http://knockoutjs.com/
http://knockoutjs.com/
http://knockoutjs.com/
http://knockoutjs.com/
http://knockoutjs.com/
http://knockoutjs.com/

Client-Side Development Chapter 14

[531]

In order to use NodeServices, we need to register its services in ConfigureServices,
like this:

services.AddNodeServices();

After this, we can inject an instance of INodeServices into our components, controllers,
view components, tag helpers, middleware classes, and more. This interface exposes a
single method, InvokeAsync, which we can use to invoke one of the modules that we have
installed locally. One example might be this:

var result = await nodeServices.InvokeAsync<int>("Algebra.js", 10, 20);

The Algebra.js file would then need to export a default module—something along these
lines:

module.exports = function(callback, a, b) {
 var result = a + b;
 callback(null, result);
};

NodeServices expects the default export to return a function that takes a callback,
implicitly passed by InvokeAsync, and any number of parameters. Make a note of this:
these parameters should be of primitive types, but you can pass along a JavaScript Object
Notation (JSON)-formatted object and have your Node.js code convert it. You can do
pretty much whatever you want from your Node.js code, including referencing other
modules. At the end of the default export instance, you call the implicit callback function
with an optional error parameter and the value to return to .NET Core; if you pass an error,
the .NET code will raise an exception.

There is another way to call Node.js code, which is often useful—this is to run an npm
script. This is explained in the next section.

Serving SPA files
A partial replacement of NodeServices exists in the
Microsoft.AspNetCore.SpaServices.Extensions NuGet package. Notice that
WebPack middleware is no longer included in ASP.NET Core. We must use a development
server and start an npm script so that we can serve files for SPA projects, as follows:

app.UseStaticFiles();
app.UseSpaStaticFiles();

app.UseRouting();

Client-Side Development Chapter 14

[532]

app.UseEndpoints(endpoints =>
{
 endpoints.MapDefaultControllerRoute();
});

app.UseSpa(spa =>
{
 spa.Options.SourcePath = "ClientApp";

 if (env.IsDevelopment())
 {
 spa.UseReactDevelopmentServer(npmScript: "start");
 }
});

Notice that UseSpaStaticFiles must go before UseEndpoints, and UseSpa must go
after UseEndpoints. UseReactDevelopmentServer is really not specific to React; it is
used to start a Node script in process. For the start script, you need to register it as a
script under package.json—something like this:

"scripts": { "start": "webpack-dev-server --config webpack.development.js -
-hot --inline",

If you need to proxy requests (forward requests to a running server), we must instead have
the following:

// Ensure that you start your server manually
spa.UseProxyToSpaDevelopmentServer("http://localhost:8088");

Let's not forget to register the required services in ConfigureServices first, by executing
the following code:

services.AddSpaStaticFiles(configuration =>
{
 configuration.RootPath = "ClientApp/build";
});

The configuration in the .csproj file depends on the type of project being created; each
file/project will have slightly different settings. Let's see what types of projects
(templates)can be created.

Client-Side Development Chapter 14

[533]

Using SPA templates
Microsoft has made available templates for a number of popular JavaScript
SPA frameworks, as follows:

Template Framework Moniker

Microsoft.AspNetCore.SpaTemplates

Aurelia aurelia

Knockout.js knockout

Vue.js vue

Microsoft.DotNet.Web.Spa.ProjectTemplates

Angular angular

React.js react

React.js + Redux reactredux

You can see the full list of templates at https:/ ​/​dotnetnew. ​azurewebsites. ​net. To install
the templates, use the following code:

dotnet new -i Microsoft.AspNetCore.SpaTemplates
dotnet new -i Microsoft.DotNet.Web.Spa.ProjectTemplates

You will get all of the listed templates. Then, for example, run the following code:

mkdir AngularProject
cd AngularProject
dotnet new angular
dotnet restore
npm install

As a result, you will get a nice project skeleton using Angular, waiting to be completed!

To update all the local templates to the more recent versions, just run the following
command:

dotnet new --update-apply

After this, let's move on to understanding how this works with TypeScript.

https://dotnetnew.azurewebsites.net
https://dotnetnew.azurewebsites.net
https://dotnetnew.azurewebsites.net
https://dotnetnew.azurewebsites.net
https://dotnetnew.azurewebsites.net
https://dotnetnew.azurewebsites.net
https://dotnetnew.azurewebsites.net
https://dotnetnew.azurewebsites.net
https://dotnetnew.azurewebsites.net

Client-Side Development Chapter 14

[534]

Using TypeScript
TypeScript is a JavaScript object-oriented superset. It is an open source language developed
by Microsoft that offers features that exist in other non-scripted, object-oriented languages,
such as modules, classes, interfaces, strong typing, templates, different visibility levels, and
method overloading.

By coding in TypeScript, you get all the benefits of these languages but, after the code is
transpiled (cross-language compiled), you still get your daddy's JavaScript, although a
modern version of it, which you can use in both the client and the server side (Node.js). See
more about TypeScript at https:/ ​/​www. ​typescriptlang. ​org and obtain it from GitHub at
https:/​/​github.​com/ ​Microsoft/ ​TypeScript. Alternatively, if you want to play with it a bit
first, you should try the TypeScript Playground: http:/ ​/​www. ​typescriptlang. ​org/ ​play

Visual Studio has two extensions, TypeScript Build for Microsoft Visual Studio and
TypeScript for Microsoft Visual Studio, both installable with the TypeScript SDK
(https:/​/​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​TypeScriptTeam. ​typescript-
331-​vs2017), which can be used to assist you in creating TypeScript code and turning it into
JavaScript. You add a TypeScript file to your project by clicking Add New Item | Visual C#
| ASP.NET Core | Web | Scripts | TypeScript File. As you add TypeScript content and
save the file, Visual Studio automatically transpiles it to a corresponding JavaScript file.
Remember that you do not use the TypeScript (.ts) files directly, but the JavaScript ones
(.js), as illustrated in the following screenshot:

It is also possible to create a TypeScript project on its own, but only for targeting Node.js; it
would be pointless to have a TypeScript project for the web outside the scope of an
ASP.NET project.

https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://github.com/Microsoft/TypeScript
https://github.com/Microsoft/TypeScript
https://github.com/Microsoft/TypeScript
https://github.com/Microsoft/TypeScript
https://github.com/Microsoft/TypeScript
https://github.com/Microsoft/TypeScript
https://github.com/Microsoft/TypeScript
https://github.com/Microsoft/TypeScript
https://github.com/Microsoft/TypeScript
https://github.com/Microsoft/TypeScript
https://github.com/Microsoft/TypeScript
http://www.typescriptlang.org/play
http://www.typescriptlang.org/play
http://www.typescriptlang.org/play
http://www.typescriptlang.org/play
http://www.typescriptlang.org/play
http://www.typescriptlang.org/play
http://www.typescriptlang.org/play
http://www.typescriptlang.org/play
http://www.typescriptlang.org/play
http://www.typescriptlang.org/play
http://www.typescriptlang.org/play
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017
https://marketplace.visualstudio.com/items?itemName=TypeScriptTeam.typescript-331-vs2017

Client-Side Development Chapter 14

[535]

You can create a Node.js console application TypeScript project from Visual Studio using
the default templates, as illustrated in the following screenshot:

TypeScript is recommended over plain JavaScript for medium-scale and large-scale projects
because it makes things easier to organize, with proper support for types—interfaces,
classes, enumerations, and so on. Also, in general, it helps prevent errors because of strong
typing and more strict checking.

If you just want to compile TypeScript files on a Microsoft Build (MSBuild) project, all it
takes is to add the Microsoft.TypeScript.MSBuild NuGet package and configure
the .csproj file accordingly, as per this example:

<PropertyGroup>
 <TypeScriptToolsVersion>3.7<TypeScriptToolsVersion>
</PropertyGroup>

<PropertyGroup Condition="'$(Configuration)' == 'Debug'">
 <TypeScriptRemoveComments>false</TypeScriptRemoveComments>
 <TypeScriptSourceMap>true</TypeScriptSourceMap>
</PropertyGroup>

Client-Side Development Chapter 14

[536]

<PropertyGroup Condition="'$(Configuration)' == 'Release'">
 <TypeScriptRemoveComments>true</TypeScriptRemoveComments>
 <TypeScriptSourceMap>false</TypeScriptSourceMap>
</PropertyGroup>
<Import
Project="$(MSBuildExtensionsPath32)\Microsoft\VisualStudio\v$(VisualStudioV
ersion)\TypeScript\
Microsoft.TypeScript.targets"
Condition="Exists('$(MSBuildExtensionsPath32)\Microsoft\VisualStudio\v$(Vis
ualStudioVersion)\
TypeScript\Microsoft.TypeScript.targets')" />

In this example, we start by defining the target TypeScript version (3.7). Another option is
to skip it or to set it to Latest. Then, we have two configurations, one for Debug and
another for Release. The difference between the two is optimizations—one removes
comments and does not create source maps (Release), and the other does the opposite
(Debug). For a list of all the options, refer to https:/ ​/​www. ​typescriptlang. ​org/ ​docs/
handbook/​compiler- ​options- ​in- ​msbuild. ​html.

Summary
You've seen that Node.js and npm are getting more and more important, even for those of
us using ASP.NET and ASP.NET Core, because of its rich wealth of packages. Some of the
tools that we've talked about in this chapter rely on it. Because you can now invoke Node.js
from ASP.NET Core, you can benefit from its many available packages and thriving
community. Even if you are not much of a JavaScript person, I truly advise you to try to get
into it.

Make sure you use TypeScript for any medium-to-large projects—anything that is bigger
than a single JavaScript file—because it has lots of advantages and can help you be more
productive, much faster.

In this chapter, we covered some of the client-side technologies for which Visual Studio
offers first-class support. We did not go into great detail, as this is a huge topic and one that
seems to be changing very fast, but I left some clues for you, dear reader, to explore and
find out more for yourself.

https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html
https://www.typescriptlang.org/docs/handbook/compiler-options-in-msbuild.html

Client-Side Development Chapter 14

[537]

Questions
So, by the end of this chapter, you should know the answers to the following questions:

What are the benefits of TypeScript?1.
Does JavaScript only run on browsers?2.
What are SPAs?3.
What is the purpose of LibMan?4.
Are the templates for dotnet SPA frameworks hardcoded?5.
How can we run JavaScript code from .NET Core?6.
Name a few SPA frameworks that have dotnet templates.7.

15
Improving Performance and

Scalability
This chapter talks about the different optimizations that we can apply to ASP.NET Core
applications so that they perform faster and are able to handle more simultaneous
connections. The two concepts that we will be looking at—performance and scalability—are
different and, in fact, to some degree, they conflict with each other. You must apply the
right level of optimization to find the sweet spot.

After reading this chapter, you should be able to apply techniques, first to understand what
is going wrong or what can be improved in your application, and second, how you can
improve it. We will look at some of the available techniques in the forthcoming sections.

We will cover the following topics in this chapter:

Profiling—how to gain insights into what your application is doing
Hosting choices and tweaking your host for the best performance
Bundling and minimization
Using asynchronous actions
Caching
Compressing responses

Improving Performance and Scalability Chapter 15

[539]

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all the
requirements, but you can also use Visual Studio Code, for example.

The source code can be retrieved from GitHub at https:/ ​/ ​github. ​com/ ​PacktPublishing/
Modern-​Web-​Development- ​with- ​ASP. ​NET- ​Core-​3- ​Second- ​Edition.

Getting started
As Lord Kelvin once famously said, If you cannot measure it, you cannot improve it. With that
in mind, we need to measure our application to see where its problems are. There are some
applications, known as profilers, that can give us the means to do this. Let's have a look at
some of the choices that we have.

MiniProfiler
One open source profiler is MiniProfiler, available from http:/ ​/ ​miniprofiler. ​com/
dotnet/​AspDotNetCore and from NuGet as MiniProfiler.AspNetCore.Mvc. There are
also other packages, such as Microsoft.EntityFrameworkCore.SqlServer, for the
Entity Framework Core SQL Server provider, and
Microsoft.EntityFrameworkCore.Sqlite for SQLite , which you should add as
well.

The following screenshot shows the console, with details regarding the request and the
database calls:

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
http://miniprofiler.com/dotnet/AspDotNetCore
http://miniprofiler.com/dotnet/AspDotNetCore
http://miniprofiler.com/dotnet/AspDotNetCore
http://miniprofiler.com/dotnet/AspDotNetCore
http://miniprofiler.com/dotnet/AspDotNetCore
http://miniprofiler.com/dotnet/AspDotNetCore
http://miniprofiler.com/dotnet/AspDotNetCore
http://miniprofiler.com/dotnet/AspDotNetCore
http://miniprofiler.com/dotnet/AspDotNetCore
http://miniprofiler.com/dotnet/AspDotNetCore

Improving Performance and Scalability Chapter 15

[540]

This screen shows some metrics after a page was loaded, including the response time, the
time it took the DOM to load, and how long the action method took to execute. To use
MiniProfiler, you need to register its services (ConfigureServices):

services
 .AddMiniProfiler()
 .AddEntityFramework();

Add the middleware component (Configure):

app.UseMiniProfiler()

Then, add the client-side JavaScript code:

<mini-profiler position="@RenderPosition.Right" max-traces="5" color-
scheme="ColorScheme.Auto" />

As this is a tag helper, you will need to register it first (_ViewImports.cshtml):

@addTagHelper *, MiniProfiler.AspNetCore.Mvc

There are other options, such as formatting SQL queries and colorization, and so on, so I
suggest you have a look at the sample application available on GitHub.

Improving Performance and Scalability Chapter 15

[541]

Stackify Prefix
Stackify Prefix is not an open source product, but rather one that is maintained by the well-
known Stackify (https:/ ​/ ​stackify. ​com). It can be downloaded from https:/ ​/​stackify.
com/​prefix, and at this time, it is not available with NuGet. It offers more features than the
other two, so it might be worth taking a look at:

This screenshot shows the result of an invocation of an action method—a POST to
order—and it shows a SQL that was executed inside it. We can see how long the .NET code,
the database connection, and SQL SELECT took to execute.

Let's now look at the hosting options available in ASP.NET Core.

https://stackify.com
https://stackify.com
https://stackify.com
https://stackify.com
https://stackify.com
https://stackify.com
https://stackify.com
https://stackify.com/prefix
https://stackify.com/prefix
https://stackify.com/prefix
https://stackify.com/prefix
https://stackify.com/prefix
https://stackify.com/prefix
https://stackify.com/prefix
https://stackify.com/prefix

Improving Performance and Scalability Chapter 15

[542]

Hosting ASP.NET Core
Hosting is the process that is used to run your ASP.NET Core application. In ASP.NET
Core, you have two out-of-the-box hosting choices:

Kestrel: The cross-platform host, which is set by default
HTTP.sys (WebListener in ASP.NET Core pre-2.x): A Windows-only host

If you want your application to run on different platforms, not just on Windows, then
Kestrel should be your choice, but if you need to target only Windows, then
WebListener/HTTP.sys may offer better performance, as it utilizes native Windows system
calls. You have to make this choice. By default, the Visual Studio template (or the ones used
by the dotnet command) uses Kestrel, which is appropriate for most common scenarios.
Let's learn about how we can choose what's best for our purposes.

Choosing the best host
You should compare the two hosts to see how well they behave in stressful situations.
Kestrel is the default one and is included in the
Microsoft.AspNetCore.Server.Kestrel NuGet package. If you want to try HTTP.sys,
you need to add a reference to the Microsoft.AspNetCore.Server.HttpSys package.

Kestrel is the default host, but if you wish to be explicit about it, it looks like this:

public static IHostBuilder CreateWebHostBuilder(string[] args) =>
 Host
 .CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(builder =>
 {
 builder
 .ConfigureKestrel((KestrelServerOptions options) =>
 {
 //options go here
 })
 .UseStartup<Startup>();
 });

In order to use HTTP.sys in ASP.NET Core 3.x, then you should use the following:

public static IHostBuilder CreateWebHostBuilder(string[] args) =>
 Host
 .CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(builder =>
 {

Improving Performance and Scalability Chapter 15

[543]

 builder
 .UseHttpSys((HttpSysOptions options) =>
 {
 //options go here
 })
 .UseStartup<Startup>();
 });

This example shows how to enable the HTTP.sys host and where some of the performance-
related settings can be defined.

Configuration tuning
Both hosts, Kestrel and HTTP.sys, support tuning of some of their parameters. Let's look at
some of them.

Maximum number of simultaneous connections
For Kestrel, it looks like this:

.ConfigureKestrel(options =>
{
 options.Limits.MaxConcurrentConnections = null;
 options.Limits.MaxConcurrentUpgradedConnections = null;
})

MaxConcurrentConnections specifies the maximum number of connections that can be
accepted. If set to null, there will be no limit, except, of course, system resource
exhaustion. MaxConcurrentUpgradedConnections is the maximum number of
connections that can be migrated from HTTP or HTTPS to WebSockets (for example). null
is the default value, meaning that there is no limit.

An explanation of this code is in order:

MaxAccepts: This is equivalent to MaxConcurrentConnections. The default is
0, meaning that there is no limit.
RequestQueueLimit: With this, it is also possible to specify the maximum
queued requests in HTTP.sys.

Improving Performance and Scalability Chapter 15

[544]

For HTTP.sys, WebListener's replacement in ASP.NET Core 3.x, it is similar:

.UseHttpSys(options =>
{
 options.MaxAccepts = 40;
 options.MaxConnections = null;
 options.RequestQueueLimit = 1000;
})

This code sets some common performance-related options for the HTTP.sys host, as shown
in the following list:

MaxAccepts specifies the maximum number of concurrent accepts.
MaxConnections is the maximum number of concurrent accepts (the default is
null) to use the machine-global settings from the registry. -1 means that there
are an infinite number of connections.
RequestQueueLimit is the maximum number of requests that can be queued by
HTTP.sys. Let's now see how limits work.

Limits
Similar to HTTP.sys, Kestrel also allows the setting of some limits, even a few more than
HTTP.sys:

.ConfigureKestrel(options =>
{
 options.Limits.MaxRequestBodySize = 30 * 1000 * 1000;
 options.Limits.MaxRequestBufferSize = 1024 * 1024;
 options.Limits.MaxRequestHeaderCount = 100;
 options.Limits.MaxRequestHeadersTotalSize = 32 * 1024;
 options.Limits.MaxRequestLineSize = 8 * 1024;
 options.Limits.MaxResponseBufferSize = 64 * 1024;
 options.Limits.MinRequestBodyDataRate.BytesPerSecond = 240;
 options.Limits.MaxResponseDataRate.BytesPerSecond = 240
})

Explaining this code is simple:

MaxRequestBodySize: The maximum allowed size for a request body
MaxRequestBufferSize: The size of the request buffer
MaxRequestHeaderCount: The maximum number of request headers
MaxRequestHeadersTotalSize: The total acceptable size of the request
headers

Improving Performance and Scalability Chapter 15

[545]

MaxRequestLineSize: The maximum number of lines in the request
MaxResponseBufferSize: The size of the response buffer
MinRequestBodyDataRate.BytesPerSecond: The maximum request
throughput
MaxResponseDataRate.BytesPerSecond: The maximum response throughput

Timeouts
Whenever an application is waiting for an external event—waiting for a request to arrive in
its entirety, for a form to be submitted, a connection to be established, and so on—it can
only wait for a certain period of time; this is so that it does not affect the global functioning
of the application. When it elapses, we have a timeout, after which the application either
gives up and fails or starts again. Kestrel allows the specification of a number of timeouts:

.ConfigureKestrel(options =>
{
 options.Limits.KeepAliveTimeout = TimeSpan.FromMinutes(2);
 options.Limits.RequestHeadersTimeout = TimeSpan.FromSeconds(30);
})

As for the two properties being set, here is some information:

KeepAliveTimeout is the client connection timeout in keep-alive connections; 0,
the default, means an indefinite time period.
RequestHeadersTimeout is the time to wait for headers to be received; the
default is also 0.

For HTTP.sys, the properties are as follows:

DrainEntityBody is the time allowed in keep-alive connections to read all the
request bodies.
EntityBody is the maximum time for each individual body to arrive.
HeaderWait is the maximum time to parse all request headers.
IdleConnection is the time before an idle connection is shut down.
MinSendBytesPerSecond is the minimum send rate in bytes per second.
RequestQueue is the time allowed for queued requests to remain in the queue.

Improving Performance and Scalability Chapter 15

[546]

Here is a sample code that illustrates these options:

.UseHttpSys(options =>
{
 options.Timeouts.DrainEntityBody = TimeSpan.FromSeconds(0);
 options.EntityBody = TimeSpan.FromSeconds(0);
 options.HeaderWait = TimeSpan.FromSeconds(0);
 options.IdleConnection = TimeSpan.FromSeconds(0);
 options.MinSendBytesPerSecond = 0;
 options.RequestQueue = TimeSpan.FromSeconds(0);
})

In this section, we explored some of the tweaks available in the ASP.NET Core hosts that
can lead to better resource utilization and ultimately lead to better performance and
scalability. In the next section, we will look at techniques for improving static resource
transmission.

Understanding bundling and minification
Bundling means that several JavaScript or CSS files can be combined in order to minimize
the number of requests that the browser sends to the server. Minification is a technique that
removes unnecessary blanks from CSS and JavaScript files and changes the function and
variable names so that they are smaller. When combined, these two techniques can result in
much less data to transmit, which will result in faster load times.

A default project created by Visual Studio performs bundling automatically when the
application is run or deployed. The actual process is configured by the
bundleConfig.json file, which has a structure similar to the following:

[
 {
 "outputFileName": "wwwroot/css/site.min.css",
 "inputFiles": [
 "wwwroot/css/site.css"
]
 },
 {
 "outputFileName": "wwwroot/js/site.min.js",
 "inputFiles": [
 "wwwroot/js/site.js"
],
 "minify": {
 "enabled": true,
 "renameLocals": true

Improving Performance and Scalability Chapter 15

[547]

 },
 "sourceMap": false
 }
]

We can see two different groups, one for CSS and the other for JavaScript, each resulting in
a file (outputFileName). Each takes a set of files, which can include wildcards
(inputFiles), and it is possible to specify whether the result is to be minified (enabled),
and functions and variables renamed so that they are smaller (renameLocals). For
JavaScript files, it is possible to automatically generate a source map file (sourceMap). You
can read about source maps at https:/ ​/ ​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Tools/
Debugger/​How_​to/ ​Use_ ​a_ ​source_ ​map. Mind you, this behavior is actually not intrinsic to
Visual Studio, but rather it is produced by the Bundler & Minifier extension by Mads
Kristensen, available from the Visual Studio gallery at https:/ ​/​marketplace.
visualstudio.​com/ ​items? ​itemName= ​MadsKristensen. ​BundlerMinifier.

Other options exist, such as adding the BuildBundlerMinifier NuGet package, also
from Mads Kristensen, which adds a command-line option to dotnet, allowing us to
perform bundling and minification from the command line at build time. Yet another
option is to use Gulp, Grunt, or WebPack, but since these are JavaScript solutions rather
than ASP.NET Core ones, I won't discuss them here. For WebPack, Gulp, and Grunt, please
refer to Chapter 14, Client-Side Development.

Next, we will move on to learn how asynchronous actions aid applications.

Using asynchronous actions
Asynchronous calls are a way to increase the scalability of your application. Normally, the
thread that handles the request is blocked while it is being processed, meaning that this
thread will be unavailable to accept other requests. By using asynchronous actions, another
thread from a different pool is assigned the request, and the listening thread is returned to
the pool, waiting to receive other requests. Controllers, Razor pages, tag helpers, view
components, and middleware classes can perform asynchronously. Whenever you have
operations that perform input/output (IO), always use asynchronous calls, as this can result
in much better scalability.

For controllers, just change the signature of the action method to be like the following (note
the async keyword and the Task<IActionResult> return type):

public async Task<IActionResult> Index() { ... }

https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier

Improving Performance and Scalability Chapter 15

[548]

In Razor Pages, it is similar (note the Async suffix, the Task<IActionResult> return type,
and the async keyword):

public async Task<IActionResult> OnGetAsync() { ... }

For tag helpers and tag helper components, override the ProcessAsync method instead of
Process:

public override async Task ProcessAsync(TagHelperContext context,
TagHelperOutput output) { ... }

In view components, implement an InvokeAsync method, like this one:

public async Task<IViewComponentResult> InvokeAsync(/* any parameters */) {
... }

Also make sure that you invoke it asynchronously in your views:

@await Component.InvokeAsync("MyComponent", /* any parameters */)

Finally, in a middleware class, do the following:

public async Task Invoke(HttpContext httpContext) { ... }

Or, in lambdas, execute the following code:

app.Use(async (ctx, next) =>
{
 //async work
 await next();
});

Better still, for controller actions, include a CancellationToken parameter and pass it
along any asynchronous methods that are called inside it. This will make sure that, should
the request be canceled by the client (by closing the browser or terminating the call in any
other way), all calls will be closed as well:

public async Task<IActionResult> Index(CancellationToken token) { ... }

This parameter is the same as the one you'd get from HttpContext.RequestAborted,
mind you.

Improving Performance and Scalability Chapter 15

[549]

That is not all; you should also prefer asynchronous API methods instead of blocking ones,
especially those that do I/O, database, or network calls. For example, if you need to issue
HTTP calls, always look for asynchronous versions of its methods:

var client = new HttpClient();
var response = await client.GetStreamAsync("http://<url>");

If you want to pass along the cancellation token, it's slightly more complex, but not much
more:

var client = new HttpClient();
var request = new HttpRequestMessage(HttpMethod.Get, "<url>");
var response = await client.SendAsync(request, token);

Or, should you need to upload potentially large files, always use code like the following
(install the Microsoft.AspNetCore.WebUtilities NuGet package):

app.Use(async (ctx, next) =>
{
 using (var streamReader = new HttpRequestStreamReader
 (ctx.Request.Body, Encoding.UTF8))
 {
 var jsonReader = new JsonTextReader(streamReader);
 var json = await JObject.LoadAsync(jsonReader);
 }
});

This has the benefit that you don't block the post while all the payload contents are being
read, and in this example, it builds the JSON object asynchronously, too.

With ASP.NET 3, the hosts are now asynchronous all the way, which means that
synchronous APIs are disabled by default, and calling them results in exceptions. Should
you wish otherwise, you need to change this behavior by turning on a flag on a feature,
using a middleware component:

var synchronousIOFeature =
HttpContext.Features.Get<IHttpBodyControlFeature>();
synchronousIOFeature.AllowSynchronousIO = true;

Or, individually for Kestrel and HTTP.sys, you can do this on the services configuration:

//Kestrel
services.Configure<KestrelServerOptions>(options =>
{
 options.AllowSynchronousIO = true;
});

Improving Performance and Scalability Chapter 15

[550]

//HTTP.sys
services.Configure<HttpSysOptions>(options =>
{
 options.AllowSynchronousIO = true;
});

//if using IIS
services.Configure<IISServerOptions>(options =>
{
 options.AllowSynchronousIO = true;
});

Here, we've seen how to use asynchronous actions to improve the scalability of our
solution. In the next section, we will be looking at a solution to improve performance:
caching.

Keep in mind, however, that asynchronicity is not a panacea for all your
problems; it is simply a way to make your application more responsive.

Improving performance with caching
Caching is one of the optimizations that can have a greater impact on the performance of a
site. By caching responses and data, you do not have to fetch them again, process them, and
send them to the client. Let's look at a couple of ways by which we can achieve this.

Caching data
By caching your data, you do not need to go and retrieve it again and again whenever it is
needed. You need to consider a number of aspects:

How long will it be kept in the cache?
How can you invalidate the cache if you need to do so?
Do you need it to be distributed across different machines?
How much memory will it take? Will it grow forever?

Improving Performance and Scalability Chapter 15

[551]

There are usually three ways to specify the cache duration:

Absolute: The cache will expire at a predefined point in time.
Relative: The cache will expire some time after it is created.
Sliding: The cache will expire some time after it is created, but, if accessed, this
time will be extended by the same amount.

In-memory cache
The easiest way to achieve caching is by using the built-in implementation of
IMemoryCache, available in the Microsoft.Extensions.Caching.Memory NuGet
package (it also comes in the Microsoft.AspNetCore.All metapackage). As you can
guess, it is a memory-only cache, suitable for single-server apps. In order to use it, you need
to register its implementation in ConfigureServices:

services.AddMemoryCache();

After that, you can inject the IMemoryCache implementation into any of your
classes—controllers, middleware, tag helpers, view components, and more. You have
essentially three operations:

Add an entry to the cache (CreateEntry or Set).
Get an entry from the cache (Get, GetOrCreate, or TryGetValue).
Remove an entry from the cache (Remove).

Adding an entry requires you to give it a name, a priority, and a duration. The name can be
any object and the duration can either be specified as a relative, sliding expiration, or
absolute time. Here's an example:

//relative expiration in 30 minutes
cache.Set("key", new MyClass(), TimeSpan.FromMinutes(30));

//absolute expiration for next day
cache.Set("key", new MyClass(), DateTimeOffset.Now.AddDays(1));

//sliding expiration
var entry = cache.CreateEntry("key");
entry.SlidingExpiration = TimeSpan.FromMinutes(30);
entry.Value = new MyClass();

Improving Performance and Scalability Chapter 15

[552]

You can also combine the two strategies:

//keep item in cache as long as it is requested at least once every 5
//minutes
// but refresh it every hour
var options = new MemoryCacheEntryOptions()
 .SetSlidingExpiration(TimeSpan.FromMinutes(5))
 .SetAbsoluteExpiration(TimeSpan.FromHours(1));

var entry = cache.CreateEntry("key");
entry.SetOptions(options);

When using the sliding expiration option, it will be renewed whenever the cache item is
accessed. Using Set will create a new item or replace any existing item with the same key.
You can also use GetOrCreate to either add one if no item with the given key exists, or to
return the existing one as follows:

var value = cache.GetOrCreate("key", (entry) =>
{
 entry.AbsoluteExpirationRelativeToNow = TimeSpan.FromMinutes(30);
 return new MyClass();
});

The priority controls when an item is evicted from the cache. There are only two ways by
which an item can be removed from the cache: manually or when running out of memory.
The term priority refers to the behavior applied to the item when the machine runs out of
memory. The possible values are as follows:

High: Try to keep the item in memory for as long as possible.
Low: It's OK to evict the item from memory when it is necessary.
NeverRemove: Never evict the item from memory unless its duration is reached.
Normal: Use the default algorithm.

It is possible to pass a collection of expiration tokens; this is essentially a way to have cache
dependencies. You create a cache dependency in a number of ways, such as from a
cancellation token:

var cts = new CancellationTokenSource();
var entry = cache.CreateEntry("key");
entry.ExpirationTokens.Add(new CancellationChangeToken(cts.Token));

Improving Performance and Scalability Chapter 15

[553]

You can also create one from a configuration change:

var ccts = new
ConfigurationChangeTokenSource<MyOptions>(this.Configuration);
var entry = cache.CreateEntry("key");
entry.ExpirationTokens.Add(ccts.GetChangeToken());

You can even create one from a change in a file (or directory):

var fileInfo = new FileInfo(@"C:\Some\File.txt");
var fileProvider = new PhysicalFileProvider(fileInfo.DirectoryName);
var entry = cache.CreateEntry("key");
entry.ExpirationTokens.Add(fileProvider.Watch(fileInfo.Name));

And if you want to combine many, so that the cache item expires when any of the change
tokens do, you can use CompositeChangeToken:

var entry = cache.CreateEntry("key");
entry.ExpirationTokens.Add(new CompositeChangeToken(new List<IChangeToken>
{
 /* one */,
 /* two */,
 /* three */
}));

You can also register a callback that will be called automatically when an item is evicted
from the cache, as follows:

var entry = cache.CreateEntry("key");
entry.RegisterPostEvictionCallback((object key, object value,
EvictionReason reason, object state) =>
{
 /* do something */
}, "/* some optional state object */");

This can be used as a simple scheduling mechanism: you can add another item with the
same callback so that when the item expires, it will add the item again and again. The key
and value parameters are obvious; the reason parameter will tell you why the item was
evicted, and this can be for one of the following reasons:

None: No reason is known.
Removed: The item was explicitly removed.
Replaced: The item was replaced.

Improving Performance and Scalability Chapter 15

[554]

Expired: The expiration time was reached.
TokenExpired: An expiration token was fired.
Capacity: The maximum capacity was reached.

The state parameter will contain any arbitrary object, including null, that you pass to
RegisterPostEvictionCallback.

In order to get an item from the cache, two options exist:

//return null if it doesn't exist
var value = cache.Get<MyClass>("key");

//return false if the item doesn't exist
var exists = cache.TryGetValue<MyClass>("key", out MyClass value);

As for removing, it couldn't be simpler:

cache.Remove("key");

This removes the named cache item from the cache permanently.

A side note: it is not possible to iterate through the items in the cache from
the IMemoryCache instance, but you can count them by downcasting to
MemoryCache and using its Count property.

Distributed cache
ASP.NET Core ships with two distributed cache providers:

Redis: Available as a NuGet package
at Microsoft.Extensions.Caching.Redis
SQL Server: Available from Microsoft.Extensions.Caching.SqlServer

The core functionality is made available through the IDistributedCache interface. You
need to register one of these implementations in ConfigureServices. For Redis, use the
following command:

services.AddDistributedRedisCache(options =>
{
 options.Configuration = "serverName";
 options.InstanceName = "InstanceName";
});

Improving Performance and Scalability Chapter 15

[555]

For SQL Server, use the following command:

services.AddDistributedSqlServerCache(options =>
{
 options.ConnectionString = @"<Connection String>";
 options.SchemaName = "dbo";
 options.TableName = "CacheTable";
});

Once you have done that, you will be able to inject an IDistributedCache instance,
which offers four operations:

Add or remove an item (Set, SetAsync)
Retrieve an item (Get, GetAsync)
Refresh an item (Refresh, RefreshAsync)
Remove an item (Remove, RemoveAsync)

As you can see, it is similar to IMemoryCache, but it is not quite the same—for one thing, it
offers asynchronous and synchronous versions for all operations. In addition, it does not
feature all of the options that exist for an in-memory cache, such as priorities, expiration
callbacks, and expiration tokens. But the most important difference is that all items need to
be stored as byte arrays, meaning that you have to serialize any objects that you want to
store in the cache beforehand. A special case is strings, where there are extension methods
that work directly with strings.

So, in order to add an item, you need to do the following:

using (var stream = new MemoryStream())
{
 var formatter = new BinaryFormatter();
 formatter.Serialize(stream, new MyClass());

 cache.Set("key", formatter.ToArray(), new DistributedCacheEntryOptions
 {
 //pick only one of these
 //absolute expiration
 AbsoluteExpiration = DateTimeOffset.Now.AddDays(1),
 //relative expiration
 AbsoluteExpirationRelativeToNow = TimeSpan.FromMinutes(60),
 //sliding expiration
 SlidingExpiration = TimeSpan.FromMinutes(60)
 });
}

Improving Performance and Scalability Chapter 15

[556]

As you can see, it does support absolute, relative, and sliding expiration. If you want to use
strings, it's simpler:

cache.SetString("key", str, options);

To retrieve an item, you also need to deserialize it afterward:

var bytes = cache.Get("key");
using (var stream = new MemoryStream(bytes))
{
 var formatter = new BinaryFormatter();
 var data = formatter.Deserialize(stream) as MyClass;
}

And for strings, you use the following code:

var data = cache.GetString("key");

Refreshing is easy; if the item uses sliding expiration, then it is renewed:

cache.Refresh("key");

The same goes for removing:

cache.Remove("key");

The asynchronous versions are identical, except that they end with the Async suffix and
return a Task object, which you can then await.

As you may know, BinaryFormatter is only available from .NET Core 2.0 onward, so, for
versions of .NET Core prior to that, you need to come up with your own serialization
mechanism. A good one might be MessagePack, available from NuGet.

Both distributed caches and in-memory caches have their pros and cons.
A distributed cache is obviously better when we have a cluster of
machines, but it also has a higher latency—the time it takes to get results
from the server to the client. In-memory caches are much faster, but they
take up memory on the machine on which it is running.

In this section, we've discussed the alternatives to caching data, whether in memory or in a
remote server. The next section explains how to cache the result of the execution of action
methods.

Improving Performance and Scalability Chapter 15

[557]

Caching action results
By the means of caching action results, you instruct the browser, after the first execution, to
keep the supplied result for a period of time. This can result in dramatic performance
improvement; as no code needs to be run, the response comes directly from the browser's
cache. The process is specified in an RFC at https:/ ​/​tools. ​ietf. ​org/ ​html/
rfc7234#section-​5. ​2. We can apply caching to action methods by applying the
[ResponseCache] attribute to either the controller or the action method. It can take some
of the following parameters:

Duration (int): The cache duration in seconds; it is mapped to the max-age
value in the Cache-control header
Location (ResponseCacheLocation): Where to store the cache (one of Any,
Client, or None)
NoStore (bool): Do not cache the response
VaryByHeader (string): A header that will make the cache vary—for example,
Accept-Language causes a response to be cached for each requested language
(see https:/ ​/​www. ​w3. ​org/ ​International/ ​questions/ ​qa- ​accept- ​lang- ​locales)
VaryByQueryKeys (string[]): Any number of query string keys that will make
the cache vary
CacheProfileName (string): The name of a cache profile; more on this in a
moment

The cache locations have the following meanings:

Any: Cached on the client and in any proxies; sets the Cache-control header to
public

Client: Cached on the client only; Cache-control is set to private
None: Nothing is cached; Cache-control and Pragma are both set to no-cache

But before we can use it, we need to register the required services in ConfigureServices:

services.AddResponseCaching();

It is possible to configure some options by passing a delegate:

services.AddResponseCaching(options =>
{
 options.MaximumBodySize = 64 * 1024 * 1024;
 options.SizeLimit = 100 * 1024 * 1024;
 options.UseCaseInsensitivePaths = false;
});

https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales
https://www.w3.org/International/questions/qa-accept-lang-locales

Improving Performance and Scalability Chapter 15

[558]

The available options are as follows:

MaximumBodySize (int): The maximum cacheable response; the default is 64 KB
SizeLimit (int): Maximum size of all the cached responses; the default is 100
MB
UseCaseInsensitivePaths (bool): Whether or not paths should be taken as
case sensitive; the default is false

To make this work, as well as registering the services, we need to add the response-caching
middleware (the Configure method):

app.UseResponseCaching();

Rather than passing duration, location, and other parameters, it is better to use cache
profiles. Cache profiles are defined when we register the MVC services by adding entries
such as this:

services
 .AddMvc(options =>
 {
 options.CacheProfiles.Add("Public5MinutesVaryByLanguage",
 new CacheProfile
 {
 Duration = 5 * 60,
 Location = ResponseCacheLocation.Any,
 VaryByHeader = "Accept-Language"
 });
 });

Here, we are registering some options for a cache profile named
Public5MinutesVaryByLanguage, which are as follows:

Duration (int): The duration, in seconds, of the cached item
Location (ResponseCacheLocation): Where to store the cached item; it can
either be on the server or on the client (the browser)
VaryByHeader (string): An optional request header to have the cache vary
upon; in this example, we are changing the cache by the browser's language

If you wish, you could load the configuration from a configuration file. Say you have this
structure:

{
 "CacheProfiles": {
 "Public5MinutesVaryByLanguage": {
 "Duration": 300,

Improving Performance and Scalability Chapter 15

[559]

 "Location": "Any",
 "VaryByHeader" : "Accept-Language"
 }
 }
}

You could load it using the configuration API, in ConfigureServices:

services
 .Configure<Dictionary<string, CacheProfile>>(this.Configuration.
 GetSection("CacheProfiles"))
 .AddMvc(options =>
 {
 var cacheProfiles = this.Configuration.GetSection<Dictionary
 <string, CacheProfile>();
 foreach (var keyValuePair in cacheProfiles)
 {
 options.CacheProfiles.Add(keyValuePair);
 }
 });

Using cache profiles allows us to have a centralized location where we can change the
profile settings that will be used across all the applications. It's as simple as the following:

[ResponseCache(CacheProfileName = "Public5MinutesVaryByLanguage")]
public IActionResult Index() { ... }

Response caching also depends on an HTTP.sys setting, which is enabled by default. It is
called EnableResponseCaching:

.UseHttpSys(options =>
{
 options.EnableResponseCaching = true;
})

This enables response caching for the HTTP.sys host. Bear in mind that without this, the
[ResponseCache] attribute won't work. This is required for sending the appropriate
caching response headers.

In this section, we've seen how to cache responses from action methods. Let's now see how
we can cache view markup.

Improving Performance and Scalability Chapter 15

[560]

Caching views
By using the included tag helpers, <cache> and <distributed-cache>, you will be able
to cache parts of your views. As you can infer from their names, <cache> requires a
registered instance of IMemoryCache, and <distributed-cache> requires
IDistributedCache. I have already talked about these two tag helpers in Chapter 9,
Reusable Components, so I won't go over them again. We will only look at two examples.
This one is for in-memory caching:

<cache expires-sliding="TimeSpan.FromMinutes(30)">
 ...
</cache>

This one is for distributed caching:

<distributed-cache name="redis" expires-sliding="TimeSpan.FromMinutes(30)">
 ...
</distributed-cache>

Anything placed inside <distributed-cache> will be stored in the named distributed
cache (in this example, redis) for a period of time (30 minutes) from the first time the view
is rendered, and on subsequent occasions, it will directly come from there, without any
additional processing.

Do not forget that you need to register an instance of either
IMemoryCache or IDistributedCache. These tag helpers,
unfortunately, cannot take cache profiles.

Caching is a must-have for any real-life web application, but it must be considered carefully
because it may put memory pressure on your system. In the next two sections, we will learn
how to optimize responses.

Compressing responses
Response compression is available from the
Microsoft.AspNetCore.ResponseCompression package. Essentially, for browsers that
support it, it can compress the response before sending it through the wire, thereby
minimizing the amount of data that will be sent, at the expense of consuming some time
compressing it.

Improving Performance and Scalability Chapter 15

[561]

If a browser supports response compression, it should send an Accept-Encoding: gzip,
deflate header. Let's see how:

We first need to register the response compression services in1.
ConfigureServices:

services.AddResponseCompression();

A more elaborate version allows you to specify the actual compression provider2.
(GzipCompressionProvider is the one included) and the compressible file
types:

services.AddResponseCompression(options =>
{
 options.EnableForHttps = true;
 options.Providers.Add<GzipCompressionProvider>();
 options.MimeTypes = ResponseCompressionDefaults.
 MimeTypes.Concat(new[] { "image/svg+xml" });
});

services.Configure<GzipCompressionProviderOptions>(options =>
{
 options.Level = CompressionLevel.Fastest;
});

The only option for GzipCompressionProviderOptions is the compression
level, of which there are three options:

NoCompression: No compression—this is the default
Fastest: The fastest compression method, which may result in
bigger responses
Optimal: The compression method that offers the best
compression, but potentially takes more time

You can see that you can also configure the file types to compress. As a note, the
following content types are automatically compressed:

text/plain

text/css

application/javascript

text/html

Improving Performance and Scalability Chapter 15

[562]

application/xml

text/xml

application/json

text/json

Finally, you need to add the response compression middleware to the3.
Configure method:

app.UseResponseCompression();

Now, whenever a response is one of the configured mime types, it will be automatically
compressed and the response headers will include a Content-Encoding: gzip header.

Note that you can roll out your own compression implementation by implementing the
ICompressionProvider interface and registering it in the AddResponseCompression
method overload that takes a lambda. Besides GZip, Microsoft also has a Brotli-based
implementation (BrotliCompressionProvider and
BrotliCompressionProviderOptions classes). Brotli is an open source compression
algorithm that is supported by several browsers and provides better compression than
GZip.

The Deflate compression method is not supported in ASP.NET Core
2.x,—only GZip. Read about Deflate at its RFC (https:/ ​/ ​tools. ​ietf.
org/​html/ ​rfc1951) and about GZip at https:/ ​/​tools. ​ietf. ​org/ ​html/
rfc1952. Read about Brotli in RFC 7932 (https:/ ​/ ​tools. ​ietf. ​org/ ​html/
rfc7932) and see the list of supported browsers at https:/ ​/​www. ​caniuse.
com/​#feat= ​brotli.

Compression can greatly improve the latency of the response at the cost of some extra
processing on the server, and now that we've looked at it, let's see how we can improve the
response time by using buffering.

Buffering responses
The final technique we will be covering here is response buffering. Normally, a web server
streams a response, meaning that it sends a response as soon as it has its chunks. Another
option is to get all these chunks, combine them, and send them at once: this is called
buffering.

Buffering offers some advantages: it can result in better performance and offer the ability to
change the contents (including headers) before they are sent to the client.

https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://www.caniuse.com/#feat=brotli
https://www.caniuse.com/#feat=brotli
https://www.caniuse.com/#feat=brotli
https://www.caniuse.com/#feat=brotli
https://www.caniuse.com/#feat=brotli
https://www.caniuse.com/#feat=brotli
https://www.caniuse.com/#feat=brotli
https://www.caniuse.com/#feat=brotli
https://www.caniuse.com/#feat=brotli
https://www.caniuse.com/#feat=brotli
https://www.caniuse.com/#feat=brotli
https://www.caniuse.com/#feat=brotli

Improving Performance and Scalability Chapter 15

[563]

Microsoft offers buffering capabilities through the Microsoft.AspNetCore.Buffering
NuGet package. Using it is simple—for example, you can use it in a middleware lambda:

app.UseResponseBuffering();

app.Run(async (ctx) =>
{
 ctx.Response.ContentType = "text/html";
 await ctx.Response.WriteAsync("Hello, World!);

 ctx.Response.Headers.Clear();
 ctx.Response.Body.SetLength(0);

 ctx.Response.ContentType = "text/plain";
 await ctx.Response.WriteAsync("Hello, buffered World!");
});

In this example, we are first registering the response buffering middleware (essentially
wrapping the response stream), and then, on the middleware lambda, you can see that we
can write to the client, clear the response by setting its length to 0, and then write again.
This wouldn't be possible without response buffering.

If you want to disable it, you can do so through its feature, IHttpBufferingFeature:

var feature = ctx.Features.Get<IHttpBufferingFeature>();
feature.DisableResponseBuffering();

In this section, we learned about buffering, its advantages, and how to enable it, and with
this, we conclude the chapter.

Summary
In this chapter, we learned that using response caching in action methods and views is
essential, but it must be used judiciously because you do not want your content to become
outdated. Cache profiles are preferred for action methods, as they provide a centralized
location, which makes it easier to make changes. You can have as many profiles as you
need.

Distributed caching can help if you need to share data among a cluster of servers, but be
warned that transmitting data over the wire can take some time, even if, trivially, it is faster
than retrieving it from a database, for example. It can also take a lot of memory, and so can
cause other unforeseeable problems.

Improving Performance and Scalability Chapter 15

[564]

Then, we saw that bundling and minification are also quite handy because they can greatly
reduce the amount of data to be transmitted, which can be even more important for mobile
browsers.

Asynchronous operations should also be your first choice; some modern APIs don't even
allow you to have any other choices. This can greatly improve the scalability of your app.

Lastly, we saw that we need to use a profiler to identify the bottlenecks. Stackify Prefix is a
very good choice.

The choice of host greatly depends on deployment needs—if it is non-Windows, then we
have no choice other than Kestrel. On both Kestrel and HTTP.sys, there are a great number
of parameters that you can tweak to your needs, but be warned that playing with these can
result in poor performance.

In this chapter, we looked at some ways by which we can improve the performance and
scalability of an application. This is not an exhaustive list, and there is a lot that can be done
in the code, especially when it comes to fetching data. Use your best judgment and
experiment with things before applying them in production.

In the next chapter, we will be covering real-time communication.

Questions
SO, by the end of the chapter, you should know the answers to the following questions:

What are the two hosts available to ASP.NET Core 3?1.
What are the two kinds of cache that are available?2.
What is the benefit of compressing a response?3.
What is the purpose of caching a response?4.
Do asynchronous actions improve performance?5.
What is bundling?6.
What are profilers good for?7.

16
Real-Time Communication

In this chapter, we will learn about Microsoft SignalR, which is a library for doing real-time
communication between the client and the server. It allows the server to call the client of its
own initiative, not as a result of a request. It builds on well-known technologies such as
AJAX, WebSockets, and server-sent events, but in a transparent manner. You do not need
to know what it's using—it basically just works, regardless of the browser you have. It also
supports quite a lot of browsers, including mobile phones. Let's explore this technology and
see what it has to offer—essentially, the following:

Setting up SignalR
Sending messages from the client to the server
Broadcasting messages from the server to all/some clients
Sending messages from outside a hub

After reading this chapter, you will learn how to communicate in real time from the server
to clients connected to a page, whether they are on a PC or a mobile device.

Technical requirements
To implement the examples introduced in this chapter, you will need the .NET Core 3 SDK
and a text editor. Of course, Visual Studio 2019 (any edition) meets all of the requirements,
but you can also use Visual Studio Code, for example.

The source code can be retrieved from GitHub here: https:/ ​/​github. ​com/
PacktPublishing/​Modern- ​Web- ​Development- ​with- ​ASP. ​NET- ​Core- ​3-​Second- ​Edition.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Real-Time Communication Chapter 16

[566]

Setting up SignalR
Before starting to use SignalR, several things need to be sorted out first, namely, installing
libraries locally.

Perform the following steps to begin this setup:

First, install the Microsoft.AspNetCore.SignalR NuGet package.1.
You also need a JavaScript library that is made available through npm (short2.
for node package manager) as @microsoft/signalr.
Once you install it, you need to copy the JavaScript file, either the minimized or3.
the debug version to some folder under wwwroot, as it needs to be retrieved by
the browser.
The file containing the SignalR library is called signalr.js or signalr.min.js4.
(for the minimized version) and it is available under
node_modules/@aspnet/signalr/dist/browser.
You will also require the @aspnet/signalr-protocol-msgpack package for5.
using MessagePack serialization (more on this in a moment) if you wish to use
it, but it's not strictly needed.

Unlike previous pre-Core versions, SignalR does not need any other library, such as
jQuery, but it can happily coexist with it. Just add a reference to the signalr.js file before
using the code.

For npm, add a package.json file similar to this one:

{
 "name": "chapter16",
 "version": "1.0.0",
 "description": "",
 "main": "",
 "scripts": {
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "@microsoft/signalr": "^3.1.4",
 "@aspnet/signalr-protocol-msgpack": "^1.1.0",
 "msgpack5": "^4.2.1"
 }
}

Real-Time Communication Chapter 16

[567]

npm files are stored inside the node_modules folder but need to be copied to some location
inside wwwroot, from where they can be made publicly available, for example, served to
the browser. A good way to copy the files from the node_modules folder into your app is
to leverage the MSBuild build system. Open your .csproj file and add the following
lines:

<ItemGroup>
 <SignalRFiles Include="node_modules/@microsoft/signalr
 /dist/browser/*.js" />
 <SignalRMessagePackFiles
 Include="node_modules/@aspnet/signalr-protocol-msgpack
 /dist/browser/*.js" />
 <MessagePackFiles Include="node_modules/msgpack5/dist/*.js" />
</ItemGroup>

<Target Name="CopyFiles" AfterTargets="Build">
 <Copy SourceFiles="@(SignalRFiles)"
 DestinationFolder="$(MSBuildProjectDirectory)\wwwroot\lib
 \signalr" />
 <Copy SourceFiles="@(SignalRMessagePackFiles)"
 DestinationFolder="$(MSBuildProjectDirectory)\wwwroot\lib
 \signalr" />
 <Copy SourceFiles="@(MessagePackFiles)"
 DestinationFolder="$(MSBuildProjectDirectory)\wwwroot\lib\msgpack5"
/>
</Target>

This will copy the required JavaScript files from their npm-provided directory into a folder
inside wwwroot, suitable for inclusion on a web page. Another option is to use Libman,
described in Chapter 14, Client-Side Development, in a section of its own. Do have a look!
And do not forget that because you are serving static files, you must add the appropriate
middleware in the Configure method:

app.UseStaticFiles();

We shall begin with the core concepts of SignalR and move from there.

Real-Time Communication Chapter 16

[568]

Learning core concepts
The appeal of SignalR comes from the fact that it hides different techniques for handling
(near) real-time communication over the web. These are the following:

Server-sent events (see https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​API/
Server-​sent_ ​events)
WebSockets (see https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Glossary/
WebSockets)
Long polling (see https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​Push_ ​technology#Long_
polling)

Each has its own strengths and weaknesses, but with SignalR, you don't really need to care
about that because SignalR automatically picks up the best one for you.

So, what is it about? Essentially, with SignalR, you can do two things:

Have a client application (such as a web page) send a message to the server and
have it routed to all (or some) parties also connected to the same web app
Have the server take the initiative to send a message to all (or some) connected
parties

Messages can be plain strings or have some structure. We don't need to care about it;
SignalR takes care of the serialization for us. When the server sends a message to the
connected clients, it raises an event and gives them a chance to do something with the
received message.

SignalR can group connected clients into groups and can require authentication. The core
concept is that of a hub: clients gather around a hub and send and receive messages from it.
A hub is identified by a URL.

You create an HTTP connection to a URL, create a hub connection from it, add event
listeners to the hub connection (system events such as close and hub messages), then start
receiving from it, and possibly start sending messages as well.

After setting up SignalR, we will see now how a hub is hosted.

https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling

Real-Time Communication Chapter 16

[569]

Hosting a hub
A hub is a concept that SignalR uses for clients to come together in a well-known location.
From the client side, it is identified as a URL, such as http://<servername>/chat. On
the server, it is a class that inherits from Hub and must be registered with the ASP.NET
Core pipeline. Here's a simple example of a chat hub:

public class ChatHub : Hub
{
 public async Task Send(string message)
 {
 await this.Clients.All.SendAsync("message", this.Context.User.
 Identity.Name, message);
 }
}

The Send message is meant to be callable by JavaScript only. This Send method is
asynchronous and so we must register this hub in a well-known endpoint, in the
Configure method, where we register the endpoints:

app.UseEndpoints(endpoints =>
{
 endpoints.MapHub<ChatHub>("chat");
});

You can pick any name you want—you don't need to be restrained by the hub class name.

And you can also register its services, in the ConfigureServices method, as follows:

services.AddSignalR();

The Hub class exposes two virtual methods, OnConnectedAsync and
OnDisconnectedAsync, which are fired whenever a client connects or
disconnects. OnDisconnectedAsync takes Exception as its parameter, which will only be
not null if an error occurred when disconnecting.

To call a hub instance, we must first initialize the SignalR framework from JavaScript, and
for that, we need to reference the ~/lib/signalr/signalr.js file (for development) or
~/lib/signalr/signalr.min.js (for production). The actual code goes like this:

var logger = new signalR.ConsoleLogger(signalR.LogLevel.Information);
var httpConnection = new signalR.HttpConnection('/chat', { logger: logger
});

Real-Time Communication Chapter 16

[570]

Here, we are calling an endpoint named chat on the same host from where the request is
being served. Now, in terms of the communication between the client and the server itself,
we need to start it:

var connection = new signalR.HubConnection(httpConnection, logger);

connection
 .start()
 .catch((error) => {
 console.log('Error creating the connection to the chat hub');
});

As you can see, the start method returns a promise to which you can also chain a catch
method call to catch any exceptions while connecting.

We can detect that a connection was unexpectedly closed by hooking to the onclose event:

connection.onclose((error) => {
 console.log('Chat connection closed');
});

After the connection succeeds, you hook to your custom events, ("message"):

connection.on('message', (user, message) => {
 console.log(`Message from ${user}: ${message}`);
});

The call to on with the name of an event, ("message"), should match the name of the
event that is called on the hub, in the SendAsync method. It should also take the same
number (and type) of parameters.

I'm also using arrow functions, a feature of modern JavaScript (you can find out more by
reading this article: https:/ ​/ ​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/
Reference/​Functions/ ​Arrow_ ​functions). This is just syntax, and it can be achieved with
anonymous functions.

As a remark, you can pass additional query string parameters that may later be caught in
the hub. There is another way to do this, using HubConnectionBuilder:

var connection = new signalR.HubConnectionBuilder()
 .configureLogging(signalR.LogLevel.Information)
 .withUrl('/chat?key=value')
 .build();

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Real-Time Communication Chapter 16

[571]

It is sometimes useful, as there are not many ways to pass data from the client to a hub
other than, of course, calling its methods. The way to retrieve these values is shown in the
following code:

var value =
this.Context.GetHttpContext().Request.Query["key"].SingleOrDefault();

Now, we can start sending messages:

function send(message) {
 connection.invoke('Send', message);
}

Essentially, this method asynchronously calls the Send method of the ChatHub class, and
any response will be received by the 'message' listener, which we registered previously
(see hub.on('message')).

In a nutshell, the flow is as follows:

A connection is created on the client side (signalR.HubConnection) using a1.
hub address (signalR.HttpConnection), which must be mapped to a .NET
class inheriting from Hub.
An event handler is added for some event (connection.on()).2.
The connection is started (start()).3.
Clients send messages to the hub (connection.invoke()), using the name of a4.
method declared on the Hub class.
The method on the Hub class broadcasts a message to all/some of the connected5.
clients.
When a client receives the message, it raises an event to all subscribers of that6.
event name (the same as declared in connection.on()).

The client can call any method on the Hub class, and this, in turn, can raise
any other event on the client.

But first things first, let's see how we can define the protocol between the client and the
server so that the two can talk.

Real-Time Communication Chapter 16

[572]

Choosing communication protocols
SignalR needs to have clients and the server talking the same language—a protocol. It
supports the following communication protocols (or message transports, if you like):

WebSockets: In browsers that support it, this is probably the most performant
one because it is binary-, not text-, based. Read more about WebSockets here:
https:/​/ ​developer. ​mozilla. ​org/​en- ​US/​docs/ ​Web/ ​API/ ​WebSockets_ ​API.
Server-sent events: This is another HTTP standard; it allows the client to
continuously poll the server, giving the impression that the server is
communicating directly to it; see https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/
Web/​API/ ​Server- ​sent_ ​events.
AJAX long polling: Also known as AJAX Comet, it is a technique by which the
client keeps an AJAX request alive, possibly for a long time, until the server
provides an answer, which is when it returns and issues another long request.

Usually, signalR determines the best protocol to use, but you can force one from the client:

var connection = new signalR.HubConnectionBuilder()
 .configureLogging(signalR.LogLevel.Information)
 .withUrl('/chat', { skipNegotiation: false, transport: signalR.
 TransportType.ServerSentEvents })

This can be retrieved from the server as well, but in general, it is recommended to leave it
open to all protocols:

app.UseEndpoints(endpoints =>
{
 endpoints.MapHub<ChatHub>("chat", opt =>
 {
 opt.Transports = HttpTransportType.ServerSentEvents;
 });
});

Forcing one protocol may be required in operating systems where, for example,
WebSockets is not supported, such as Windows 7. Or it may be because a router or firewall
might not allow some protocol, such as WebSockets. The client side and server side
configuration must match, that is, if the server does not have a specific protocol enabled,
setting it on the client side won't work. If you don't restrict transport, SignalR will try all of
them and choose the one that works best automatically. You may need to choose a specific
protocol if you have some sort of restriction, such as protocol incompatibility between
client and server. If you do, don't forget to also skip negotiation, as it will save some time.

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events

Real-Time Communication Chapter 16

[573]

Do not restrict the transport types unless you have a very good reason for
doing so, such as browser or operating system incompatibilities.

We've seen how to configure a connection, so let's see now how to reconnect automatically
in case of a failure.

Automatic reconnection
You can either catch the close event and respond to it or have SignalR automatically
reconnect when the connection is dropped accidentally (these things happen on the
internet, you know!). For that, call the withAutomaticReconnect extension method on
the client code:

var connection = new signalR.HubConnectionBuilder()
 .withAutomaticReconnect()
 .withUrl('/chat')
 .build();

This method can be called without parameters or with an array of numeric values that
represent the time, in milliseconds, to wait before each attempt to reconnect. The default
value is [0, 2000, 10000, 30000, null], which means that first, it will try
immediately, then it will wait two seconds, then one second, then three seconds, then it will
stop trying (null). A third option is with a function that takes a few parameters and
returns the next delay, as this example shows:

var connection = new signalR.HubConnectionBuilder()
 .withAutomaticReconnect({
 nextRetryDelayInMilliseconds: (retryContext) => {
 //previousRetryCount (Number)
 //retryReason (Error)
 return 2 * retryContext.elapsedMilliseconds;
 })
 .build();

In this example, we return an object that takes a lambda function that takes as its
parameters the previous return count, the retry reason (an exception), and the elapsed time
since the last retry and expects you to return the next delay or null if it's to cancel
reconnection.

Real-Time Communication Chapter 16

[574]

When automatic reconnection is used, some events are raised:

connection.onreconnecting((error) => {
 //a reconnect attempt is being made
});

connection.onreconnected((connectionid) => {
 //successful reconnection
});

These events are self-explanatory:

onreconnecting is raised when SignalR is trying to reconnect as the
consequence of an error, which is passed as its sole parameter to the callback
onreconnected is raised after a successful reconnection and the new connection
ID is passed to the callback

Messages sent to and from a hub need to be serialized, and that is the subject of the next
topic.

Message serialization
Out of the box, SignalR sends messages in plaintext JSON, but there is an alternative, which
is MessagePack. It is a compressed format that can provide a better performance,
especially for bigger payloads.

As mentioned earlier, we will need to install the @aspnet/signalr-protocol-msgpack
npm package and
the Microsoft.AspNetCore.SignalR.Protocols.MessagePack NuGet package.

An example, where we can specify the MessagePack protocol, would be as follows:

var connection = new signalR.HubConnectionBuilder()
 .withUrl('/chat')
 .withHubProtocol(new signalR.protocols.msgpack.
 MessagePackHubProtocol())
 .build();

If you chose to use MessagePack, you also need to add support for it when you register
SignalR services:

services
 .AddSignalR()
 .AddMessagePackProtocol();

Real-Time Communication Chapter 16

[575]

Now that we've seen how we can start a conversation, let's look at the SignalR context,
where we can get information from the current SignalR session.

Exploring the SignalR context
The SignalR context helps us to understand where we are and who is making the request.
It is made available through the Context property of the Hub class. In it, you will find the
following properties:

Connection (HubConnectionContext): This is low-level connection
information; you can get a reference to the current HttpContext from it
(GetHttpContext()) as well as metadata stuff (Metadata) and it is possible to
terminate the connection (Abort()).
ConnectionId (string): This is the one and only connection ID that uniquely
identifies a client on this hub.
User (ClaimsPrincipal): This is the current user (useful if using
authentication) and all of its claims.

The Context property is available when any of the hub methods is called, including
OnConnectedAsync and OnDisconnectedAsync. Do not forget that for a context, a user is
always identified by its ConnectionId; only if you use authentication will it also be
associated with a username (User.Identity.Name).

And if we need to pass arbitrary parameters to the hub? Up next!

Using the query string
Any query string parameters passed on the URL (for example, "/chat?key=value") can
be accessed on the server side through the Query collection of Request:

var value = Context.GetHttpContext().Request.
Query["key"].SingleOrDefault();

Now, let's find out to what entities a message can be sent out to.

Real-Time Communication Chapter 16

[576]

Knowing the message targets
A SignalR message can be sent to any of the following:

All: All connected clients will receive it
Group: Only clients in a certain group will receive it; groups are identified by a
name
Group Except: All clients in a certain group except certain clients, identified by
their connection IDs
Client: Only a specific client, identified by its connection ID

Clients are identified by a connection ID, that can be obtained from the Context property
of the Hub class:

var connectionId = this.Context.ConnectionId;

Users can be added to any number of groups (and removed as well, of course):

await this.Groups.AddAsync(this.Context.ConnectionId, "MyFriends");
await this.Groups.RemoveAsync(this.Connection.ConnectionId, "MyExFriends");

To send a message to a group, replace the All property by a Group call:

await this.Clients.Group("MyFriends").InvokeAsync("Send", message);

Or, similarly, to a specific client use the following:

await this.Clients.Client(this.Context.ConnectionId).InvokeAsync("Send",
message);

Groups are maintained internally by SignalR, but, of course, nothing prevents you from
having your own helper structures. This is how:

To send messages to all connected clients (to the hub), you do this:

await this.Clients.All.SendAsync("message", message);

To send messages to just a specific client, identified by its connection ID, use the
following:

await this.Clients.Client("<connectionid>").SendAsync("message",
message);

Real-Time Communication Chapter 16

[577]

To a named group, we can use this:

await this.Clients.Group("MyFriends").SendAsync("message",
message);

Or simply to groups, the following can be used:

await this.Clients.Groups("MyFriends",
"MyExFriends").SendAsync("message", message);

To all members of a group except one or two connection IDs, we use the
following:

await this.Clients.GroupExcept("MyFriends", "<connid1>",
"<connid2>").SendAsync("message", message);

What if we need to communicate to the hub from outside the web app? Well, that is the
subject of the next section.

Communicating from the outside
As you can imagine, it is possible to communicate with a hub, meaning to send messages to
a hub. There are two possibilities:

From the same web application
From a different application

Let's study each of these.

Communication from the same web application
It is possible to send messages into a hub from the outside of SignalR. This does not mean
accessing an instance of, for example, the ChatHub class, but only its connected clients. You
can do this by injecting an instance of IHubContext<ChatHub> using the built-in
dependency injection framework, shown as follows:

public class ChatController : Controller
{
 private readonly IHubContext<ChatHub> _context;

 public ChatController(IHubContext<ChatHub> context)
 {
 this._context = context;

Real-Time Communication Chapter 16

[578]

 }

 [HttpGet("Send/{message}")]
 public async Task<IActionResult> Send(string message)
 {
 await this._context.Clients.All.SendAsync("message", this
 .User.Identity.Name, message);
 }
}

As you can see, you are responsible for sending all of the parameters to the clients. It is also,
of course, possible to send to a group or directly to a client.

Imagine you want to send a recurring message to all clients; you could write code like this
in your Configure method (or from somewhere where you have a reference to the service
provider):

public class TimerHub : Hub
{
 public async Task Notify()
 {
 await this.Clients.All.SendAsync("notify");
 }
}

//in Configure
TimerCallback callback = (x) =>
{
 var hub = app.ApplicationServices.GetService<IHubContext<TimerHub>>();
 hub.Clients.All.SendAsync("notify");
};

var timer = new Timer(callback);
timer.Change(
 dueTime: TimeSpan.FromSeconds(0),
 period: TimeSpan.FromSeconds(1));

The preceding code shows a registration for timerHub and a notify event. When the
event is raised, a message is written to the console. If an error occurs when starting the
subscription, the error is also logged.

Real-Time Communication Chapter 16

[579]

Timer will fire every second and broadcast the current time to a hypothetical TimerHub
class. This TimerHub class needs to be registered as an endpoint:

app.UseEndpoints(endpoints =>
{
 endpoints.MapHub<TimerHub>("timer");
});

It also needs to be registered on the client side:

var notificationConnection = new signalR.HubConnectionBuilder()
 .withUrl('/timer')
 .withAutomaticReconnect()
 .configureLogging(signalR.LogLevel.Information)
 .build();

notificationConnection.on('notify', () => {
 console.log('notification received!');
});

notificationConnection
 .start()
 .catch((error) => {
 console.log(`Error starting the timer hub: ${error}`);
 });

Next, let's see how communication happens from a different application

Communicating from a different application
This is a different approach: we need to instantiate a client proxy that connects to the server
hosting the SignalR hub. We need the Microsoft.AspNet.SignalR.Client NuGet
package for this. HubConnectionBuilder is used to instantiate HubConnection, as can be
seen in the following example:

var desiredProtocols = HttpTransportType.WebSockets |
HttpTransportType.LongPolling |
 HttpTransportType.ServerSentEvents;

var connection = new HubConnectionBuilder()
 .WithUrl("https://<servername>:5000/chat?key=value", options =>
 {
 options.Transports = desiredProtocols;
 })
 .WithAutomaticReconnect()
 .ConfigureLogging(logging =>

Real-Time Communication Chapter 16

[580]

 {
 logging.SetMinimumLevel(LogLevel.Information);
 logging.AddConsole();
 })
 .AddMessagePackProtocol()
 .Build();

connection.On<string>("message", (msg) =>
{
 //do something with the message
});

connection.Closed += (error) =>
{
 //do something with the error
};

await connection.StartAsync();
await connection.SendAsync("message", message);

This example does several things:

Defines the acceptable communication protocols (WebSockets, long polling, and
server-sent events)
Registers two event handlers (Closed and On("message"))
Creates a connection, with reconnection, logging set to Information and to the
console, using the MessagePack protocol, and passing a query string value of
"key"="value"

Starts the connection asynchronously
Invokes the Send method on the hub, passing it a string message

This code can be called from any place that has HTTP access to the server hosting the
SignalR hub. Notice the setting of the desired protocols and the
WithAutomaticReconnect and AddMessagePackProtocol extension methods. The
AddConsole extension method comes from
the Microsoft.Extensions.Logging.Console NuGet package.

We've seen how to send messages to a SignalR hub from the outside of the app hosting it.
The following topic explains how authentication works with SignalR.

Real-Time Communication Chapter 16

[581]

Using user authentication
SignalR uses the same user authentication mechanism as the encapsulating web app, which
means if a user is authenticated to the app, it is authenticated to SignalR. It is possible to
send a JWT token upon each request too, and it's done like this:

var connection = new signalR.HubConnectionBuilder()
 .withUrl('/chat', { accessTokenFactory: () => '<token>' })
 .build();

Notice the accessTokenFactory argument; here, we are passing a lambda (it could be a
function) that returns a JWT token. On the client code, if you are calling SignalR from an
outside app, you need to do this:

var connection = new HubConnectionBuilder()
 .WithUrl("http://<servername>/chat", options =>
 {
 options.AccessTokenProvider = () => Task.FromResult("<token>");
 })
 .Build();

Where SignalR is concerned, the identity of users is dictated by their connection ID. So,
depending on your requirements, you may need to build a mapping between this and the
user IDs that your app uses.

So, we've seen how to enable authentication; let's see now how we can log the workings of
SignalR.

Logging
Logging can help us to diagnose failures and know what is happening in the system in real
time. We can enable detailed logging for SignalR in either configuration or through code.
For the first option, add the last two lines to your appsettings.json file (for
"Microsoft.AspNetCore.SignalR" and
"Microsoft.AspNetCore.Http.Connections"):

{
 "Logging": {
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information",
 "Microsoft.AspNetCore.SignalR": "Trace",
 "Microsoft.AspNetCore.Http.Connections": "Trace"

Real-Time Communication Chapter 16

[582]

 }
 }
}

To the latter, add the configuration to the bootstrap code:

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(builder =>
 {
 builder
 .ConfigureLogging(logging =>
 {
 logging.AddFilter("Microsoft.AspNetCore.SignalR",
 LogLevel.Trace);
 logging.AddFilter("Microsoft.AspNetCore.Http.
 Connections", LogLevel.Trace);
 })
 .UseStartup<Startup>();
 });

Mind you, this is just for enabling the flags that make the code output the debugging
information. Trace is the most verbose level, so it will output pretty much everything,
including low-level network calls. To actually log, you need to add loggers, like the console,
for server-side code, or your own custom provider (mind you, this is just a sample):

.ConfigureLogging(logging => {
 logging.AddFilter("Microsoft.AspNetCore.SignalR", LogLevel.Trace)
 logging.AddFilter("Microsoft.AspNetCore.Http.Connections",
 LogLevel.Trace);

 logging.AddConsole();
 logging.AddProvider(new MyCustomLoggingProvider());
})

For the client side, you need to register a custom function that takes two parameters:

function myLog(logLevel, message) {
 //do something
}

var connection = new signalR.HubConnectionBuilder()
 .configureLogging({ log: myLog })
 .withUrl('/chat')
 .build();

Real-Time Communication Chapter 16

[583]

The first parameter, logLevel, is a number that represents one of the possible log levels:

signalR.LogLevel.Critical (5)
signalR.LogLevel.Error (4)
signalR.LogLevel.Warning (3)
signalR.LogLevel.Information (2)
signalR.LogLevel.Debug (1)
signalR.LogLevel.Trace (0): everything, including network messages

The second parameter, message, is the textual message that describes the event.

In this section, we've seen how to enable logging in both the client and the server side, with
different levels of granularity.

Summary
In this chapter, we saw that we can use SignalR to perform the kind of tasks that we used
AJAX for—calling server-side code and getting responses asynchronously. The advantage
is that you can use it for having the server reach out to connected clients on its own when it
needs to broadcast some information.

SignalR is a very powerful technology because it essentially adapts to whatever your server
and client support. It makes server-to-client communication a breeze. Although the current
version is not release-quality, it is stable enough for you to use in your projects.

Some advanced aspects of SignalR, such as streaming or clustering, haven't been discussed,
as these are more for a dedicated book.

We are reaching the end of this book, so, in the next chapter, we will have a look into some
of the APIs that weren't covered in previous chapters.

Real-Time Communication Chapter 16

[584]

Questions
You should now be able to answer these questions:

What are the two serialization formatters supported by SignalR?1.
What transports does SignalR support?2.
What are the benefits of the MessagePack protocol?3.
To which targets can we send messages?4.
Why would we restrict the transport to be used by SignalR?5.
Can we send messages to SignalR from outside the web application where it is6.
hosted?
Can we use authentication with SignalR?7.

17
Introducing Blazor

This chapter will introduce Blazor, a new technology that made its debut in .NET Core 3. It
is meant for building user interface (UI) applications that run on the browser using the
same languages and application programming interfaces (APIs) that you would use on the
server. This chapter will not be an in-depth guide to Blazor as that would potentially take a
whole book, but it should be more than enough to get you started. Here, you will learn
about the following:

The different hosting models
How components are created
The life cycle of a component
How binding works
How to interact with JavaScript
How to secure Blazor pages
How to perform unit tests over Blazor components

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 software development kit (SDK) and some form of text editor. Of course, Visual
Studio 2019 (any edition) meets all the requirements, but you can also use Visual Studio
Code, for example.

You should have previously read Chapter 16, Real-Time Communication, for an
understanding of SignalR.

The source code can be retrieved from GitHub at: https:/ ​/ ​github. ​com/ ​PacktPublishing/
Modern-​Web-​Development- ​with- ​ASP. ​NET- ​Core-​3- ​Second- ​Edition.

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

Introducing Blazor Chapter 17

[586]

Getting started with Blazor
Blazor is a whole new technology that was created by Steve Sanderson, the same guy who
created KnockoutJS and Node services. It was meant to be a framework for allowing .NET
Core to be used for creating UIs for the client-side web along with the server side. The way
to do this was that .NET would be compiled into WebAssembly, a language that can be run
on the browser, on the same interpreter that runs JavaScript. This allows you to write your
UI components in Razor and your event-handling code in .NET, and also to reuse code that
is written in .NET on both the server side and the client side. In a nutshell, the advantages
of using Blazor are the following:

You can use a good old strongly typed language such as C# (or any other
supported by .NET Core) to build your web UI.
Leverage the rich APIs exposed by the .NET Core framework and all of the
available libraries.
Reuse code between the different layers (client side and server side).

As with all ASP.NET Core elements, Blazor is available as source code from GitHub, at:
https:/​/​github.​com/ ​aspnet/ ​AspNetCore/ ​tree/ ​master/ ​src/ ​Components.

We'll start by exploring the available hosting models.

Hosting models
There are two basic hosting models in Blazor, as follows:

WebAssembly: The .NET Core code is compiled into a web assembly and
executed on the client, by the browser, by the same virtual machine that executes
the JavaScript code, inside a sandbox. This means that all referenced assemblies
need to be sent to the client, which poses challenges in terms of download size
and security as the code can be disassembled on the client side. Because of the
sandbox, there are some limits to what the application can do, such as opening
sockets to arbitrary hosts.
Server: The .NET Core code runs on the server and the generated code is
transported to the client through SignalR. Since all code runs on the server, there
are virtually no limits to what it can do.

The WebAssembly mode was the latest to be released to .NET Core but was the one that
actually gained most people's attention. The reason is that it runs purely on the client side,
in standards-compatible browsers. The following screenshot shows how this appears:

https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components
https://github.com/aspnet/AspNetCore/tree/master/src/Components

Introducing Blazor Chapter 17

[587]

When using the WebAssembly hosting model, everything needs to be downloaded to the
client. The process is the following:

Some JavaScript is loaded that executes a .NET emulator.1.
The project assembly and all of the referenced .NET dynamic-link libraries2.
(DLLs) are loaded to the client.
The UI is updated.3.

The client can then disconnect from the server, as there is no more need for a permanent
connection.

Keep in mind that because applications deployed using the WebAssembly
hosting model run on the client browser, in a sandbox, this means that it
may not be able to open arbitrary sockets to any host, which prevents it
from running Entity Framework (EF) Core, for example. Only connections
to the originating host are allowed.

With the Server model, Blazor does the following:

Renders some markup and some JavaScript1.
Uses SignalR to send events to the server2.
Processes them as per the .NET code in our app3.
Sends the response to the client4.
Updates the UI5.

Introducing Blazor Chapter 17

[588]

Because only SignalR is used, there are no postbacks and no AJAX calls (unless, of course,
SignalR falls back to AJAX, it normally uses WebSockets, where available). For all purposes,
a Blazor app is just a single-page application (SPA). The following screenshot shows
Blazor's Server hosting model:

Image taken from https://docs.microsoft.com/en-us/aspnet/core/blazor

In the Server mode, Blazor needs a connection to a server, but on the WebAssembly mode,
it works on the client side alone, after all the assemblies are downloaded to the client. In
this case, it operates in a standalone manner in the browser without the need for a server, as
you can see in the following screenshot:

Image taken from https://docs.microsoft.com/en-us/aspnet/core/blazor

Essentially, the main advantage of Blazor is that .NET is used as the language to update the
UI and perform any business logic, instead of JavaScript, and this is for both the client side
and the server side. The process by which Blazor gets input from the UI, goes to the server,
and then back to the UI is called a circuit.

Introducing Blazor Chapter 17

[589]

Implementing Blazor
Depending on how you are hosting Blazor—through Server or WebAssembly models—the
implementation is quite different. Visual Studio has support for creating Blazor Server or
WebAssembly projects, as can be seen in the following screenshot:

Next, let's see how this works, in the sections ahead.

Implementing Blazor Server
Blazor Server also has the dotnet tool, which can be used as follows:

dotnet new blazorserver

Introducing Blazor Chapter 17

[590]

This will create a sample Blazor project in Server mode that communicates to a
representational state transfer (REST) web API. This will be the same as if generating a
Blazor project from Visual Studio and checking the ASP.NET Core hosted checkbox. If you
have a look at the generated project, you will notice that, first, Blazor services need to be
registered to the dependency injection (DI) framework, in ConfigureServices, as
follows:

services.AddServerSideBlazor();

Here, you can also specify other options related to the SignalR service that Blazor's Server
model inherently uses, as illustrated in the following code snippet:

services
 .AddServerSideBlazor()
 .AddHubOptions(options =>
 {
 //options go here
 });

I won't go into the details here, as they are exactly the same options that are described in
Chapter 16, Real-Time Communication.

It is also necessary to register endpoints for the Blazor SignalR hubs, in Configure, so that
ASP.NET Core knows how to process requests, as follows:

app.UseEndpoints(endpoints =>
{
 endpoints.MapBlazorHub();
 endpoints.MapFallbackToPage("/_Host");
});

The fallback to the page endpoint is required, as we will see.

It is perfectly possible to mix Model-View-Controller (MVC), Razor
Pages, and Blazor on the same project.

The browser must load a JavaScript file that includes all the logic to call SignalR and do all
the Document Object Model (DOM) manipulations after the responses are received, as
follows:

<script src="_framework/blazor.server.js"></script>

Introducing Blazor Chapter 17

[591]

If we want, we can configure some aspects of SignalR. In that case, we need to tell Blazor
not to automatically load the defaults, by setting autostart to false and calling the
Blazor.start function explicitly, as illustrated in the following code snippet:

<script src="_framework/blazor.server.js" autostart="false"></script>
<script>
 Blazor.start({
 configureSignalR: function (builder) {
 builder.configureLogging("information");
 }
 });
</script>

The options we can set here are the same as described in Chapter 16, Real-Time
Communication. There is another reason for preventing the automatic loading, which is to
detect whether or not the browser supports Blazor WebAssembly (remember that it runs in
the browser). If it doesn't, we can fall back gracefully.

A simple test could be this:

<script>
if (typeof(WebAssembly) === 'object' && typeof(WebAssembly.
instantiate) === 'function') {
 //the browser supports WebAssembly
 Blazor.start();
} else {
 location.href = 'BlazorNotSupported.html';
}
</script>

Implementing Blazor WebAssembly
For Blazor WebAssembly, the dotnet tool can be used to generate a basic project from a
template, as follows:

dotnet new blazorwasm

A sample project is created that only has a client-side part and no server-side code. If you
look at the code, you will see that it is quite different from what we have seen so far as there
is no Startup class, but there is a Program one. This class essentially registers a root
component named app. This component is then referenced in the index.html file located
inside the wwwroot folder. There are no controllers whatsoever, only Blazor components,
which we will talk about later on.

Introducing Blazor Chapter 17

[592]

The browser must load two JavaScript files and run some code, as follows:

<script src="_framework/blazor.webassembly.js"></script>
<script>
//some code here
</script>
<script src="_framework/wasm/dotnet.3.2.0.js" defer="" integrity="sha256-
mPoqx7XczFHBWk3gRNn0hc9ekG1OvkKY4XiKRY5Mj5U="
crossorigin="anonymous"></script>

The first file instantiates the .NET Core emulator and the second loads the actual .NET Core
JavaScript code. Notice the version number in the second file—it matches the .NET Core
version we are loading. Then, it loads all the assemblies, as follows:

Let's now compare the two hosting models.

Introducing Blazor Chapter 17

[593]

Comparing Server and WebAssembly
The Server and WebAssembly models are quite different, for the following reasons:

The WebAssembly model requires that all code be downloaded to the client; this
may cause some performance impact but, of course, can benefit from caching.
WebAssembly requires a browser that can render webassembly, which most
modern browsers do; it does not require .NET Core to be installed in the client
machines, mind you.
WebAssembly can work in a disconnected mode—other than, of course,
downloading the application—whereas the Server mode cannot.

See https:/ ​/​caniuse. ​com/ ​#feat= ​wasm for browser support for
WebAssembly.

Everything that we will talk about next will apply to both Server and WebAssembly unless
explicitly stated otherwise.

Next, we will see the building blocks of Blazor, starting with pages.

Pages
Pages are special kinds of Blazor components that can be accessed directly by the browser
(this is not quite true, but we can think of it like that). They have the .razor extension and,
by convention, should be placed in a folder called Pages under the root folder of our app
(or in a folder underneath it). The first line of the file should have a @page directive
(similarly to Razor Pages)—something like this:

@page "/Home"

This may seem unnecessary, but this should contain the route that the page accepts, which
is likely the same name of the file, without the .razor extension, but doesn't have to be so.
If a page does not have a @page directive, it cannot be accessed by Blazor directly. We'll
talk more about this when we discuss routing later on in the chapter.

https://caniuse.com/#feat=wasm
https://caniuse.com/#feat=wasm
https://caniuse.com/#feat=wasm
https://caniuse.com/#feat=wasm
https://caniuse.com/#feat=wasm
https://caniuse.com/#feat=wasm
https://caniuse.com/#feat=wasm
https://caniuse.com/#feat=wasm
https://caniuse.com/#feat=wasm
https://caniuse.com/#feat=wasm
https://caniuse.com/#feat=wasm

Introducing Blazor Chapter 17

[594]

All Blazor components (and a page is a component) must implement an IComponent
interface, of which ComponentBase is the most obvious, already implemented choice. You
do not need to declare this inheritance; it is done by default—all Blazor components
implicitly inherit from ComponentBase. Pages are compiled to .NET classes, so you can
always reference the type for a page by applying the typeof operator to the name of the
file of which you want to obtain the type, as illustrated in the following code snippet:

@code
{
 var mainAppType = typeof(App); //App comes from the App.razor file
}

A page normally has markup, but it can also have other Blazor components that are
declared as markup. We will now talk about the syntax of pages.

Razor syntax
The syntax is exactly the same as the one you would use in a Razor view, with some minor
changes, detailed as follows:

@page: Used for Blazor pages (not components)
@code: For code blocks instead of @functions, which doesn't work here
@namespace: For setting the namespace of the generated .NET class
@attribute: For adding additional attributes that will be added to the
generated class
@attributes: For rendering a dictionary of key values as HyperText Markup
Language (HTML) attributes in a tag
@typeparam: For declaring generic/template components
@: Syntax for .NET event handlers (@onclick, for example), not to be confused
with JavaScript events

Additionally, it is to be noted that tag helpers do not work and Blazor components are to be
declared as markup.

Introducing Blazor Chapter 17

[595]

Other than this, all the other keywords and features of Razor pages also work inside Blazor
pages, including @inject, @inherits, and @implements. It also has IntelliSense, which
provides code completion, as illustrated in the following screenshot:

We'll carry on with the Blazor page construction, with class-related stuff.

Namespace imports
We need to import all namespaces for all types that we will be using in our Blazor pages, by
adding @using declarations: if we don't add them, our types will not be found and
therefore will not be usable. If we do not wish to do that on every page, we can add all
@using declarations we want in a file named _Imports.razor that should be placed at
the root of the web application, and it will automatically be loaded. The Blazor template
already provides with some of the most common namespaces.

Introducing Blazor Chapter 17

[596]

Partial classes
Because Blazor files are compiled to classes, you can also split the generated class into
multiple files. For example, for a file called SimpleComponent.razor, we can also create a
partial class called SimpleComponent.razor.cs, as follows:

public partial class SimpleComponent : ComponentBase
{
}

Provided the namespace and the class name are the same and you use the partial
keyword, you can spawn classes across multiple files.

Pages as code
Pages do not have to be written as .razor files, with markup and code; they can just be
implemented as .NET classes. All it takes is for them to implement IComponent (or inherit
from ComponentBase). Instead of the @page directive, they need to have [Route]
attributes, and instead of @layout, they can have a [Layout] attribute, which is what a
Blazor page is turned into. The code can be seen in the following snippet:

[Route("/")]
[Layout(typeof(MainLayout))]
public partial class Index : ComponentBase
{
}

Blazor looks for page/component classes on the Bootstrap assembly and checks them for
[Route] attributes when deciding to route. Just don't forget that Blazor pages/components
need to have a public parameterless constructor.

Pages as components
Remember, a page is a component. So, if you want, you can include a page perfectly inside
another page or component. Just include it as you would any other component, like this:

<MyPage />

Next, we will see how to add some structure to pages by means of page layouts.

Introducing Blazor Chapter 17

[597]

Page layouts
Page layouts work in a similar way for Blazor as they do for Razor Pages and views. A
Blazor page normally has a layout, and a layout needs to declare where to render the
contents of its pages through a @Body declaration, as illustrated in the following code
snippet:

@inherits LayoutComponentBase

<div>This is a layout</div>
<div>Body goes here:</div>
@Body

However, Blazor layouts do not support multiple sections, only a single one (the body).

Layouts are declared on the route (see next section), on the _Imports.razor file—a way to
apply a layout for multiple pages—like this:

@layout MyLayout

Or, they are declared in the code file for the component, using the [Layout] attribute, as
follows:

[Layout(typeof(MainLayout))]

Normally, a layout should inherit from LayoutComponentBase, but it is necessary to
declare this; otherwise, being a component, it would inherit from ComponentBase.
LayoutComponentBase has the advantage that it defines a Body property for the content,
which you can render wherever you want. The layout is normally defined from the route
(we will see this in a moment), but it also possible to define the layout for a specific page by
applying a @layout directive, as follows:

@layout MyLayout
@page "/Home"

Finally, as with Razor layouts, Blazor layouts can be nested too, meaning that a layout can
have a layout itself.

For the next subject, we jump from pages into global routing.

Introducing Blazor Chapter 17

[598]

Routing
For the default Blazor projects—those generated by Visual Studio or the dotnet tool—you
will notice that there is no entry page, no index.html, no controller, and no default Razor
page. Because of that, when you access your app through your browser, you will end up on
the fallback page, the one that I mentioned in the Implementing Blazor Server section. If you
look at this page, you will notice that it is essentially a simple Razor page with a
<component> tag helper —one that was just introduced in .NET Core 3. This tag helper is
rendering the App component, and if you look inside of the App.razor file, you will find
some weird markup—something like this:

<Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout=
 "@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
</Router>

This file is actually the main Blazor app, even though it merely does routing. In essence, it
defines two possible routes, as follows:

A found route (we'll see what that means next)
A not found route

If you look at the Router root, it defines an AppAssembly attribute that points to the
startup assembly; if you want, you can specify an additional AdditionalAssemblies
attribute with a list of additional assemblies (Razor class libraries) containing additional
Blazor components to load.

For the found route, what happens is the following:

Blazor finds a page that matches the request of Uniform Resource Locator1.
(URL), by looking at the @page directives.
A page layout is defined for it (in this case, MainLayout).2.
A view is instantiated, which is actually an instance of a class called RouteView,3.
which is passed to all the route parameters (the @routeData).

Introducing Blazor Chapter 17

[599]

So, in essence, we never actually directly access a Blazor page (.razor), but instead, we hit
a fallback page, which, when it detects that the requested page (or one that answers to that
URL) exists, displays it.

As for the not found route, the following applies:

A LayoutView is instantiated with a layout of MainLayout.1.
Default content is set with an error message.2.

It is, of course, possible to mimic the same behavior as for the found route—that is, to also
display a specific page when the requested one is not found. Just add that page as a
<SomePage /> Blazor component.

In the next sections, we will talk about page routes and how to map and enforce route
parameters.

Page routes
A page can accept many different routes, as shown in the following code snippet:

@page "/Home"
@page "/"
@page "/My"

When trying to find the right page from the request URL, Blazor does not look at the page's
name (the one that ends with .razor), but instead, it looks at the directive or directives.

Route constraints
If you remember when we discussed routing in Chapter 3, Routing, we also talked about
route constraints. If the page expects some parameter, you need to list it here as well, as
follows:

@page "/Product/{id}"

But you also specify the type of this parameter so that if the supplied requested URL does
not match with the expected URL, the request will fail. These are route constraints, and, if
you recall, the syntax is as follows:

@page "/Product/{id:int}"

Introducing Blazor Chapter 17

[600]

The out-of-the-box constraints are listed here:

bool

datetime

decimal

double

float

guid

int

long

Keep in mind that some of these, such as float and datetime, are culture-specific, so care
must be taken to supply values that are valid according to the culture that the application is
using. For example, if the application is using any variety of English, the numeric decimal
separator is ., whereas if Portuguese is being used, it is ,. Please refer to Chapter 13,
Understanding How Testing Works for more information on route constraints.

A catch-all route
A catch-all route is one that is always met. It must be something like this:

@page "/{**path}"

Here, path does not serve any purpose; it is used just to indicate anything after the /.

Parameter binding from route
If you have a route with a parameter and you declare a parameter by the same name (case-
insensitive), it is automatically bound to the route parameter's value, like this:

@page "/Search/{product}"

@code
{
 [Parameter]
 public string Product { get; set; }
}

Introducing Blazor Chapter 17

[601]

Page navigation
Page navigation in Blazor is achieved through the NavigationManager service, which is
normally obtained from DI (see the DI section). This service exposes as its main method the
NavigateTo method that can take a relative URL, a Blazor route, and an optional
parameter to force the loading of the page, as illustrated in the following code snippet:

[Inject]
public NavigationManager NavigationManager { get; set; }

@code
{
 void GoToPage(int page)
 {
 NavigationManager.NavigateTo($"Page/{page}", forceLoad: false);
 }
}

Don't forget that the routes do not end with .razor!

Normally, we don't need to force the loading of the page; this means that content is loaded
asynchronously by Blazor, using SignalR (when using the Server hosting model), and the
URL is added to the history of the browser, but the browser does not load any new pages. If
we do force it, then a full page load occurs.

The NavigationManager class exposes two properties, as follows:

BaseUri (string): The absolute base Uniform Resource Identifier (URI) for the
Blazor app
Uri (string): The absolute URI for the current page

And also, the LocationChanged (EventHandler<LocationChangedEventArgs>) event
is raised whenever we request to navigate to a new page by calling the NavigateTo
method, with the forceLoad parameter set to false.

Then, there is the <NavLink> component. This component renders a link to a page for the
provided content with a CSS :active class, depending on whether this link matches the
current URL. It acts exactly like an <a> element, but it has the following additional
property:

Match (Match): How the link should be considered—with the prefix (Prefix),
which is the default, or as a whole (All)

Introducing Blazor Chapter 17

[602]

The Match property determines whether or not the link that is passed is perceived as active
or not. For example, consider that the current URL is http://somehost/someother and
the href property is /someother/page/. If the Match property is set to Prefix, then it
will show as active, but if it is set to All, then it won't. The code can be seen in the
following snippet:

<NavLink href="/someother/page" Match="All">
Jump to some other page
</NavLink>

There's nothing much about <NavLink>; it just exists to help us render the current page as
active.

Building components
A component is just a file with the .razor extension and conforming to the Blazor syntax
that does not have the @page directive, and therefore cannot be directly accessed. However,
it can be included in other Blazor files, pages, or components.

All components implicitly inherit from ComponentBase, but you can modify this to other
classes through the @inherits directive. Including a component is as easy as just declaring
it as markup inside your file. For example, if your component is called
SimpleComponent.razor, you would declare it as follows:

<SimpleComponent />

And that's it, but there is a new way to embed a Blazor component, which we will see next.

The <component> tag helper
There is a new tag helper, <component>, that allows us to embed a Blazor component in
the middle of a Razor view. It was also covered in Chapter 9, Reusable Components, in the
Tag helpers section, but for completeness, I will show an example here:

<component type="typeof(SomeComponent)" render-mode="ServerPrerendered"
param-Text="Hello, World"/>

If you remember, SomeComponent is just some .razor file that has a Text property.

Introducing Blazor Chapter 17

[603]

A second option to render a component is through code, by using the
RenderComponentAsync method from within a Razor Page or view, as illustrated in the
following code snippet:

@(await Html.RenderComponentAsync<SomeComponent>(RenderMode.Static, new {
Text = "Hello, World" }))

The second parameter to RenderComponentAsync is optional, and it should be an
anonymous object with properties named (and typed) after the properties that the
component to render expects.

Blazor component properties
Blazor component properties are declared in the code as public properties and decorated
with the [Parameter] attribute, as illustrated in the following code snippet:

@code
{
 [Parameter]
 public string Text { get; set; } = "Initial value";
}

Then, values can be set either using the markup or with the tag helper syntax, as illustrated
in the following code snippet:

<!-- in a .razor file -->
<SomeComponent Text="Hello, World" />

<!-- in a .cshtml file -->
<component type="typeof(SomeComponent)" param-Text="Hello, World" />

Notice the param-XXX format of the attribute.

Properties are case-insensitive—for example, Text is identical to text.

Properties are not parsed from string values; if the property is not a number, Boolean, or
string, we must pass an actual object. For example, for a TimeSpan property, you must pass
an actual TimeSpan object, as follows:

@code
{
 public class Clock : ComponentBase

Introducing Blazor Chapter 17

[604]

 {
 [Parameter]
 public TimeSpan Time { get; set; }
 }
}

<Clock Time="@DateTime.Now.TimeOfDay" />

Or, you must pass a variable of the appropriate time, as follows:

@code
{
 TimeSpan now = DateTime.Now.TimeOfDay;
}

<Clock Time="@now" />

Attempting to pass a string will result in an error, as, unlike with Web Forms, no parsing
will occur.

Cascading properties
A cascading property is always injected from the parent component into a child
component. Cascading properties are parameters that do not need to be provided values
explicitly, as they are set automatically by the framework from the containing component.
They can be of any kind, including complex types. Imagine you have this:

<CascadingValue Value="Something">
 <ProfileComponent />
</CascadingValue>

Anything you put inside <CascadingValue> will receive the Value set, no matter how
nested (components inside other components receive it too). Receiving properties are
declared as follows—for example, inside the hypothetical ProfileComponent instance:

[CascadingParameter]
private string Text { get; set; } = "<not set>";

Notice that these parameters/properties should be set as private because there is no point
in setting their values manually.

A cascaded property can, of course, be changed on a child component after the initial value
is set, but it does not cascade back to the originator. The best way to achieve this is by
declaring an event on the child component and hooking it from the parent component.

Introducing Blazor Chapter 17

[605]

A parent locates the child cascaded parameters automatically by their matching type, but if
you have multiple cascaded parameters of the same type, you may need to tell the
framework which one maps to which one by setting a name, as follows:

<CascadingValue Name="FirstName" Value="Ricardo">
 <ProfileComponent />
</CascadingValue>

Their declaration should also appear, inside ProfileComponent, as follows:

[CascadingParameter(Name = "FirstName")]
private string FirstName { get; set; }

[CascadingParameter(Name = "LastName")]
private string LastName { get; set; }

You can also nest multiple <CascadingValue> components as follows, and all their values
will be passed along to any child components:

<CascadingValue Name="FirstName" Value="Ricardo">
 <CascadingValue Name"LastName" Value="Peres">
 <ProfileComponent />
 </CascadingValue>
</CascadingValue>

If the cascaded property's value never changes, you may as well declare it as read-only; this
has performance benefits, as Blazor does not have to hook to it and potentially update the
UI whenever it changes. The code for this can be seen in the following snippet:

[CascadingParameter(Name = "FirstName", IsFixed = true)]
private string FirstName { get; set; }

This is achieved through IsFixed, which defaults to false.

Catch-all properties
If you supply values for parameters that do not exist, you get an exception at compile time
unless you declare a catch-all property, one that will capture the values for any parameters
that do not match existing parameters, shown as follows:

[Parameter(CaptureUnmatchedValues = true)]
public Dictionary<string, object> Attributes { get; set; } = new
Dictionary<string, object>();

Introducing Blazor Chapter 17

[606]

With this approach, you can pass any number of parameters, and if they don't find a
matching parameter, they just end up in InputAttributes. Also, you can pass all
attributes to a component or HTML element. Each dictionary element is flattened and
translated into a key-value pair by using the @attributes keyword, as follows:

<input @attributes="@Attributes" />

This is a generic way to pass any number of properties and not have to worry about
defining properties for each of them.

Child content properties
Some components can have markup set inside of them, including other components; this is
called child content. Here is an example of this:

<ContainerComponent>
<p>This is the child content's markup</p>
</ContainerComponent>

This content can be captured in a property for later use, as follows:

[Parameter]
public RenderFragment ChildContent { get; set; }

This property must be called ChildContent. The content of it will be the rendered
markup, including that of any components that are declared inside the parent component.
Now, in your component, you can output (or not, if you prefer) the child content wherever
you want to, as illustrated in the following code snippet:

<pre>
<!-- child content goes here -->
@ChildContent
</pre>

Introducing Blazor Chapter 17

[607]

Components with generic parameters
It is possible to declare generic (or templated) components—that is, components with
generic parameters. This has the advantage of making your component exactly suit the type
you want. For that, we declare the generic template parameter with the @typeparam
declaration, and then declare one or more fields or properties as generic and having the
same template parameter, as follows:

//MyComponent
@typeparam TItem

@code
{
 [Parameter]
 public IEnumerable<TItem> Items { get; set; }
}

One way to use this component is to declare a value for a generic property and let Blazor
infer the generic parameter type, as illustrated in the following code snippet:

@code
{
 var strings = new [] { "A", "B", "C" };
}

<MyComponent Items="strings" />

Another way is to set the TItem property if the type cannot be inferred or we want to
enforce a specific one, as follows:

@code
{
 var strings = new [] { "A", "B", "C" };
}

<MyComponent Items="strings" TItem="IComparable" />

Using this approach, the Items property will be prototyped as
IEnumerable<IComparable>. Because arrays of strings are also arrays of IComparables,
the types match.

As of now, it is not possible to define constrained generic types.

Introducing Blazor Chapter 17

[608]

Lists of components
When rendering lists of components whose content may change (adding, removing, or
modifying an item of the list), it is important to tell Blazor what identifies each item of the
list, to prevent unwanted behavior such as Blazor not knowing what to update. For this
purpose, there is the @key attribute that should be applied to each list item, with a unique
value, which may be a complex object. Let's see an example. Imagine you have a list that is
bound to a list of orders, as follows:

@code
{
 foreach (var order in Orders)
 {
 <Order
 @key="order.Id"
 Product="order.Product"
 Customer="order.Customer"
 Date="order.Date" />
 }
}

Here, we are both passing to a hypothetical Order component the data it needs—Product,
Customer, Date—and setting as its key the order ID, which means each component will
have a unique identifier.

Locating components
Components have an implicit class associated with them, and this class is located in a
namespace that matches the folder where they are located. For example, if
SomeComponent.razor is located in a folder called Components under the root folder of
the web app, we need to add a @using declaration before we can include it, as follows:

@using MyProject.Components

Components located in the same folder where they are used or in the Shared folder are
automatically found, without the need for @using directives.

Introducing Blazor Chapter 17

[609]

Rendering modes
A component can be rendered in one of three modes (RenderMode), which must be
specified as follows:

Static: Statically renders the Blazor component with any parameters that it
takes when the page is loaded. This is the fastest option, but the component
cannot raise events, which makes it impractical for any advanced use; however,
this is the default.
Server: Renders a page on the server and then sends it to the client only after
the page is loaded; this is the slowest option and cannot use any parameters.
ServerPrerendered: This is a trade-off between the two other modes; Blazor
pre-renders the page and sends the component when the page loads, but then it
is made interactive. It does not support parameters either.

The render mode is relevant when we talk about interacting with the DOM and raising
events, which we will cover in a moment.

The component life cycle
Each component (and let's not forget that pages and page layouts are also components)
goes through a life cycle, on which some virtual methods are called. These are, in order, the
following:

SetParametersAsync: When parameters from the query string are set and any1.
properties that require binding are bound; if you override this method, make
sure you call the base implementation.
OnInitialized/OnInitializedAsync: When the component is being2.
initialized, giving a chance to change/set properties for other components or
DOM elements.
OnParametersSet/OnParametersSetAsync: When the component was3.
initialized and all parameters from the component's parent have been set.
OnAfterRender/OnAfterRenderAsync: When the component has been4.
rendered.

As you can see, some of these virtual methods have both a synchronous and an
asynchronous version. It's better to override the asynchronous version.

Introducing Blazor Chapter 17

[610]

The OnAfterRender/OnAfterRenderAsync method takes a firstRender parameter that
indicates whether it's the first time that the component is about to render. This may be
useful for you to do some sort of initialization.

There is also a ShouldRender method that deserves a mention. As you can imagine, this is
called when Blazor needs to decide whether or not the component needs to update its UI; it
takes no parameters and returns a Boolean. It's up to you to implement its logic. The
StateHasChanged method always causes ShouldRender to be called, but the first time the
component is being rendered (OnAfterRender/OnAfterRenderAsync being called with
the firstRender parameter set to true) it is always so, regardless of what ShouldRender
returns.

If a component implements IDisposable, its Dispose method is called at the end of its
life cycle— for example, when it is removed from the UI, or when the connection is closed.
But we must tell that to Blazor explicitly, as follows:

@implements IDisposable

@code
{
 public void Dispose()
 {
 //dispose the component
 //this method will be called automatically by the framework
 }
}

From the preceding code snippet, we can see that the method will automatically be called
by the framework.

Reusing components in different projects
Blazor components can be reused across projects if they are created in a Razor class library
project. This is a special project that can be created by Visual Studio or by using dotnet's
razorclasslib template. This is described in Chapter 9, Reusable Components, but
essentially, this is nothing more than a project file with the SDK set to
Microsoft.NET.Sdk.Razor, as illustrated in the following code snippet:

<Project Sdk="Microsoft.NET.Sdk.Razor">
 ...
</Project>

Introducing Blazor Chapter 17

[611]

Any .razor file contained in it can be accessed from another project that references that
one; it's just a matter of adding an @using statement for the right namespace (take into
account the root namespace for the project, plus any folders where the .razor file may be
nested).

Accessing the HTTP context
Should you ever need to access the HTTP context from inside a component (or page, for
that matter), all you have to do is inject the IHttpContextAccessor service into your
class, like this:

@code
{
 [Inject]
 public IHttpContextAccessor HttpContextAccessor { get; set; }

 HttpContext HttpContext => HttpContextAccessor.HttpContext;
}

Refer to the DI section for more information on this.

Sample components
Let's consider the following component:

@using System
@using System.Timers

@implements IDisposable

@code
{
 private System.Timers.Timer _timer;

 [Parameter]
 public TimeSpan Delay { get; set; }

 [Parameter]
 public Action OnElapsed { get; set; }

 [Parameter]
 public bool Repeat { get; set; }

 protected override void OnParametersSet()

Introducing Blazor Chapter 17

[612]

 {
 this._timer = new System.Timers.
 Timer(this.Delay.TotalMilliseconds);
 this._timer.Elapsed += this.OnTimerElapsed;
 this._timer.Enabled = true;

 base.OnParametersSet();
 }

 private void OnTimerElapsed(object sender, ElapsedEventArgs e)
 {
 this.OnElapsed?.Invoke();

 if (!this.Repeat)
 {
 this._timer.Elapsed -= this.OnTimerElapsed;
 this._timer.Enabled = false;
 }
 }

 void IDisposable.Dispose()
 {
 if (this._timer != null)
 {
 this._timer.Dispose();
 this._timer = null;
 }
 }
}

This is a timer component—it fires after a certain amount of time. It exposes the following
properties:

Delay (TimeSpan): The time after which the timer fires.
OnElapsed (Action): The callback to call when the timer fires.
Repeat (bool): Whether or not to repeat the callback; the default is false.

We can see that the component exposes three parameters and implements the
IDisposable interface privately. It overrides the OnParametersSet method because
when it is called by the infrastructure, the properties will have already been set; it is a good
time to make use of them—in this case, to instantiate the internal timer with the value of the
Delay parameter. When the timer fires for the first time, the component decides whether or
not to continue raising events, depending on whether or not the Repeat parameter is set.
When the component is disposed of, it also disposes of the internal timer.

Introducing Blazor Chapter 17

[613]

We can use this component as follows:

<Timer Delay="@TimeSpan.FromSeconds(20)" OnElapsed="OnTick" Repeat="true"
/>

@code
{
 void OnTick()
 {
 //timer fired
 }
}

Let's now see another component, which only renders content for users having a certain
role, as follows:

@code
{
 [Inject]
 public IHttpContextAccessor HttpContextAccessor { get; set; }

 HttpContext HttpContext => HttpContextAccessor.HttpContext;
 ClaimsPrincipal User => HttpContext.User;

 [Parameter]
 public string Roles { get; set; } = "";

 [Parameter]
 public RenderFragment ChildContent { get; set; }
}
@if (string.IsNullOrWhitespace(Roles) || Roles.Split(",").Any(role =>
User.IsInRole(role)))
{
 @ChildContent
}

This example injects the IHttpContextAccessor service, from which we then extract
current HttpContext, and, from it, the current User. We have a Roles property and
ChildContent. The ChildContent is only rendered if the current user is a member of any
of the roles supplied in the Roles property or if it is empty.

As you can see, it's easy to build useful and reusable components! Now, let's see how we
can work with forms—a very common need when we talk about the web.

Introducing Blazor Chapter 17

[614]

Working with forms
Blazor has support for working with forms that are tied to models. There are a few
components that know how to bind to properties of given types and display them
accordingly as HTML DOM elements and a form component that takes care of binding to a
model and validating it.

Form editing
For validating a model and allowing its edition, the component to use is EditForm. Its
usage is shown in the following code snippet:

<EditForm
 Model="@model"
 OnSubmit="@OnSubmit"
 OnInvalidSubmit="@OnInvalidSubmit"
 OnValidSubmit="@OnValidSubmit">
 ...
 <button>Submit</button>
</EditForm>

@code
{
 var model = new Order(); //some model class
}

The EditForm component exposes two properties, as follows:

Model (object): A POCO (short for Plain Old Common Language Runtime
(CLR) Object) that contains the properties to bind to the form components; it is
generally the only property that is needed.
EditContext (EditContext): A form context; generally, it is not supplied
explicitly—one is generated for us by the EditForm component.

And it also exposes three events, listed as follows:

OnInvalidSubmit (EventCallback<EditContext>): Raised when the form
was trying to submit but there were validation errors
OnSubmit (EventCallback<EditContext>): Raised when the form was
submitted explicitly, with no automatic validation
OnValidSubmit (EventCallback<EditContext>): Raised when the form was
submitted with success, with no validation errors

Introducing Blazor Chapter 17

[615]

As you can see, EditForm expects Model (mandatory) and possibly one or more event
handlers for the OnSubmit, OnInvalidSubmit, or OnValidSubmit events. Inside of it,
there must be some HTML element that causes submission, such as a button or input
with type="submit"—this is what actually will trigger the form submission. Mind you,
the actual submission will be the action associated with either the OnSubmit or
OnValidSubmit handlers.

Form context
The form context is an instance of EditContext and is exposed by a cascading property of
the same name as the EditForm class. The context exposes the following properties and
events:

Model (object): The model
OnFieldChanged (EventHandler<FieldChangedEventArgs>): An event that
is raised when a field changes
OnValidationRequested

(EventHandler<ValidationRequestedEventArgs>): An event that raises
when validation is requested
OnValidationStateChanged

(EventHandler<ValidationStateChangedEventArgs>): An event that raises
when the validation state changes

The context also exposes a few methods that can be used either to force validation, check if
the model has changed, or to get the validation errors, of which the most relevant are the
following:

GetValidationMessages: Gets all the validation messages or just for some field
IsModified: Checks if the value for a given model property has changed
MarkAsUnmodified: Marks a specific model property as not modified
NotifyFieldChanged: Raises an event notifying about a field property change
NotifyValidationStateChanged: Raises an event notifying about a validation
state change
Validate: Checks the current model values for validity according to the
validation API in use

Introducing Blazor Chapter 17

[616]

There are also some events too, listed as follows:

OnFieldChanged: A model field value has changed.
OnValidationRequested: Validation has been requested.
OnValidationStateChanged: The validation state has changed.

The form context is available from either EditForm or from any form component located
inside of it.

Form components
The form components included with Blazor are listed as follows:

InputText: Renders input with type="text"
InputTextArea: Renders textarea
InputSelect: Renders select
InputNumber (for int, long, float, double, or decimal): Renders input with
type="number"

InputCheckbox: Renders input with type="checkbox"
InputDate (for DateTime and DateTimeOffset): Renders input with
type="date"

These are really just convenient helpers that save us from writing some HTML. These
should be placed inside EditForm and bound to the properties of the model. An example
of this is shown in the following code snippet:

<EditForm Model="@model">
 <InputSelect @bind-Value="@model.Color">
 <option></option>
 <option>Red</option>
 <option>Green</option>
 <option>Blue</option>
 </InputSelect>
</EditForm>

In this example, InputSelect has a few options and is bound to the Color property of the
model, which is probably one of these options.

Introducing Blazor Chapter 17

[617]

Form validation
As of now, the only available validator is DataAnnotationsValidator, which uses the
Data Annotations API. In order to have validation on your form, you need to declare a
validator inside EditForm, like this:

<EditForm Model="@model">
 <DataAnnotationsValidator />
 ...
</EditForm>

If you supply a handler for the EditForm instance's OnSubmit event, you will have to force
the validation yourself by calling EditContext.Validate(), which will, in turn, trigger
the Data Annotations API validation, or you can do it yourself.

And, should you wish to display a summary of the validation errors, you might as well
include a ValidationSummary component, as follows:

<EditForm Model="@model">
 <DataAnnotationsValidator />
 <ValidationSummary Model="@model" />
 ...
</EditForm>

Convenient as it is, there is not much you can do to customize how the error messages
appear, other than tweaking the Cascading Style Sheets (CSS) classes in the generated
markup. Of course, you can also handle the OnInvalidSubmit event on EditForm
yourself and add your own messages for the invalid data, without using the
ValidationSummary component.

Next, working with DOM elements!

Working with DOM elements
In this section, we will learn how to work with DOM elements: accessing them, binding to
properties, adding events and handlers, and so on.

Introducing Blazor Chapter 17

[618]

Two-way binding
One way to set a property to an element's value is to declare it in the element's attribute,
like this:

<input type="text" name="name" value="@Name" />

The named element will receive the value of the Name property, but it will not bind the
element to that property. However, the following property will bind:

<input type="text" name="name" @bind="Name" />

Notice the usage of the @bind keyword. It is used to tie the element to the passed property
or field. By default, it hooks to the element's value attribute, because this is the usual one
for DOM form elements (input, select, textarea). This is really two-way binding: when
the value of the element's value changes, the value of the property also changes!

If we wish to bind to other properties of a component, we just specify its name after bind-,
as follows:

<MyComponent @bind-Text="Name" />

If we need to specify a format for a property that you wish to bind to, there is a special
syntax for that, illustrated in the following code snippet:

<input type="text" @bind="StartDate" @bind:format="yyyy-MM-dd" />

This example binds an input field to a property called StartDate using a specific format.
The date will show according to that format.

Finally, we can specify an alternative event to bind to, as follows:

<input type="text" name="name" @bind-value="Name" @bind-
value:event="oninput" />

The default event for DOM form events is onchange, but other candidates are oninput or
onblur. For custom events of your own components, you will have to specify your own
event.

Event handling
You can also respond to events raised by the elements, as follows:

<button @onclick="OnButtonClick">Click Me</button>
@code

Introducing Blazor Chapter 17

[619]

{
 void OnButtonClick(MouseEventArgs e)
 {
 //button was clicked!
 }
}

Other than adding a function to handle an event, we can also do it inline, which results in
somewhat ugly code, as can be seen in the following snippet:

<button @onclick="(evt) => Console.WriteLine("Clicked")>Click Me</button>

For preventing the default behavior of an event, there is a special keyword, shown in the
following code snippet:

<button @onsubmit:preventDefault>Click me</button>

This can be made conditional too by using a Boolean property or a field (as in this
example), as follows:

<button @onsubmit:preventDefault="_preventDefault">Click me</button>

And there is another one for stopping the propagation of an event, shown in the following
code snippet:

<button @onclick:stopPropagation>Click me</button>

It also allows a conditional operator, shown in the following code snippet:

<button @onclick:stopPropagation="_stopPropagation">Click me</button>

It is possible to expose our own event handlers as parameters of components as well, by
running the following code:

[Parameter]
public EventCallback<ChangeEventArgs> OnChange { get; set; }

There are two options declaring custom event handlers, as follows:

EventCallback<T>: A strongly typed event handler; requires a delegate
matching it
EventCallback: A delegate that takes an object parameter

This will seem very similar to Web Forms to those who have used it! From the handler, we
can do pretty much anything we want, such as accessing the values of properties and other
components, calling back the server, and so on.

Introducing Blazor Chapter 17

[620]

Blazor has classes for all events that can be raised by the browser DOM. Each of these
contains information relevant to the event that occurred, as shown in the following table:

Type Argument Class DOM Events
Clipboard ClipboardEventArgs oncut, oncopy, onpaste

Drag and
Drop DragEventArgs

ondrag, ondragstart, ondragenter, ondragleave,
ondragover, ondrop, ondragend

Error ErrorEventArgs onerror

General
Purpose EventArgs

onactivate, onbeforeactivate,
onbeforedeactivate, ondeactivate, onended,
onfullscreenchange, onfullscreenerror,
onloadeddata, onloadedmetadata,
onpointerlockchange, onpointerlockerror,
onreadystatechange, onscroll
onbeforecut, onbeforecopy, onbeforepaste
oninvalid, onreset, onselect,
onselectionchange, onselectstart, onsubmit
oncanplay, oncanplaythrough, oncuechange,
ondurationchange, onemptied, onpause, onplay,
onplaying, onratechange, onseeked, onseeking,
onstalled, onstop, onsuspend, ontimeupdate,
onvolumechange, onwaiting

Focus FocusEventArgs onfocus, onblur, onfocusin, onfocusout
Input ChangeEventArgs onchange, oninput
Keyboard KeyboardEventArgs onkeydown, onkeypress, onkeyup

Mouse MouseEventArgs
onclick, oncontextmenu, ondblclick,
onmousedown, onmouseup, onmouseover,
onmousemove, onmouseout

Mouse
Pointer PointerEventArgs

onpointerdown, onpointerup, onpointercancel,
onpointermove, onpointerover, onpointerout,
onpointerenter, onpointerleave,
ongotpointercapture, onlostpointercapture

Mouse
Wheel WheelEventArgs onwheel, onmousewheel

Progress ProgressEventArgs
onabort, onload, onloadend, onloadstart,
onprogress, ontimeout

Touch TouchEventArgs
ontouchstart, ontouchend, ontouchmove,
ontouchenter, ontouchleave, ontouchcancel

Introducing Blazor Chapter 17

[621]

All of these classes inherit from EventArgs: for your event classes, consider inheriting too,
and also adding the EventArgs suffix is considered a good practice too.

Referencing elements
An element or a custom component can be associated with a field or a property. This way,
you can access its public API programmatically. The way to achieve this is by adding a
@ref attribute to it that points to an appropriately typed field or property, as illustrated in
the following code snippet:

<MyComponent @ref="_cmp" />

@code
{
 MyComponent _cmp;
}

If we are talking about a generic DOM element, the field or property must be typed as
ElementReference. You can also declare parameter properties of this type and pass
properties from one component to another; this way, you can pass DOM element references
around. By the way, ElementReference does not expose any property or method other
than Id. The only way to interact with the element it refers to is through JavaScript
interoperability (there are no properties or methods that you can invoke on this object).

Be warned, though: ElementReferences are only set when the
OnAfterRender/OnAfterRenderAsync methods are called; before that, they are just null.

Updating the state
After you've made changes to a component's properties or to properties bound to a
component or DOM element, you need to tell Blazor to update the UI: for that, we have the
StateHasChanged method. When it is called, Blazor will re-render the component, which
can be the whole page or just a child component.

Moving on, let's now see how Blazor supports DI.

Introducing Blazor Chapter 17

[622]

DI
Blazor, of course, has rich support for DI. As you know, this improves the reusability,
isolation, and testability of our code. Service registration is done, as usual, in the
ConfigureServices method of the Startup class (for the Server model) or in the
WebAssemblyHostBuilder.Services collection of the Program class (for
WebAssembly).

Injecting services
Blazor can use any services registered on the DI framework. These can be retrieved through
a @inject directive on a .razor file, which works in exactly the same way as in a Razor
view, as shown in the following code snippet:

@inject IJSRuntime JSRuntime

Or, on the code (a @code block or a partial class), you can also decorate a property with an
[Inject] attribute to have it populated from the DI, as in this code snippet:

@code
{
 [Inject]
 IJSRuntime JSRuntime { get; set; }
}

In this case, properties can have any visibility (for example, public, private, or protected).

One thing that you must not forget is that, if you use partial classes for your pages, you
cannot have dependencies injected on the constructor. Blazor demands a public
parameterless constructor for its pages and components.

Registered services
Some services are already pre-registered for us, as follows:

IJSRuntime: For a JavaScript interoperability check (Scoped for Server,
Singleton for WebAssembly).
NavigationManager: For navigation and routing (Scoped for Server,
Singleton for WebAssembly).

Introducing Blazor Chapter 17

[623]

AuthenticationStateProvider: For authentication (Scoped).
IAuthorizationService: For authorization (Singleton)—this is not specific
to Blazor, of course.

You can access them by using either the @inject or the [Inject] approaches.

Scoped lifetime
There is a difference in the Scoped lifetime: in the Server hosting model, it maps to the
current connection (that is, it lasts until the connection is dropped or the browser refreshes),
whereas in WebAssembly, it is identical to Singleton.

Next, we will move on to understanding how to work with JavaScript.

JavaScript interoperability
Since Blazor runs on the browser, there are situations where we may need to execute a
browser-native functionality. For that, there is no way to avoid JavaScript! There are two
ways in which JavaScript and Blazor (.NET) can interoperate, as follows:

.NET calls JavaScript functions.
JavaScript calls .NET methods.

Calling JavaScript functions from .NET
Blazor can call any JavaScript function that is present on the hosting web page. It does this
through the IJSRuntime object, which is automatically made available through the DI
framework when you register Blazor.

For example, on the .razor file, add this code:

@inject IJSRuntime JSRuntime;

function add(a, b) { return a + b; }

@code
{
 var result = await JSRuntime.InvokeAsync<int>("add", 1, 1);
}

Introducing Blazor Chapter 17

[624]

IJSRuntime allows you to invoke any function by its name, passing an arbitrary number
of parameters and receiving a strongly typed result, by calling InvokeAsync. If a
JavaScript function does not return anything, it can be called through InvokeVoidAsync,
like this:

await JSRuntime.InvokeVoidAsync("alert", "Hello, World!");

Let's now see how we can do the opposite—that is, calling .NET code from JavaScript!

Calling .NET methods from JavaScript
From a web page, JavaScript can call methods on a Blazor component provided they are
public, static, and decorated with the [JSInvokable] attribute, as illustrated in the
following code snippet:

[JSInvokable]
public static int Calculate(int a, int b) { return a + b; }

The syntax to call an instance function (such as the one shown in the preceding code
snippet) is this, synchronously:

var result = DotNet.invokeMethod('Blazor', 'Calculate', 1, 2);

Or, if you wish to do things asynchronously, execute the following code:

[JSInvokable]
public static async Task<int> CalculateAsync(int a, int b) { return a + b;
}
DotNet
 .invokeMethodAsync('Blazor', 'CalculateAsync', 1, 2)
 .then((result) => {
 console.log(`Result: ${result}`);
 });

Here, Blazor is the name of my Blazor project/app; it does not have to be this.

If we need to call instance methods on some class, we need to wrap it inside of a
DotNetObjectReference object and return it to JavaScript, as follows:

public class Calculator
{
 [JSInvokable]
 public int Calculate(int a, int b) { return a + b; }
}

Introducing Blazor Chapter 17

[625]

var calc = DotNetObjectReference.Create(new Calculator());
await JSRuntime.InvokeVoidAsync("calculate", calc);

Then, on the JavaScript side, call invokeMethod or invokeMethodAsync to call public
instance methods on the received object, like this:

function calculate(calc) {
 var result = calc.invokeMethod('Calculate', 1, 2);
}

So, in the previous code snippet, we are creating a .NET object of the Calculator type,
through DotNetObjectReference.Create, and we are storing a reference to it in a local
variable. This variable is then passed to a JavaScript function, by means of
JSRuntime.InvokeVoidAsync, and inside this function (calculate), we finally use
invokeMethod to call the .NET Calculate method with some parameters. A rather
convoluted— but necessary—way!

Next, we will see how to maintain the state.

Maintaining state
In terms of state management, there are a few options, listed as follows:

Using the DI-managed objects to keep the state
Using the ASP.NET Core session (only for the Server hosting model)
Using the state kept in HTML elements
Saving the state on the browser

For the DI option, this should be simple: if we inject a container service that has either a
Singleton or a Scoped lifetime, any data saved to it will live up to the boundaries of that
lifetime. Session storage has also been described in Chapter 4, Controllers and Actions.
Saving data in HTML elements is straightforward, and, as there are no postbacks and no
need to repopulate the form elements, this is much easier to achieve than with traditional
web programming.

Saving the state on the browser using localStorage or sessionStorage is a different
subject. One approach is to use JavaScript interoperability to directly invoke methods in
these browser objects—cumbersome, but possible. Let's say that we expose a simple set of
functions, like this:

window.stateManager = {
 save: (key, value) => window.localStorage.setItem(key, value),

Introducing Blazor Chapter 17

[626]

 load: (key) => window.localStorage.getItem(key),
 clear: () => window.localStorage.clear(),
 remove: (key) => window.localStorage.removeItem(key)
};

We can then call these functions using JavaScript interoperability very easily, as we've seen
earlier, like this:

var value = await JSRuntime.InvokeAsync<string>("stateManager.load",
"key");

But there are some problems, listed as follows:

We need to wrap the JavaScript calls ourselves.
Any complex types need to be serialized to JSON previously.
No data protection.

Another alternative is to use a third-party library to do the job for us. Microsoft has a
NuGet library currently in preview called
Microsoft.AspNetCore.ProtectedBrowserStorage, which not only provides access to
the browser storage facilities but does so in a secure way, by leveraging the Data Protection
API. This means that if you look at the values stored using the browser tools, you won't be
able to make much out of them, as they are encrypted. Microsoft does warn that this library
is still not ready for production use, but eventually, it will get there, so I'm going to show
you how to use it.

So, after you add a reference to the
Microsoft.AspNetCore.ProtectedBrowserStorage preview NuGet package, you
need to make sure a script file is loaded to your browser every time you are going to use it;
just add the following code to the _Host.cshtml file, for example:

<script src="_content/Microsoft.AspNetCore.ProtectedBrowserStorage/
 protectedBrowserStorage.js"></script>

Now, you need to register some services to the DI framework (ConfigureServices), as
follows:

services.AddProtectedBrowserStorage();

Introducing Blazor Chapter 17

[627]

And hey presto—you now have two additional services registered,
ProtectedSessionStorage (for the sessionStorage DOM object) and
ProtectedLocalStorage (for localStorage), both with the same public API, which
essentially offers three methods, as follows:

ValueTask SetAsync(string key, object value): Saves a value to the
store
ValueTask<T> GetAsync<T>(string key): Retrieves a value from the store
ValueTask DeleteAsync(string key): Deletes a key from the store

When setting a complex value (a POCO class), it is first serialized to JSON. You can now
inject your desired service into your Blazor page or component and start using it to persist
data on the client side, in a safe manner.

For more information about sessionStorage and localStorage, please
see https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​API/ ​Window/
sessionStorage and https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/
API/​Window/ ​localStorage.

The next section explains the recommended approach for making HTTP calls from a Blazor
app.

Making HTTP calls
One typical need in Blazor apps is to make HTTP calls. Think of AJAX-style
(XMLHttpRequest or fetch) operations, which are the bread and butter of SPAs. For that,
we need an HTTP client, and the most convenient one is HttpClient.

We first need to register the services for it in the ConfigureServices method (for the
Server hosting model), as follows:

services.AddHttpClient();

Then, we can inject the IHttpClientFactory service in our Blazor app, and from it build
HttpClient, as illustrated in the following code snippet:

[Inject]
public IHttpClientFactory HttpClientFactory { get; set; }

HttpClient HttpClient => HttpClientFactory.CreateClient();

https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

Introducing Blazor Chapter 17

[628]

There are different overloads to AddHttpClient, for when we need to configure a named
client with specific settings—default headers, timeouts—and then create that client in
CreateClient, but I won't go through that here.

HttpClient can send POST, GET, PUT, DELETE, and PATCH requests, but you will need to
provide the content such as text, which means you probably will need to serialize some
classes to JSON, as it is the most common format nowadays. One alternative you might
consider is the Microsoft.AspNetCore.Blazor.HttpClient preview NuGet package
that takes care of this, but of course it is still not in the final version, which means that it
may still contain bugs or its API may change in the future, so be warned. This package
exposes extension methods over HttpClient that already allow you to POST, GET, PUT,
DELETE, and PATCH any content that will be serialized internally to JSON.

To serialize to JSON, the best approach is to use the new System.Text.Json NuGet
package, a lightweight and more performant approach to JSON.NET (Newtonsoft.Json),
by executing the following code:

var json = JsonSerializer.Serialize(item);
var content = new StringContent(json, Encoding.UTF8, "application/json");
var response = await HttpClient.PostAsync(relativeUrl, content);

It couldn't be easier than this: we serialize some payload to JSON, then we create a string
content message with it, and we post it to some URL asynchronously.

Applying security
Here, we will see how we can enforce security rules in a Blazor app. In this context, we will
we cover authentication and authorization, the two main topics of security, and also briefly
talk about Cross-Origin Resource Sharing (CORS).

Requesting authorization
Blazor uses the same authentication mechanism as ASP.NET Core—that is, based on
cookies: if we are authenticated to ASP.NET Core, then we are authenticated to Blazor. As
for authorization, Blazor resources (pages) are protected by applying an [Authorize]
attribute, with or without properties (roles or policies—policies are more generic).
Attributes can be applied to a page either by applying an @attribute directive on a
.razor file or on a .cs code-behind file, like this:

@attribute [Authorize(Roles = "Admin")]

Introducing Blazor Chapter 17

[629]

Mind you, it is pointless to apply [Authorize] attributes to
components—they only make sense in pages.

If we want to enforce authorization rules, we must modify the App.razor file and use
AuthorizeRouteView, as follows:

<Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData" DefaultLayout
 ="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
</Router>

If you compare this route definition with the previous one, you will notice that the only
difference is that we swapped RouteView for AuthorizeRouteView. When using an
AuthorizeRouteView component we can then use an AuthorizeView component, in our
pages and components to selectively display the following states:

Authorized: Content is displayed when the user is authenticated and
authorized.
Authorizing: For the WebAssembly model only, this content is displayed when
the Blazor app is authorizing using an external endpoint.
NotAuthorized: Content is displayed when the user is not authorized.

For example, have a look at the following code snippet:

<AuthorizeView>
 <Authorized>
 <p>Welcome, authenticated user!</p>
 </Authorized>
 <NotAuthorized>
 <p>You are not authorized to view this page!</p>
 </NotAuthorized>
</AuthorizeView>

Introducing Blazor Chapter 17

[630]

The AuthorizeView component can also take the following as properties:

Roles: A comma-separated list of roles to check for membership
Policy: The name of a policy to check for authorization
Resource: An optional resource

If none of these properties is supplied, it just means it requires an authenticated user.

The component uses the IAuthorizationService.AuthorizeAsync method as the
source of truth for the IAuthorizationService security check being injected
automatically by the DI framework.

Getting the current user
We can check the identity of the current user programmatically in one of three ways:

By injecting AuthenticationStateProvider and checking its authentication
state, as illustrated in the following code snippet:

@inject AuthenticationStateProvider AuthenticationStateProvider

@code
{
 var authState = await AuthenticationStateProvider
 .GetAuthenticationStateAsync();
 var user = authState.User;

 if (user.Identity.IsAuthenticated)
 {
 //authenticated
 }
}

By using the <CascadingAuthenticationState> cascading value component
to inject an authentication state task as a cascaded parameter, as illustrated in the
following code snippet:

<CascadingAuthenticationState>
 <Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>

Introducing Blazor Chapter 17

[631]

 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
 </Router>
</CascadingAuthenticationState>

By injecting the IHttpContextAccessor service, extracting the current
HttpContext, and from it, the current User, as illustrated in the following code
snippet:

@code
{
 [Inject]
 public IHttpContextAccessor HttpContextAccessor { get; set; }

 HttpContext HttpContext => HttpContextAccessor.HttpContext;
 ClaimsPrincipal User => HttpContext.User;
}

There's no problem with wrapping the whole <Router>; all we get is a cascaded parameter
called AuthenticationStateTask in all of the apps, as illustrated in the following code
snippet:

[CascadingParameter]
private Task<AuthenticationState> AuthenticationStateTask { get; set; }

@code
{
 var authState = await AuthenticationStateTask;
 var user = authState.User;

 if (user.Identity.IsAuthenticated)
 {
 //authenticated
 }
}

The three approaches are very similar. The AuthenticationState type only exposes a
User property that is of the ClaimsPrincipal type; this provides access to all the claims
supplied by the authentication process.

Introducing Blazor Chapter 17

[632]

Checking permissions explicitly
Once we get hold of ClaimsPrincipal, we can evaluate whether it matches a given policy
by leveraging IAuthorizationService, which is available from the DI library, as follows:

@inject IAuthorizationService AuthorizationService

@code
{
 async Task<bool> IsAuthorized(ClaimsPrincipal user, string
 policyName, object resource = null)
 {
 var result = await AuthorizationService.AuthorizeAsync(
 user: user,
 policyName: policyName,
 resource: resource);

 return result.Succeeded;
 }
}

If you remember from Chapter 11, Security, the registered authorization handler will then
be triggered and return the appropriate result.

Or, if we just need to check whether the current user belongs to a certain role, we just need
to call IsInRole, as follows:

var isInRole = user.IsInRole(roleName);

Remember that roles are generally mapped to claims.

CORS
It is recommended that you disable CORS on the endpoints that you wish to make available
to Blazor only, by adding the CORS middleware and applying the [DisableCors]
attribute to the controllers, or by creating a proper policy. Please refer to Chapter 11,
Security for more information.

Let's now see how we can unit test Blazor components.

Introducing Blazor Chapter 17

[633]

Unit testing
We can use the unit test concepts and frameworks that we've seen in Chapter 13,
Understanding How Testing Works, but Microsoft (again, with Steve Sanderson) has also been
working on something to make our lives easier if we're dealing with Blazor.

Steve has a project, available on GitHub at https:/ ​/​github. ​com/ ​SteveSandersonMS/
BlazorUnitTestingPrototype, which contains a prototype of a unit testing framework that
can be used to easily test Blazor components. It's called
Microsoft.AspNetCore.Components.Testing and, unfortunately, it is still unavailable
on NuGet, but you can clone the code and use it directly. Then, you can write code like this:

var host = new TestHost();

//Counter is a Blazor component
var component = host.AddComponent<Counter>();

//count is a named element inside Counter
var count = component.Find("#count");
Assert.NotNull(count);

var button = component.Find("button");
Assert.NotNull(button);

button.Click();

As you can see, it's very easy to use. Let's hope Steve and Microsoft make it available on
NuGet soon for us to be able to use it more easily.

Summary
In this chapter, we've seen Blazor, the new and cool technology that Microsoft made
available with .NET Core 3.0. It is still at its very early stages, and much can be expected of
it in terms of features, community adoption, and libraries.

It is advisable to split work into components and to use page layouts, as is usual for Razor
Pages and views.

In this chapter, we saw that we need to keep complex logic on the server. Remember that
when the WebAssembly hosting model comes, all assemblies will need to be sent to the
client, and thus will need to be kept small and with the most minimal logic possible.

https://github.com/SteveSandersonMS/BlazorUnitTestingPrototype
https://github.com/SteveSandersonMS/BlazorUnitTestingPrototype
https://github.com/SteveSandersonMS/BlazorUnitTestingPrototype
https://github.com/SteveSandersonMS/BlazorUnitTestingPrototype
https://github.com/SteveSandersonMS/BlazorUnitTestingPrototype
https://github.com/SteveSandersonMS/BlazorUnitTestingPrototype
https://github.com/SteveSandersonMS/BlazorUnitTestingPrototype
https://github.com/SteveSandersonMS/BlazorUnitTestingPrototype
https://github.com/SteveSandersonMS/BlazorUnitTestingPrototype
https://github.com/SteveSandersonMS/BlazorUnitTestingPrototype

Introducing Blazor Chapter 17

[634]

Think about security from the start, and define policies and roles for the key parts of your
app that you want to keep secure.

It is important to enforce route constraints, as they will keep your code more resilient and
fault-tolerant. The next chapter will have a few new topics included in this version of
ASP.NET Core.

You can see more examples for the Server hosting model of Blazor from
Microsoft at https:/ ​/​github. ​com/ ​aspnet/ ​AspNetCore. ​Docs/ ​tree/
master/ ​aspnetcore/ ​blazor/ ​common/ ​samples/ ​3. ​x/​BlazorServerSample
and also from the Blazor workshop (also from Microsoft) at https:/ ​/
github. ​com/ ​dotnet- ​presentations/ ​blazor- ​workshop.

Questions
You should now be able to answer these questions:

What is the difference between a page and a component?1.
What is the difference between the Server and WebAssembly hosting models?2.
Can we use tag helpers in Blazor pages?3.
Is it possible to access the containing web page from inside Blazor?4.
Does Blazor support DI?5.
Do Blazor page layouts support regions?6.
What is the difference between the different rendering modes of a component?7.

https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/aspnet/AspNetCore.Docs/tree/master/aspnetcore/blazor/common/samples/3.x/BlazorServerSample
https://github.com/dotnet-presentations/blazor-workshop
https://github.com/dotnet-presentations/blazor-workshop
https://github.com/dotnet-presentations/blazor-workshop
https://github.com/dotnet-presentations/blazor-workshop
https://github.com/dotnet-presentations/blazor-workshop
https://github.com/dotnet-presentations/blazor-workshop
https://github.com/dotnet-presentations/blazor-workshop
https://github.com/dotnet-presentations/blazor-workshop
https://github.com/dotnet-presentations/blazor-workshop
https://github.com/dotnet-presentations/blazor-workshop
https://github.com/dotnet-presentations/blazor-workshop
https://github.com/dotnet-presentations/blazor-workshop
https://github.com/dotnet-presentations/blazor-workshop
https://github.com/dotnet-presentations/blazor-workshop

18
gRPC and Other Topics

In this chapter, we will cover some of the topics that didn't fit in earlier chapters of this
book. This is because although they are important, there was no ideal location for them in
previous chapters or they would require a mini-chapter of their own.

Some of these topics are quite important—namely, Google Remote Procedure Call (gRPC),
a new technology for cross-platform, cross-technology, strong-typed messaging. gRPC
integrates well with the new ASP.NET Core endpoint routing system, which allows
ASP.NET Core to serve pretty much any protocol you can think of. We will also cover the
best practices for using Entity Framework (EF) Core with ASP.NET Core. Static files are
also important because we can't live without them.

Essentially, the topics we will cover in this chapter include the following:

Areas
Static files
Application lifetime events
Conventions
Embedded resources
Hosting extensions
URL rewriting
Background services
Using EF Core
Understanding the gRPC framework
Using HTTP client factories

Let's see what they are all about.

gRPC and Other Topics Chapter 18

[636]

Technical requirements
In order to implement the examples introduced in this chapter, you will need the .NET
Core 3 SDK and a text editor. Of course, Visual Studio 2019 (any edition) meets all of the
requirements, but you can also use Visual Studio Code, for example.

The source code for this chapter can be retrieved from GitHub at https:/ ​/​github. ​com/
PacktPublishing/​Modern- ​Web- ​Development- ​with- ​ASP. ​NET- ​Core- ​3-​Second- ​Edition.

Using areas for organizing code
An area is a feature that physically separates your app's content in a logical way. For
example, you can have an area for administration and another area for the other stuff. This
is particularly useful in big projects. Each area has its own controllers and views, which
were discussed in Chapter 3, Routing.

In order to use areas, we need to create an Areas folder in our app at the same level as
Controllers and Views. Underneath it, we will create a specific area folder—for example,
Admin—and inside that, we need a structure similar to the one we have in the root—that is,
with the Controllers and Views folders:

https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Modern-Web-Development-with-ASP.NET-Core-3-Second-Edition

gRPC and Other Topics Chapter 18

[637]

The use of areas in code
Controllers are created in the same way, but we need to add an [Area] attribute:

[Area("Admin")]
public class ManageController : Controller
{
}

It is OK to have multiple controllers with the same name, provided they
are in different namespaces (of course) and are in different areas.

The views for this controller will automatically be located in the
Areas/Admin/Views/Manage folder; this is because the built-in view location expander
(which you can read about in Chapter 5, Views) already looks at the folders under Areas.
What we need to do is register a route for the area before the default route (or any bespoke
one) in the Configure method:

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "areas",
 pattern: "{area:exists}/{controller=Home}/{action=Index}");

 endpoints.MapAreaControllerRoute(
 name: "default",
 areaName: "Personal",
 pattern: "{area=Personal}/{controller=Home}/{action=Index}
 /{id?}");
});

The call to MapControllerRoute just makes sure that any path with a specified area that
exists is accepted, and the call to MapAreaControllerRoute registers an explicit area
named Personal, which is not really needed as the first call will cover it.

Routes now have an additional built-in template token—[area]—which you can use in
your routes in pretty much the same way as [controller] and [action]:

[Route("[area]/[controller]/[action]")]

Let's see how we can reference areas in the built-in tag helpers.

gRPC and Other Topics Chapter 18

[638]

Tag and HTML helpers
The included tag helpers (such as <a>, <form>, and more) recognize the asp-area
attribute, which can be used to generate the correct URL to a controller under a specific
area:

<a asp-controller="Manage" asp-action="Index" asp-
area="Admin">Administration

However, this is not the case with HTML helpers, where you need to provide the route's
area parameter explicitly:

@Html.ActionLink(
 linkText: "Administration",
 actionName: "Index",
 controllerName: "Manage",
 routeValues: new { area = "Admin" })

This code produces a hyperlink that references, aside from the controller and action, the
area where the controller is located—something such as /Admin/Manage/Index.

Let's now move on from areas to static files. We can't live without them, as we are about to
find out!

Working with static files and folders
ASP.NET Core can serve static files—images, stylesheets, JavaScript scripts, and text—and
it even respects filesystem folders. This is useful because they are extremely important as
not all content is generated on the fly. Let's first focus on their configuration.

Configuration
The default template in Visual Studio includes the
Microsoft.AspNetCore.StaticFiles NuGet package, which is also included in the
Microsoft.AspNetCore.All metapackage. Also, the code to initialize the host—Kestrel
or HTTP.sys—defines the root folder of the application as the root folder for serving static
files (such as HTML, JavaScript, CSS, and images), as returned by Directory.

gRPC and Other Topics Chapter 18

[639]

This is .GetCurrentDirectory(), but you can change that in the Program class, where
the host is initialized, by using UseContentRoot:

public static IHostBuilder CreateHostBuilder(string[] args)
{
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder
 .UseContentRoot("<some path>")
 .UseStartup<Startup>();
 });
}

Mind you, there are actually two folders involved here:

The root folder where the web application is hosted
The root folder from which files are served

We will explore this further in a moment.

Allowing directory browsing
Directory browsing for the filesystem can be enabled for the whole app; it's just a matter of
calling UseDirectoryBrowser without any parameters (in Configure):

app.UseDirectoryBrowser();

Beware—if you do this instead of running the default action of the default
controller, you will end up with a file listing the files on the root folder!

However, you may want to expose your root folder under a virtual path:

app.UseDirectoryBrowser("/files");

Notice the leading forward slash (/) character, which is required. Also, note that if you
don't include support for static files—which we will cover next—you won't be able to
download any of them and an HTTP 404 Error message will be returned instead. This is
not a physical location, but rather just the path where ASP.NET Core will show the files that
are in the wwwroot folder.

gRPC and Other Topics Chapter 18

[640]

Digging into this a little further, it is possible to specify what files are to be returned and
how to render them; this is done through an overload of UseDirectoryBrowser, which
takes a DirectoryBrowserOptions parameter. This class has the following properties:

RequestPath (string): The virtual path.
FileProvider (IFileProvider): A file provider from which to obtain the
directory contents. The default is null, in which case PhysicalFileProvider
will be used.

An example of configuring a root directory is as follows:

app.UseDirectoryBrowser(new DirectoryBrowserOptions
{
 RequestPath = "/resources",
 FileProvider = new EmbeddedFileProvider(Assembly.GetEntryAssembly())
});

This very simple example exposes all of the current app's assembly-embedded resources
under the /resources virtual path.

You can serve multiple directory browsers with different options.

You can retrieve the folder where the ASP.NET Core application is installed by looking at
IWebHostEnvironment.ContentRootPath. The default root directory (wwwroot) is
available as IWebHostEnvironment.WebRootPath. It's OK to just use
Path.GetFullPath("wwwroot"), which will get the full path to the wwwroot folder.

Serving static files
In order to serve (allow the download of) static files, we need to call UseStaticFiles:

app.UseStaticFiles();

Again, it is possible to set the virtual root to some arbitrary folder, as we saw in the
previous section:

app.UseStaticFiles("/files");

However, you need to do more to actually be able to serve files.

gRPC and Other Topics Chapter 18

[641]

There is another overload of UseStaticFiles that takes a StaticFileOptions
parameter. It has the following properties:

DefaultContentType (string): The default content type for unknown files.
The default is null.
ServeUnknownFileTypes (bool): Whether or not to serve files with unknown
MIME types. The default is false.
ContentTypeProvider (IContentTypeProvider): Used to get the MIME type
for a given extension.
FileProvider (IFIleProvider): The file provider used to retrieve the file's
content; by default, this is null, which means that PhysicalFileProvider is
used.
OnPrepareResponse (Action<StaticFileResponseContext>): A handler
that can be used to intercept the response, such as setting default headers or
plainly rejecting it.
RequestPath (string): The virtual base path.

It is important that you use this overload if you are specifying a virtual path:

app.UseStaticFiles(new StaticFileOptions
{
 RequestPath = "/files",
 FileProvider = new PhysicalFileProvider(Path.GetFullPath("wwwroot"))
});

For embedded files, use the following:

app.UseStaticFiles(new StaticFileOptions
{
 RequestPath = "/resources",
 FileProvider = new EmbeddedFileProvider(Assembly.GetEntryAssembly())
});

You can have multiple calls to UseStaticFiles, as long as they have
different RequestPath parameters.

For files, it is important to set the content (MIME) type; this is inferred from the file's
extension and we can choose whether to allow the download of unknown file types (those
without registered MIME types for their extension), as follows:

app.UseStaticFiles(new StaticFileOptions
{

gRPC and Other Topics Chapter 18

[642]

 DefaultContentType = "text/plain",
 ServeUnknownFileTypes = true
});

Here, we are allowing the download of any files with unknown extensions and serving
them with the text/plain content type. If ServeUnknownFileTypes is not set to true
and you try to download a file like this, you will receive an HTTP 404 Error message.

However, there is a class that knows about the common file
extensions—FileExtensionContentTypeProvider—and it implements
IContentTypeProvider, which means we can assign it to the ContentTypeProvider
property of StaticFileOptions:

var provider = new FileExtensionContentTypeProvider();
provider.Mappings[".text"] = "text/plain";

app.UseStaticFiles(new StaticFileOptions
{
 ContentTypeProvider = provider,
 DefaultContentType = "text/plain",
 ServeUnknownFileTypes = true
});

As you can see, we are adding a new extension (.text) and its associated MIME type
(text/plain) to the built-in list. If you are curious, you can iterate over it to see what it
contains or start from scratch by calling Clear. The extensions need to have a . character
and they are case-insensitive.

As with directory browsing, we can specify IFileProvider, which will be used to retrieve
the actual file content, by setting the FileProvider property.

If we want to set a custom header for all the files or implement security, which is
conspicuously absent from static file handling, we can use something along these lines:

app.UseStaticFiles(new StaticFileOptions
{
 OnPrepareResponse = ctx =>
 {
 ctx.Context.Response.Headers.Add("X-SENDER", "ASP.NET Core");
 };
});

Of course, we can also return an HTTP error code, redirect, or any other kind of operation.

gRPC and Other Topics Chapter 18

[643]

Serving default documents
If we enable directory browsing, we may as well serve a default document, if it exists. For
that, we need to add some middleware by calling UseDefaultFiles (always before
UseStaticFiles):

app.UseDefaultFiles();
app.UseStaticFiles();

Needless to say, the default documents can be configured by passing an instance of
DefaultFilesOptions. This class contains the following:

DefaultFileNames (IList<string>): The ordered list of default files to serve
RequestPath (string): The virtual path
FileProvider (IFileProvider): The file provider from which to obtain the
files list, which is null by default

In case you are interested, the default filenames are as follows:

default.htm

default.html

index.htm

index.html

An example of configuring a single default document is as follows:

app.UseDefaultFiles(new DefaultFilesOptions
{
 DefaultFileNames = new [] { "document.html" };
});

If a file called document.html exists in any browsable folder, it will be served and the
folder's content will not be listed.

Applying security
As I mentioned earlier, security is absent from static file handling, but we can implement
our own mechanism by using the OnPrepareResponse handler of StaticFileOptions
as the basis, as follows:

app.UseStaticFiles(new StaticFileOptions
{

gRPC and Other Topics Chapter 18

[644]

 OnPrepareResponse = ctx =>
 {
 //check if access should be granted for the current user and file
 if (!AccessIsGranted(ctx.File, ctx.Context.User))
 {
 ctx.Context.Response.StatusCode = (int) HttpStatusCode.
 Forbidden;
 ctx.Context.Abort();
 }
 };
});

If you want to serve files from outside the wwwroot folder, pass a custom IFileProvider
property—perhaps an instance of PhysicalFileProvider that is set to use a different
root.

File providers
ASP.NET Core includes the following file providers, which are implementations of
IFileProvider:

PhysicalFileProvider: Looks up physical files on the filesystem
EmbeddedFileProvider: Used to access files embedded in assemblies and is
case-sensitive
ManifestEmbeddedFileProvider: Uses a manifest compiled in the assembly
to reconstruct the original paths of the embedded files when they were
embedded into the assembly
CompositeFileProvider: Combines multiple file providers
NullFileProvider: Always returns null

A file provider (the IFileProvider implementation) is responsible for the following:

Returning the list of files for a given folder (GetDirectoryContents)
Returning information for a named file inside a folder (GetFileInfo)
Getting a notification when a file mask (files inside folders) changes (Watch)

How exactly this is implemented is up to the provider and may even only occur virtually.

gRPC and Other Topics Chapter 18

[645]

As you can see, there are two providers that work with embedded files. The difference
between the two is that ManifestEmbeddedFileProvider respects the structure of the
filesystem with full fidelity at the time the assembly got to build and allows us to properly
enumerate directories. It is also preferred over EmbeddedFileProvider.

Let's now move on from physical files to application events.

Application lifetime events
ASP.NET Core exposes events for the whole application life cycle. You can hook up to these
events to be notified of when they are about to happen. These events are called by the host
with the use of the application (IHostLifetime), which was explained in Chapter 1,
Getting Started with ASP.NET Core. The entry point to this is the
IHostApplicationLifetime interface, which you can get from the dependency injection
framework. It exposes the following properties:

ApplicationStarted (CancellationToken): Raised when the host is fully
started and is ready to wait for requests.
ApplicationStopping (CancellationToken): Raised when the application is
about to stop in what is known as a graceful shutdown. Some requests may still
be in process.
ApplicationStopped (CancellationToken): Raised when the application is
fully stopped.

Each of these is a CancellationToken property, which means that it can be passed along
any methods that take this kind of parameter, but, more interestingly, it means that we can
add our own handlers to it:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env,
IHostApplicationLifetime events)
{
 events.ApplicationStopping.Register(
 callback: state =>
 {
 //application is stopping
 },
 state: "some state");

 events.ApplicationStarted.Register(state =>
 {
 //application started
 var appParameter = state as IApplicationBuilder;

gRPC and Other Topics Chapter 18

[646]

 }, app);
}

The state parameter is optional; if not supplied, the callback parameter does not take
any parameters.

There are numerous ways to cause a graceful shutdown—one of them is by calling the
IHostApplicationLifetime interface's StopApplication method, while another is by
adding an app_offline.htm file. If this type of file is present, the app stops responding
and just returns its contents with each request.

Finally, you should hook up to application events as soon as possible, either in the
Configure method (as just shown) or during the application bootstrap process:

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host
 .CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(builder =>
 {
 builder.Configure(builder =>
 {
 var events = builder.ApplicationServices.
 GetRequiredService<IHostApplicationLifetime>();
 //hook to events here
 });
 builder.UseStartup<Startup>();
 });

If you want to have events at the start or end of a request, you're better off using a filter.
You can read about filters in Chapter 10, Understanding Filters.

That's all for application events. Now, let's move on to assembly-embedded resources.

Working with embedded resources
Since the original versions of .NET, it has been possible to embed content within the
assembly, including binary files. The reason for this is simple—it minimizes the number of
files to distribute as they are included within the application binary. For that, we can use
Visual Studio to set the Build Action property in the property explorer of Visual Studio:

gRPC and Other Topics Chapter 18

[647]

Then, to retrieve an embedded resource, you will need an instance of either
EmbeddedFileProvider (discussed previously) or ManifestEmbeddedFileProvider.
These classes belong to the Microsoft.Extensions.FileProviders.Embedded package
and implement the IFileProvider interface, meaning they can be used in any API that
expects IFileProvider. You can initialize each of them by passing it an assembly, as
follows:

var embeddedProvider = new ManifestEmbeddedFileProvider
(Assembly.GetEntryAssembly());

gRPC and Other Topics Chapter 18

[648]

An optional base namespace can also be passed:

var embeddedProvider = new ManifestEmbeddedFileProvider
(Assembly.GetEntryAssembly(), "My.Assembly");

This base namespace is the one specified in the project's properties:

The difference between EmbeddedFileProvider and ManifestEmbeddedFileProvider
is that the latter needs to have the original file path stored in the assembly, and you need to
add this (in bold) to the .csproj file:

<PropertyGroup>
 <TargetFramework>netcoreapp3.1</TargetFramework>
 <GenerateEmbeddedFilesManifest>true</GenerateEmbeddedFilesManifest>
</PropertyGroup>

Just stick to EmbeddedFileProvider and don't worry too much about this.

It is up to you to know what is inside an embedded resource; for example, this could be text
or binary content. You should know that ASP.NET Core 3 also allows the inclusion of static
content from Razor class libraries, which might prove a better solution. This was discussed
in Chapter 9, Reusable Components.

The next section talks about the built-in infrastructure mechanisms for loading classes
automatically and for running background tasks.

Hosting extensions
We are now going to talk about a mechanism to automatically load classes from other
assemblies and another one for spawning background threads automatically. The first is
used by .NET to automatically register certain extensions (namely for Azure and
Application Insights), and the second is for performing work in the background, without
getting in the way of the web app. Let's start with hosting code from external assemblies.

gRPC and Other Topics Chapter 18

[649]

Hosting startup
There is an interface, IHostingStartup, that exposes a single method:

public class CustomHostingStartup : IHostingStartup
{
 public void Configure(IWebHostBuilder builder)
 {
 }
}

This can be used at the host start up time to inject additional behavior into the host.
IWebHostBuilder is exactly the same instance that is used in the Program.Main method.
So, how is this class loaded? This is done in one of two ways:

By adding a [HostingStartup] attribute at the assembly level. We can specify
one or more IHostingStartup-implemented classes that should be loaded
automatically from the application's assembly.
By setting a value to the ASPNETCORE_HOSTINGSTARTUPASSEMBLIES
environment variables, which can be a semicolon-separated list of assembly
names and/or fully qualified type names. For each assembly name, the hosting
framework will detect any [HostingStartup] attributes, and for the type
names, if they implement IHostingStartup, they will be loaded automatically.

This is a great mechanism for loading classes, such as plugins, and in fact, this is how some
Microsoft packages actually work, such as Application Insights.

Let's now see how we can run tasks in the background.

Hosting background services
The IHostedService interface defines a contract for a background task. By implementing
this interface in a concrete class, we can spawn workers in the background of our app and
we don't interfere with it. These services have the life cycle of the ASP.NET app.

gRPC and Other Topics Chapter 18

[650]

There is a special template in Visual Studio for creating a worker service:

This is a special kind of project that you can't use for serving web content. If you are
curious, it uses the following declaration:

<Project Sdk="Microsoft.NET.Sdk.Worker">

ASP.NET Core offers a convenience class, BackgroundService, from which you can
inherit, instead of implementing IHostedService:

public class BackgroundHostedService : BackgroundService
{
 protected override Task ExecuteAsync(CancellationToken
 cancellationToken)
 {
 while (!cancellationToken.IsCancellationRequested)
 {
 //do something

 Task.Delay(1000, cancellationToken);
 }

 return Task.CompletedTask;
 }
}

ExecuteAsync is, of course, called automatically when the hosted service starts. It takes a
CancellationToken parameter, which can be used to know when the hosted service has
been canceled. Inside it, we generally execute a loop that runs forever (until
cancellationToken is canceled). Here, we are waiting for 1,000 milliseconds, but the time
you want to delay between loops is up to you and your requirements.

gRPC and Other Topics Chapter 18

[651]

Hosted services need to be registered in the dependency injection framework in the early
stage of bootstrapping—namely, in the Program class—for a Worker Service project:

public static IHostBuilder CreateHostBuilder(string [] args) =>
 Host
 .CreateDefaultBuilder(args)
 .ConfigureServices(services =>
 {
 services.AddHostedService<BackgroundHostedService>();
 });

However, they can also be used in a web application; in this case, it's all just a matter of
registering our background service class as a singleton instance of IHostedService in
ConfigureServices:

services.AddSingleton<IHostedService, BackgroundHostedService>();

Hosted services can have services injected into them through their constructor, just like any
other service that is built from the dependency injection container. They have the same life
cycle as the ASP.NET Core app and, even though they are registered in the dependency
injection container (as transient instances), they are not really meant to be retrieved
manually. Should you need to do so, please consider registering as singletons and having
some registered service to pass data to and from.

The next topic is about ASP.NET Core model conventions, which can be used for default
behaviors.

ASP.NET Core model conventions
ASP.NET Core has support for conventions, which are classes that implement well-known
interfaces and can be registered to the application to modify certain aspects of it. The
convention interfaces are as follows:

IApplicationModelConvention: This provides access to application-wide
conventions, allowing you to iterate over each of the following levels—that is, the
controller model, action model, and parameter model.
IControllerModelConvention: These are conventions that are specific to a
controller, but also allow you to evaluate lower levels (the action model).
IActionModelConvention: This lets you make changes to action-level
conventions, as well as to any parameters of the actions (the parameter model).
IParameterModelConvention: This is specific to parameters only.

gRPC and Other Topics Chapter 18

[652]

IPageRouteModelConvention: This lets us customize the default routes to
Razor Pages (ASP.NET Core 2.x).
IPageApplicationModelConvention: This allows the customization of Razor
models.

From the highest to the lowest scope, we have the application, then the controller, then the
action, and finally, the parameter.

Non-Razor conventions are registered through the Conventions collection of
MvcOptions:

services
 .AddMvc(options =>
 {
 options.Conventions.Add(new CustomConvention());
 });

So, this goes for IApplicationModelConvention, IControllerModelConvention,
IActionModelConvention, and IParameterModelConvention. The Razor conventions
are configured on a similar collection in RazorPagesOptions:

services
 .AddMvc()
 .AddRazorPagesOptions(options =>
 {
 options.Conventions.Add(new CustomRazorConvention());
 });

It is also possible to apply custom conventions by having a custom attribute implement one
of the convention interfaces and applying it at the correct level:

IControllerModelConvention: The controller class
IActionModelConvention: The action method
IParameterModelConvention: The action method parameter

So, what can we do with custom conventions? Some examples are as follows:

Register new controllers and add attributes to existing ones dynamically
Set a route prefix for all or some controllers dynamically

gRPC and Other Topics Chapter 18

[653]

Define authorization for action methods dynamically
Set the default location for parameters in action methods dynamically

If we want to add a new controller to the list of registered ones, we would do something
like this:

public class CustomApplicationModelConvention : IApplicationModelConvention
{
 public void Apply(ApplicationModel application)
 {
 application.Controllers.Add(new ControllerModel
 (typeof(MyController),
 new List<object> { { new AuthorizeAttribute() } }));
 }
}

To add a global filter, we can do the following:

application.Filters.Add(new CustomFilter());

If we want to have a [Route] attribute to all controllers with a certain prefix (Prefix), we
would do the following:

foreach (var applicationController in application.Controllers)
{
 foreach (var applicationControllerSelector in
 applicationController.Selectors)
 {
 applicationControllerSelector.AttributeRouteModel =
 new AttributeRouteModel(new RouteAttribute("Prefix"));
 }
}

This could also go in an IActionModelConvention implementation but serves to show
that you can apply conventions at all levels from IApplicationModelConvention.

Now, to add an [Authorize] attribute to certain action methods, ending in Auth, we do
the following:

foreach (var controllerModel in application.Controllers)
{
 foreach (var actionModel in controllerModel.Actions)
 {
 if (actionModel.ActionName.EndsWith("Auth"))
 {
 var policy = new AuthorizationPolicyBuilder()
 .RequireAuthenticatedUser()

gRPC and Other Topics Chapter 18

[654]

 .Build();
 actionModel.Filters.Add(new AuthorizeFilter(policy));
 }
 }
}

Finally, we can set the source for parameters to be the service provider whenever their
name ends in Svc:

foreach (var controllerModel in application.Controllers)
{
 foreach (var actionModel in controllerModel.Actions)
 {
 foreach (var parameterModel in actionModel.Parameters)
 {
 if (parameterModel.ParameterName.EndsWith("Svc"))
 {
 if (parameterModel.BindingInfo == null)
 {
 parameterModel.BindingInfo = new BindingInfo();
 }
 parameterModel.BindingInfo.BindingSource =
 BindingSource.Services;
 }
 }
 }
}

For Razor Pages, it is somewhat different as there is no relationship between the two
convention interfaces; that is, they are used for totally different purposes. Two examples
are as follows:

Setting all the page model properties to be automatically bound to the service
provider
Setting the root of all the pages

For the first example, we need an IPageApplicationModelConvention implementation:

public class CustomPageApplicationModelConvention :
IPageApplicationModelConvention
{
 public void Apply(PageApplicationModel model)
 {
 foreach (var property in model.HandlerProperties)
 {
 if (property.BindingInfo == null)
 {

gRPC and Other Topics Chapter 18

[655]

 property.BindingInfo = new BindingInfo();
 }
 property.BindingInfo.BindingSource = BindingSource.Services;
 }
 }
}

What this does is it automatically sets the dependency injection as the binding source for
any properties in a page model class; this would be the same as setting a [FromServices]
attribute on them.

For setting a custom route prefix, an IPageRouteModelConvention implementation is
used:

public class CustomPageRouteModelConvention : IPageRouteModelConvention
{
 public void Apply(PageRouteModel model)
 {
 foreach (var selector in model.Selectors)
 {
 if (selector.AttributeRouteModel == null)
 {
 selector.AttributeRouteModel = new AttributeRouteModel(new
 RouteAttribute("Foo"));
 }
 else
 {
 selector.AttributeRouteModel = AttributeRouteModel
 .CombineAttributeRouteModel(selector.
 AttributeRouteModel,
 new AttributeRouteModel(new RouteAttribute
 ("Foo")));
 }
 }
 }
}

Here, what we are doing is setting the [Route] attribute for all the Razor pages to start
with Foo.

Next, we will see how to modify incoming requests.

gRPC and Other Topics Chapter 18

[656]

Applying URL rewriting
As convenient as MVC routing is, there are, however, times when we need to present
different URLs to the public, or vice versa—be able to accept a URL that the public knows
about. This is where URL rewriting comes in.

URL rewriting is not new; it's been around since ASP.NET Web Forms, natively, and in a
more advanced way, through the IIS URL Rewrite module (see https:/ ​/​www. ​iis.​net/
downloads/​microsoft/ ​url- ​rewrite). ASP.NET Core offers similar functionality through
the Microsoft.AspNetCore.Rewrite package. Let's see how it works.

Essentially, URL rewriting is a feature by which you can turn request URLs into something
different based on a set of preconfigured rules. Microsoft suggests some situations where
this may come in handy:

Providing unchanging URLs for resources that need to be changed, temporarily
or permanently
Splitting request across apps
Reorganizing URL fragments
Optimizing URLs for Search Engine Optimization (SEO)
Creating user-friendly URLs
Redirecting insecure requests to secure endpoints
Preventing image (or other assets) hotlinking (someone referencing your assets
from a different site)

The Microsoft.AspNetCore.Rewrite package can be configured through code, but it
can also accept an IIS Rewrite Module configuration file (https:/ ​/​docs. ​microsoft. ​com/
en-​us/​iis/​extensions/ ​url- ​rewrite- ​module/ ​creating- ​rewrite- ​rules- ​for- ​the-​url-
rewrite-​module). Since, after all, ASP.NET Core is cross-platform, Apache's mod_rewrite
configuration (http:/ ​/​httpd. ​apache. ​org/ ​docs/ ​current/ ​mod/​mod_ ​rewrite. ​html) is also
supported, alongside IIS.

URL rewriting is different from URL redirect—in the latter, the server sends a 3xx status
code upon receiving a request that should be redirected, and it's up to the client to follow
that request. In URL rewriting, the request is processed immediately by the server without
another round-trip, but the application sees it differently, according to the rewrite rules.
Microsoft.AspNetCore.Rewrite supports both situations.

https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/url-rewrite
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html

gRPC and Other Topics Chapter 18

[657]

To start with, there is the RewriteOptions class, which is used to define all the rules.
There are a couple of extension methods for it:

AddRedirect: Adds a URL redirect rule with an optional status code (3xx)
AddRewrite: Adds a URL rewrite rule
Add(Action<RewriteContext>): Adds a delegate that can be used to produce
a rewrite or redirect rule on the fly
Add(IRule): Adds an implementation of IRule, which defines a runtime rule,
in a way that is similar to the Action<RewriteContext> delegate

Then, there are two extension methods that are specific to Apache and IIS:

AddApacheModRewrite: Reads from a mod_rewrite configuration file
AddIISUrlRewrite: Reads from an IIS URL Rewrite module configuration file

These two methods either take a file provider (IFileProvider) and a path or a
TextReader instance that is already pointing to an open file.

Finally, there are two methods for forcing HTTPS:

AddRedirectToHttps: Tells the client to ask for the same request, but this time
using the HTTPS protocol instead of HTTP.
AddRedirectToHttpsPermanent: This is analogous to the previous method,
except it sends a 301 Moved Permanently message instead of 302 Found.

These methods will force a redirect to HTTPS if the request was for HTTP for any resource
on the server. Let's look at URL redirection next!

URL redirection
First, let's look at an example of URL redirection. This example uses the RewriteOptions
class:

services.Configure<RewriteOptions>(options =>
{
 options.AddRedirect("redirect-rule/(.*)", "redirected/$1",
 StatusCodes.Status307TemporaryRedirect);
});

gRPC and Other Topics Chapter 18

[658]

The first parameter is a regular expression that should match the request and in it, we can
specify captures (inside parentheses). The second parameter is the redirection URL; notice
how we can make use of the captures defined in the first parameter. The third parameter is
optional and if it is not used, it defaults to 302 Found.

Read about HTTP redirection in the HTTP specification at https:/ ​/​www.
w3.​org/ ​Protocols/ ​rfc2616/ ​rfc2616- ​sec10. ​html#sec10. ​3.

URL rewriting
Next, we see what an internal URL rewrite is. An example of AddRewrite could be the
following:

options.AddRewrite(@"^rewrite-rule/(\d+)/(\d+)",
"rewritten?var1=$1&var2=$2", skipRemainingRules: true);

Here, we are instructing Microsoft.AspNetCore.Rewrite to turn any path components
after rewrite-rule that are made up of digits (this also uses regular expressions) into
query string parameters. If a match for the first parameter is found, the third parameter
(skipRemainingRules) instructs the rewriting middleware to stop processing any other
rules and just use this one. The default for the skipRemainingRules parameter is false.

Runtime evaluation
The extensions that take Action<RewriteContext> or IRule actually do the same
thing—the first action just wraps the passed delegate in DelegateRule, a specific
implementation of IRule. This interface merely defines a single method:

void ApplyRule(RewriteContext context)

RewriteContext offers a couple of properties from which you can access the context and
set the response:

HttpContext (HttpContext): The current HTTP context.
StaticFileProvider (IFileProvider): The current file provider to use to
check for the existence of static files and folders.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3

gRPC and Other Topics Chapter 18

[659]

Logger (ILogger): A logger.
Result (RuleResult): The rule evaluation result, which must be set. The default
is ContinueRules, which instructs the middleware to continue processing other
requests, and the other possible values are EndResponse (which does what you
would expect) and SkipRemainingRules, which holds off on processing other
rules and just applies the current one.

To use IRule or a delegate, we use one of the following:

.Add(new RedirectImageRule("jpg", "png"));

We can also use the following:

.Add((ctx) =>
{
 ctx.HttpContext.Response.Redirect("/temporary_offline",
 permanent: true);
 ctx.Result = RuleResult.EndResponse;
});

The RedirectImageRule rule looks something like this:

public sealed class RedirectImageRule : IRule
{
 private readonly string _sourceExtension;
 private readonly string _targetExtension;

 public RedirectImageRule(string sourceExtension, string
 targetExtension)
 {
 if (string.IsNullOrWhiteSpace(sourceExtension))
 {
 throw new ArgumentNullException(nameof(sourceExtension));
 }

 if (string.IsNullOrWhiteSpace(targetExtension))
 {
 throw new ArgumentNullException(nameof(targetExtension));
 }

 if (string.Equals(sourceExtension, targetExtension,
 StringComparison.InvariantCultureIgnoreCase))
 {
 throw new ArgumentException("Invalid target extension.",
 nameof(targetExtension));
 }

gRPC and Other Topics Chapter 18

[660]

 this._sourceExtension = sourceExtension;
 this._targetExtension = targetExtension;
 }

 public void ApplyRule(RewriteContext context)
 {
 var request = context.HttpContext.Request;
 var response = context.HttpContext.Response;

 if (request.Path.Value.EndsWith(this._sourceExtension,
 StringComparison.OrdinalIgnoreCase))
 {
 var url = Regex.Replace(request.Path, $@"^(.*)\.
 {this._sourceExtension}$",
 $@"$1\.{this._targetExtension}");
 response.StatusCode = StatusCodes.Status301MovedPermanently;
 context.Result = RuleResult.EndResponse;

 if (!request.QueryString.HasValue)
 {
 response.Headers[HeaderNames.Location] = url;
 }
 else
 {
 response.Headers[HeaderNames.Location] = url + "?" +
 request.QueryString;
 }
 }
 }
}

This class turns any request for a specific image extension into another. The delegate is
purposely very simple as it merely redirects to a local endpoint, ending the request
processing.

Redirecting to HTTPS
The extensions that redirect to HTTPS, if the current request was HTTP, are
straightforward. The only options are to send a 301 Moved Permanently message instead
of 301 Found or to specify a custom HTTPS port:

.AddRedirectToHttps(sslPort: 4430);

Next, we move on to platform-specific rewriting.

gRPC and Other Topics Chapter 18

[661]

Platform-specific
AddIISUrlRewrite and AddApacheModRewrite have identical signatures—they both can
take a file provider and a path or a stream to an existing file. Here is an example of the
latter:

using (var iisUrlRewriteStreamReader = File.OpenText("IISUrlRewrite.xml"))
{
 var options = new RewriteOptions()
 .AddIISUrlRewrite(iisUrlRewriteStreamReader)
}

I have not covered the format of the IIS Rewrite module or the
mod_rewrite configuration files. Please refer to its documentation for
more information.

Next, we will see how to enforce URL rewriting.

Enforcing URL rewriting
In the Configure method, we must add a call to UseRewriter. If we don't pass a
parameter, it will use the RewriteOptions action that was previously configured in the
dependency injection, but we can also pass an instance of it here:

var options = new RewriteOptions()
 .AddRedirectToHttps();

app.UseRewriter(options);

Let's now see some practical advice on how to use EF Core with ASP.NET Core.

Using EF Core
EF Core is a popular Object-Relational Mapper (ORM) for retrieving and updating data.
ASP.NET Core has good support for it, as you can imagine, as both are Microsoft tools. This
section will present some common uses of EF Core with ASP.NET Core.

Make sure you first install the latest dotnet-ef global tool:

dotnet tool install --global dotnet-ef

gRPC and Other Topics Chapter 18

[662]

Next, let's look at how to register contexts.

Registering DbContext
First, we can register a DbContext instance to the dependency injection framework:

services.AddDbContext<MyDbContext>(options =>
{
 options.UseSqlServer(this.Configuration.GetConnectionString
 ("<connection string name>"));
});

As you can see in this example, we have to set the provider and its connection string;
otherwise, the context is pretty much useless. By default, the context will be registered as a
scoped instance, which is generally what we want because it will be destroyed at the end of
the request. After it is registered, it can be injected anywhere we want, such as in a
controller. If you remember from Chapter 2, Configuration, GetConnectionString is an
extension method that retrieves a connection string from the configuration from a well-
known location—("ConnectionStrings:<named connection>").

Your DbContext-derived class must have a special public constructor, taking a parameter
of the DbContextOptions type or DbContextOptions<T>, where T is the type of the
context (in this case, MyDbContext):

public class OrdersContext : DbContext
{
 public OrdersContext(DbContextOptions options) : base(options) { }
}

Having this constructor is mandatory but you can have other constructors, even a
parameterless one.

Using asynchronous methods
Whenever possible, use the asynchronous versions of the methods available (AddAsync,
FindAsync, ToListAsync, and SaveAsync). This will improve the scalability of your app.
Also, if you wish to pass data to a view, which has no chance of being modified, use the
AsNoTracking extension method on the result query:

return this.View(await this.context.Products.AsNoTracking()
.ToListAsync());

gRPC and Other Topics Chapter 18

[663]

This ensures that any records returned from the data source after they are instantiated are
not added to the change tracker, which makes the operation faster and takes up less
memory.

Do have a look at Microsoft's documentation for asynchronous
programming at https:/ ​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​dotnet/ ​csharp/
programming- ​guide/ ​concepts/ ​async.

Eager loading
When returning entities that have lazy associations, fetch them eagerly if you're sure that
they will be used. This will minimize the number of database calls:

var productsWithOrders = await this.context.Products.Include(x =>
x.Orders).ToListAsync();

This is particularly important if you are returning data from a web API because once the
entities are sent, they lose their connection to the database and therefore, it is no longer
possible to load lazy data from it.

Pay attention, however—eager loading often results in INNER JOINs or LEFT JOINs being
issued, which may increase the number of results that are returned.

Initializing a database
This is probably one of the tasks that needs to be done as soon as the app starts. The best
way to do this is upon application bootstrap:

public static class HostExtensions
{
 public static IHost CreateDbIfNotExists(IHost host)
 {
 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;
 var logger = services.GetRequiredService<ILogger<Program>>();

 try
 {
 var context = services.GetRequiredService
 <OrdersContext>();
 var created = context.Database.EnsureCreated();

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async

gRPC and Other Topics Chapter 18

[664]

 logger.LogInformation("DB created successfully:
 {created}.", created);
 }
 catch (Exception ex)
 {
 logger.LogError(ex, "An error occurred while
 creating the DB.");
 }
 }

 return host;
 }
}

This code creates a scope and requests DbContext from inside it; this way, we are certain
that it will be disposed of properly at the end of the scope, thereby freeing up all resources.
The EnsureCreated method will return false if the database already existed and true if
it was created.

Just enqueue a call to this method when building the generic host:

public static void Main(string [] args)
{
 CreateHostBuilder(args)
 .Build()
 .CreateDbIfNotExists()
 .Run();
}

If you instead need to migrate a database to the latest migration version, just replace the call
to EnsureCreated with Migrate:

context.Database.Migrate();

Without any parameters, it will migrate the database to the latest migration version. If your
migration assembly is different than the application one, you must do this when registering
the context:

services.AddDbContext<OrdersContext>(options =>
{
 //set options, like, connection string and provider to use
 options.MigrationsAssembly("MyMigrationAssembly");
});

This example declares MyMigrationAssembly to be the assembly that contains all of the
migration code.

gRPC and Other Topics Chapter 18

[665]

Showing migration errors and running migrations
When running in development mode, it is common to have a developer exception page that
shows the error that occurred, with its stack trace and additional information. While this is
useful, it does not include errors that may arise from database mismatches, such as missing
migrations. Fortunately, ASP.NET Core includes a middleware component that captures
those errors and presents a friendly error page to highlight them.

In order to use this database error page, we need to add a reference to the
Microsoft.AspNetCore.Diagnostics. EntityFrameworkCore NuGet package. Then,
add the middleware to the pipeline in the Configure method with the following call:

app.UseDatabaseErrorPage();

This would normally only be enabled for the development environment, and it can go
together with UseDeveloperExceptionPage or other error handlers that you may have.

Now, you may also want to trigger the application of the latest migrations, probably to
solve a related error; this middleware also allows you to do that. It makes an endpoint at
"/ApplyDatabaseMigrations" available just for this purpose. You need to post a fully
qualified name type of a context using a field name of context. The following is an
example:

POST /ApplyDatabaseMigrations HTTP/1.1

context=Orders.OrderContext,Orders

This example uses a hypothetical context named Orders.OrderContext in the Orders
assembly.

If, for any reason, you need to modify the endpoint, you can do so as follows:

app.UseDatabaseErrorPage(new DatabaseErrorPageOptions {
MigrationsEndPointPath = "/Migrate" });

This will use "/Migrate" instead of the default path.

Integrating an EF context with an HTTP context
Sometimes, you may need to get some information from the HTTP context when
initializing the EF context. Why? Well, for example, this might be needed to get user-
specific information from the request or the request domain, which can be used to select the
connection string, in the case of multitenant scenarios.

gRPC and Other Topics Chapter 18

[666]

In this case, the best approach is to get hold of the application service provider from the
HTTP context, and the only way we can do this is by injecting the IHttpContextAccessor
service into the constructor of DbContext:

public class OrdersContext : DbContext
{
 public class OrdersContext(DbContextOptions options,
 IHttpContextAccessor httpContextAccessor) :
 base(options)
 {
 this.HttpContextAccessor = httpContextAccessor;
 }

 protected IHttpContextAccessor HttpContextAccessor { get; }

 //rest goes here
}

Do not forget that we need to register our DbContext class by a call to AddDbContext.
After we have IHttpContextAccessor, we can use it in OnConfiguring to get the
current user:

protected override void OnConfiguring(DbContextOptionsBuilder builder)
{
 var httpContext = this.HttpContextAccessor.HttpContext;
 var userService = httpContext.RequestServices.GetService
 <IUserService>();

 var user = httpContext.User.Identity.Name;
 var host = httpContext.Request.Host.Host;

 var connectionString = userService.GetConnectionStringForUser
 (userService);
 //var connectionString = userService
 //.GetConnectionStringForDomain(host);

 builder.UseSqlServer(connectionString);

 base.OnConfiguring(builder);
}

gRPC and Other Topics Chapter 18

[667]

In this example, we are retrieving the user and the host from the current request. Then, we
are using an imaginary service—IUserService—to retrieve the connection string for that
user (GetConnectionStringForUser) or host (GetConnectionStringForDomain),
which we then use. This is made possible because of the injected IHttpContextAccessor
class, which needs to be registered by a call to AddHttpContextAccessor in
Startup.ConfigureServices.

Some people may object that this ties DbContext to ASP.NET Core.
Although this is true, for the scope of this book, it makes total sense to do
that.

Let's now see a more complex example of how we can build a fully functional REST service
using EF Core.

Building a REST service
Here is a full example of a REST service that uses EF Core as the underlying API for data
access. It features operations for retrieving, creating, updating, and deleting entities and is
suitable for use as either a web API or in an AJAX-style web application:

[ApiController]
[Route("api/[controller]")]
public class BlogController : ControllerBase
{
 private readonly BlogContext _context;

 public BlogController(BlogContext context)
 {
 this._context = context;
 }

 [HttpGet("{id?}")]
 public async Task<ActionResult<Blog>> Get(int? id = null)
 {
 if (id == null)
 {
 return this.Ok(await this._context.Blogs.AsNoTracking()
 .ToListAsync());
 }
 else
 {
 var blog = await this._context.Blogs.FindAsync(id);

gRPC and Other Topics Chapter 18

[668]

 if (blog == null)
 {
 return this.NotFound();
 }
 else
 {
 return this.Ok(blog);
 }
 }
 }

 [HttpPut("{id}")]
 public async Task<ActionResult<Blog>> Put(int id, [FromBody]
 Blog blog)
 {
 if (id != blog.Id)
 {
 return this.BadRequest();
 }

 if (this.ModelState.IsValid)
 {
 this._context.Entry(blog).State = EntityState.Modified;
 try
 {
 await this._context.SaveChangesAsync();
 }
 catch (DbUpdateConcurrencyException)
 {
 return this.Conflict();
 }
 return this.Ok(blog);
 }
 else
 {
 return this.UnprocessableEntity();
 }
 }

 [HttpDelete("{id}")]
 public async Task<IActionResult> Delete(int id)
 {
 var blog = await this._context.Blogs.FindAsync(id);

 if (blog == null)
 {
 return this.NotFound();
 }

gRPC and Other Topics Chapter 18

[669]

 this._context.Blogs.Remove(blog);
 await this._context.SaveChangesAsync();
 return this.Accepted();
 }

 [HttpPost]
 public async Task<ActionResult<Blog>> Post([FromBody] Blog blog)
 {
 if (blog.Id != 0)
 {
 return this.BadRequest();
 }

 if (this.ModelState.IsValid)
 {
 this._context.Blogs.Add(blog);
 await this._context.SaveChangesAsync();
 return this.CreatedAtAction(nameof(Post), blog);
 }
 else
 {
 return this.UnprocessableEntity();
 }
 }
}

As you can see, this controller has several action methods—one for each HTTP verb (GET,
POST, PUT, and DELETE). Here is how it works:

The controller takes an instance of the DbContext-derived class in its
constructor, which comes from the dependency injection framework.
All methods are asynchronous.
All methods follow conventions and their names match the HTTP verb they
accept.
All methods describe what they are returning in their signature.
All calls to the DbContext-derived class are asynchronous.
The Get method takes an optional id parameter, which, if supplied, issues a
query for a single instance from that primary key. If this is not found, a 404 Not
Found result is returned; otherwise, a 200 OK result is returned. If no ID is
passed, then all entities are returned but are not tracked as they are not meant to
be modified.

gRPC and Other Topics Chapter 18

[670]

The Put method takes an ID and an entity read from the body of the request; if
the ID does not match the one that is read from the request, a 501 Bad Request
error is returned. The entity is then validated and, if considered invalid, a 422
Unprocessable Entity result is returned. Otherwise, an attempt to mark it as
modified and save it is done, but if the optimistic concurrency check fails, a 409
Conflict result is returned. If all goes well, a 200 OK result is returned
The Post method takes an entity that is read from the body of the request. If this
entity already possesses an ID, a 501 Bad Request result is returned;
otherwise, it tries to validate it. If it fails, 422 Unprocessable Entity is
returned. Otherwise, the entity is added to the context and saved, and a 201
Created result is returned
Finally, the Delete method takes the ID of the entity to delete and tries to load
an entity from it; if one cannot be found, it returns a 404 Not Found result.
Otherwise, it marks the entity as deleted and saves the changes, returning a 202
Accepted result.

That's it! This can serve as a general-purpose recipe for building a REST service using EF
Core.

You can read more about API controllers and REST in Chapter 8, API Controllers.

Understanding the gRPC framework
gRPC is a relatively new framework for Remote Procedure Calls (RPC) that has bindings
to .NET Core. Put simply, it allows structured, high-performance, type-safe communication
between a client and a server in multiple languages (including C#, Java, JavaScript, C++,
Python, Dart, and PHP). ASP.NET Core 3 includes an implementation of gRPC.

gRPC was created by Google but is now open source and uses modern standards, such as
HTTP/2 for data transmission and Protocol Buffers for the serialization of content.

This section does not aim to provide in-depth coverage of gRPC, but it should be enough to
get you started!

First, in order to use it with ASP.NET Core, we need the NuGet Grpc.AspNetCore
metapackage. Both Visual Studio and the dotnet tool can create a template project for
gRPC:

dotnet new grpc

You can have a look at the generated code before we get started.

gRPC and Other Topics Chapter 18

[671]

Interface definition
We first need to define an interface definition in gRPC's own definition language, from
which stubs can be generated in the programming language we're interested in (in our case,
C#). This includes the methods and types that will be sent back and forth. Here is an
example of one such definition (Greet.proto):

syntax = "proto3";

option csharp_namespace = "Greet";

package Greet;

enum Ok
{
 No = 0;
 Yes = 1;
}

service Greeter
{
 rpc SayHello (HelloRequest) returns (HelloReply);
}

message HelloRequest
{
 string name = 1;
}

message HelloReply
{
 string message = 1;
 Ok ok = 2;
}

We can see a few things here:

A C# namespace definition—Greet, in this case—that matches the package
definition, which will be used for the generated code. We will look at this further
in a moment.
An enumeration—Ok—with two possible values. Notice how each of them must
have a unique numeric value set.

gRPC and Other Topics Chapter 18

[672]

A service, or interface, definition—Greeter—with a single method of the RPC
type—SayHello—taking a message as a parameter (HelloRequest) and
returning a message as a response (HelloReply).
Two message definitions—HelloRequest and HelloReply—each with some
fields and assigned a unique number.

Each field in a message will be one of the following types (in parentheses is their
corresponding .NET type):

A message type
An enumeration type
double: double
float: float
int32, sint32, and sfixed32: int
int64, sint64, and sfixed64: long
uint32 and fixed32: uint
uint64 and fixed64: ulong
bool: bool
string: string (up to 232 UTF-8 characters)
bytes: byte[] (up to 232 bytes)

It is possible to include definitions from other files, too:

import "Protos\common.proto";

After we have an interface definition file that describes the services that we want to call, we
must compile it so as to produce the source code for the language that we're interested in.
As of now, we need to add the file manually to our .csproj file with an entry such as this
for the server side:

<ItemGroup>
 <Protobuf Include="Protos\greet.proto" GrpcServices="Server" />
</ItemGroup>

The following entry is required for the client side:

<ItemGroup>
 <Protobuf Include="Protos\greet.proto" GrpcServices="Client" />
</ItemGroup>

gRPC and Other Topics Chapter 18

[673]

The difference between the client- and server-side generated source code is in terms of what
we want to do with it. Is the code meant to be used on an ASP.NET Core web app to host a
service or is it for a client app that wishes to connect to it?

Messaging kinds
Imagine we have a ping-pong service that sends pings and receives pongs. gRPC defines
four types of messaging:

Unary RPC: The client sends a request to the server and gets a response back:

rpc Ping(PingRequest) returns (PongResponse);

Server-streaming RPCs: The client sends a request to the server and gets a
stream from which it can read messages until there are no more messages:

rpc LotsOfPongs(PingRequest) returns (stream PongResponse);

Client-streaming RPCs: The client writes a sequence of messages to the server in
a continuous stream:

rpc LotsOfPings(stream PingRequest) returns (PongResponse);

Bidirectional-streaming RPCs: Both sides send a sequence of messages using
independent read-write streams:

rpc BidiPingPong(stream PingRequest) returns (stream PongResponse);

Keep in mind that a full description of all of these messaging types is
beyond the scope of this chapter, but you can find more information on
the gRPC site at https:/ ​/ ​grpc.​io/ ​docs/ ​guides/ ​concepts.

Its declaration would be as follows:

syntax = "proto3";

option csharp_namespace = "PingPong";

package PingPong;

message PingRequest
{
 string name = 1;
};

https://grpc.io/docs/guides/concepts
https://grpc.io/docs/guides/concepts
https://grpc.io/docs/guides/concepts
https://grpc.io/docs/guides/concepts
https://grpc.io/docs/guides/concepts
https://grpc.io/docs/guides/concepts
https://grpc.io/docs/guides/concepts
https://grpc.io/docs/guides/concepts
https://grpc.io/docs/guides/concepts
https://grpc.io/docs/guides/concepts
https://grpc.io/docs/guides/concepts
https://grpc.io/docs/guides/concepts
https://grpc.io/docs/guides/concepts

gRPC and Other Topics Chapter 18

[674]

message PongResponse
{
 string message = 1;
 Ok ok = 2;
};

enum Ok
{
 No = 0;
 Yes = 1;
};

service PingPongService
{
 rpc Ping(PingRequest) returns (PongResponse);

 rpc LotsOfPongs(PingRequest) returns (stream PongResponse);

 rpc LotsOfPings(stream PingRequest) returns (PongResponse);

 rpc BidiPingPong(stream PingRequest) returns (stream PongResponse);
};

Next, we will see how to host a service.

Hosting a service
In the Startup class's ConfigureServices method, we must register the services needed
for gRPC:

services.AddGrpc();

It is possible to configure some options for the endpoint, but let's leave this for now. Then,
we need to create an endpoint for the gRPC service (or services) that we wish to expose:

app.UseEndpoints(endpoints =>
{
 endpoints.MapGrpcService<PingPongService>();
});

The PingPongService class is what we need to implement; it is the core of the service for
which we specified the interface definition. We can implement it as follows:

public class PingPongService : PingPong.PingPongService.PingPongServiceBase
{
 private readonly ILogger<PingPongService> _logger;

gRPC and Other Topics Chapter 18

[675]

 public PingPongService(ILogger<PingPongService> logger)
 {
 this._logger = logger;
 }

 public async override Task<PongResponse> Ping(PingRequest request,
 ServerCallContext context)
 {
 this._logger.LogInformation("Ping received");

 return new PongResponse
 {
 Message = "Pong " + request.Name,
 Ok = Ok.Yes
 };
 }
}

You can see that the base class that we are inheriting from PingPong.PingPongBase
defines the methods defined in the interface definition file as an abstract, so we need to
implement them—hence the override keyword.

When you start coding this in Visual Studio, you will notice something weird—you do not
have IntelliSense for some of the types (namely, the PingPong namespace and the
PingPong.PingPongBase type). This is because they are generated at compile time from
the definitions on the PingPong.proto file and therefore, the .NET equivalents are not yet
available.

We can see that the using declaration directly matches csharp_namespace on the .proto
file, and the PingPong static class (that's what it is!) comes from the name of the service on
that file. PingPongBase was generated from the compiler because we set the Server
option in the .csproj file.

We can see that the dependency injection works in pretty much the same way as we are
used to. In this example, we are injecting a logger through the constructor. Actually, by
default, a gRPC service is instantiated by the dependency injection framework as a
transient, but we can register it manually to have a different lifetime (normally, with a
singleton):

services.AddSingleton<PingPongService>();

Let's now see what is in the request context.

gRPC and Other Topics Chapter 18

[676]

Request context
In the implementation of a gRPC method, the last parameter is always
ServerCallContext. This allows us to get a lot of useful information from the server
where we are running and the client that issued the request. For once, we can get hold of
HttpContext for the current request by calling the GetHttpContext extension method,
and from there, we can access all the properties and methods that we are familiar with. We
also have the following:

Host (string): The name of the host that was called
Method (string): The name of the method that was called (the current one)
Peer (string): The address of the client, in URI format
RequestHeaders (Metadata): All the headers sent by the client
ResponseTrailers (Metadata): All the headers that will be sent back to the
client
Status (Status): The status to send to the client when the operation finishes,
which is normally set automatically
UserState (IDictionary<object, object>): Data that can be used to pass
information between interceptors (discussed shortly)
WriteOptions (WriteOptions): A set of flags that can be used to tweak some
aspects of the response (such as compression and response buffering)

The Metadata class is nothing more than a dictionary of keys and values and Status just
holds together a status code (integer) and a detail (string).

Now, how can we intercept a message?

Interceptors
An interceptor can be used to perform operations before, after, or instead of a gRPC
method. An interceptor must inherit from a base class, appropriately called Interceptor,
which offers virtual methods for each of the messaging kinds. The following is a simple
example:

public class LogInterceptor : Interceptor
{
 private readonly ILogger<LogInterceptor> _logger;

 public LogInterceptor(ILogger<LogInterceptor> logger)
 {
 this._logger = logger;

gRPC and Other Topics Chapter 18

[677]

 }

 public override AsyncUnaryCall<TResponse> AsyncUnaryCall<TRequest,
 TResponse>(
 TRequest request,
 ClientInterceptorContext<TRequest, TResponse> context,
 AsyncUnaryCallContinuation<TRequest, TResponse> continuation)
 {
 this._logger.LogInformation("AsyncUnaryCall called");
 return base.AsyncUnaryCall(request, context, continuation);
 }

 public override TResponse BlockingUnaryCall<TRequest, TResponse>(
 TRequest request,
 ClientInterceptorContext<TRequest, TResponse> context,
 BlockingUnaryCallContinuation<TRequest, TResponse> continuation)
 {
 this._logger.LogInformation("BlockingUnaryCall called");
 return base.BlockingUnaryCall(request, context, continuation);
 }

 public override Task<TResponse> UnaryServerHandler<TRequest,
 TResponse>(
 TRequest request,
 ServerCallContext context,
 UnaryServerMethod<TRequest, TResponse> continuation)
 {
 this._logger.LogInformation("UnaryServerHandler called");
 return base.UnaryServerHandler(request, context, continuation);
 }
}

This just logs when a request of the unary RPC type is received and when the response is
about to be sent. We do not need to override any methods, just the ones that we're
interested in. Each messaging type has a blocking and an async version, depending on how
the request was issued. If we wish to return our own response, we just return whatever we
want from it, rather than calling the base implementation. Because all of these methods are
generic, we need to use reflection to find out what the exact parameters (request and
response) are. Also, notice the presence of the ServerCallContext parameter in all the
methods.

gRPC and Other Topics Chapter 18

[678]

Interceptors are registered either by instance or type when the gRPC services are added to
the dependency injection framework from a type:

services.AddGrpc(options =>
{
 options.Interceptors.Add<LogInterceptor>();
});

With an instance, we have the following:

services.AddGrpc(options =>
{
 options.Interceptors.Add(new LogInterceptor());
});

After this, let's check the listening options.

Listening options
When running in development mode, you may either need to listen on a different port or
disable encrypted connections (TLS). You can do so in the Program class as follows:

Host
 .CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(builder =>
 {
 builder.ConfigureKestrel(options =>
 {
 options.ListenLocalhost(5000, o => o.Protocols =
 HttpProtocols.Http2);
 });
 builder.UseStartup<Startup>();
 });

This will have Kestrel listen on port 5000 with HTTP/2 and without TLS.

Using HTTP client factories
We live in a world of microservices and, in the .NET world, these microservices are quite
often invoked using APIs, such as HttpClient. The problem with HttpClient is that it is
often misused because, even though it implements IDisposable, it is really not meant to
be disposed of after each usage, but rather should be reused. It is thread-safe and you
should have a single instance of it per application.

gRPC and Other Topics Chapter 18

[679]

Disposing of it circumvents the original purpose of the class and, because the contained
native socket is not immediately disposed of, if you instantiate and dispose of many
HttpClient APIs in this way, you may end up exhausting your system's resources.

.NET Core 2.1 introduced HttpClient factories for creating and maintaining pools of pre-
configured HttpClient APIs. The idea is simple—register a named client with a base URL
and possibly some options (such as headers and a timeout) and inject them whenever
needed. When it is no longer needed, it is returned to the pool but kept alive; then, after
some time, it is recycled.

Let's look at an example. Suppose we want to register a call to a microservice that needs to
take a specific authorization as a header. We would add something like the following to the
ConfigureServices method:

services.AddHttpClient("service1", client =>
{
 client.BaseAddress = new Uri("http://uri1");
 client.DefaultRequestHeaders.Add("Authorization",
 "Bearer <access token>");
 client.Timeout = TimeSpan.FromSeconds(30);
});

The only mandatory setting is BaseAddress, but here I am also setting Timeout and a
header ("Authorization"), for completeness. <access token>, obviously, should be
replaced with an actual token.

If we need to use an instance of HttpClient, we inject IHttpClientFactory using the
dependency injection and create a named client from it:

public class HomeController : Controller
{
 private readonly IHttpClientFactory _httpClientFactory;

 public HomeController(IHttpClientFactory httpClientFactory)
 {
 this._httpClientFactory = httpClientFactory;
 }

 public async Task<IActionResult> Index()
 {
 var client = this._httpClientFactory.CreateClient("service1");
 var result = await client.GetAsync("Process");
 //URL relative to the base address

 //do something with the result

gRPC and Other Topics Chapter 18

[680]

 return this.View();
 }
}

The name passed to CreateClient must be the same name that was registered with
AddHttpClient. Notice that we didn't dispose of the created client; this is not necessary.

When registering HttpClient, there is an overload of AddHttpClient, which also
receives a parameter of the IServiceProvider type, which you can use to obtain services
from the dependency injection framework:

services.AddHttpClient("service1", (serviceProvider, client) =>
{
 var configuration = serviceProvider.GetRequiredService
 <IConfiguration>();
 var url = configuration["Services:Service1:Url"];
 client.BaseAddress = new Uri(url);
});

In this example, I am retrieving the IConfiguration instance from the DI and obtaining a
URL for the service1 microservice, which I am using to set as the base address of
HttpClient.

Another example is what if you need to pass information to HttpClient coming from the
current user or the current context? In that case, the only way is to use a custom
DelegatingHandler instance and leverage the IHttpContextAccessor service that we
have mentioned quite a few times before. Some sample code, starting with
DelegatingHandler, is as follows:

public class UserIdHandler : DelegatingHandler
{
 public UserIdHandler(IHttpContextAccessor httpContextAccessor)
 {
 this.HttpContext = httpContextAccessor.HttpContext;
 }

 protected HttpContext HttpContext { get; }

 protected override Task<HttpResponseMessage>
 SendAsync(HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 request.Headers.Add("UserId", this.HttpContext.User.
 Identity.Name);

 return base.SendAsync(request, cancellationToken);

gRPC and Other Topics Chapter 18

[681]

 }
}

This class receives on its constructor an instance of IHttpContextAccessor, which is a
service that can be used to obtain the current HttpContext class. On the SendAsync
override, it adds a header with the content of the current username.

The HttpClient instance's factory registration, in this case, is done like this:

services
 .AddHttpClient("service1", client =>
 {
 client.BaseAddress = new Uri("http://uri1");
 })
 .AddHttpMessageHandler<UserIdHandler>();

The only difference is the call to AddHttpMessageHandler with the generic parameter of
the class we just created.

As I mentioned in the beginning, the HttpClient instances returned by
IHttpClientFactory are pooled and, after some time, they are recycled. What this
actually means is that the internal HttpMessageHandler class that holds the native socket
is kept alive and the socket is kept open for a period of time for performance reasons, after
which it is disposed of and the socket is closed. When HttpClient is requested again, the
socket is opened once more. It is possible to tune the period of time for which HttpClient
is kept alive through the SetHandlerLifetime method:

services
 .AddHttpClient("service1", client =>
 {
 client.BaseAddress = new Uri("http://uri1");
 })
 .SetHandlerLifetime(TimeSpan.FromMinutes(5));

The default time is 3 minutes. Leaving it open for too long is not recommended because
you may end up wasting resources if you do not need to send requests, and you may not
detect changes in DNS configuration, such as the target host address changing. This needs
to be chosen according to the use of the microservice. If it is used very frequently for a
period of time, you may want to increase this. If you are unsure, just leave it as it is.

We have another option to use HttpClient with a client factory that consists of strongly
typed clients. Essentially, this is just a class that takes HttpClient in its constructor and
exposes some methods to retrieve data that comes from HttpClient. Let's imagine that we
want to retrieve weather information from a city anywhere in the world.

gRPC and Other Topics Chapter 18

[682]

Rather than implementing a method ourselves, we can use an existing one, such as
OpenWeatherMap (https:/ ​/​openweathermap. ​org). OpenWeatherMap makes available a
free REST API for developers that returns quite a lot of useful information in real time. In
order to use this API, we need to write some classes to model the data that it sends:

public class OpenWeatherCoordinates
{
 public float lon { get; set; }
 public float lat { get; set; }
}

public class OpenWeatherWeather
{
 public int id { get; set; }
 public string main { get; set; }
 public string description { get; set; }
 public string icon { get; set; }
}

public class OpenWeatherMain
{
 public float temp { get; set; }
 public int pressure { get; set; }
 public int humidity { get; set; }
 public float temp_min { get; set; }
 public float temp_max { get; set; }
}

public class OpenWeatherData
{
 public OpenWeatherCoordinates coord { get; set; }
 public OpenWeatherWeather [] weather { get; set; }
 public string @base { get; set; }
 public OpenWeatherMain main { get; set; }
 public int visibility { get; set; }
 public OpenWeatherWind wind { get; set; }
 public OpenWeatherClouds clouds { get; set; }
 public OpenWeatherSys sys { get; set; }
 public int dt { get; set; }
 public int id { get; set; }
 public string name { get; set; }
 public int cod { get; set; }
}

public class OpenWeatherSys
{
 public int type { get; set; }
 public int id { get; set; }

https://openweathermap.org
https://openweathermap.org
https://openweathermap.org
https://openweathermap.org
https://openweathermap.org
https://openweathermap.org
https://openweathermap.org

gRPC and Other Topics Chapter 18

[683]

 public float message { get; set; }
 public string country { get; set; }
 public int sunrise { get; set; }
 public int sunset { get; set; }
}

public class OpenWeatherClouds
{
 public int all { get; set; }
}

public class OpenWeatherWind
{
 public float wind { get; set; }
 public int deg { get; set; }
}

Don't bother with all of these properties; they are required to fully map
the information returned by OpenWeatherMap, but you can safely ignore
most of it!

As for the service itself, we can represent it as follows:

public interface IOpenWeatherMap
{
 Task<OpenWeatherData> GetByCity(int id);
}

A possible implementation using HttpClient is the following:

public class OpenWeatherMap : IOpenWeatherMap
{
 //this is for sample data only
 //get your own developer key from https://openweathermap.org/
 private const string _key = "439d4b804bc8187953eb36d2a8c26a02";

 private readonly HttpClient _client;

 public OpenWeatherMap(HttpClient client)
 {
 this._client = client;
 }

 public async Task<OpenWeatherData> GetByCity(int id)
 {
 var response = await this._client.GetStringAsync($"/data/2.5
 /weather?id=${id}&appid=${_key}");

gRPC and Other Topics Chapter 18

[684]

 var data = JsonSerializer.Deserialize<OpenWeatherData>(response);

 return data;
 }
}

The only issue here is that you must change the key for your own use. This one is only used
for sample purposes; you need to register with OpenWeatherMap and get your own key
from https:/​/​openweathermap. ​org/ ​appid.

You can download the list of city codes from http:/ ​/​bulk.
openweathermap. ​org/ ​sample/ ​city. ​list. ​json. ​gz.

Now, all we need to do is register this contract and its implementation in
ConfigureServices:

services.AddHttpClient<IOpenWeatherMap, OpenWeatherMap>("OpenWeatherMap",
client =>
{
 client.BaseAddress = new Uri("https://samples.openweathermap.org");
});

After this, you will be able to inject IOpenWeatherMap using dependency injection.

In this section, we learned how to use HTTP client factories to preprepare HttpClient
instances for calling microservices. This has several advantages over creating instances on
the fly and it is definitely something worth using.

Summary
In this chapter, we saw that if you want to serve some files on a filesystem, always specify a
virtual path for it so as not to interfere with your controllers.

Using areas is a handy way to structure your content. They are particularly useful in big
ASP.NET Core projects.

We also learned that to combine the usage of static files, directory browsing, and default
documents, you can just call UseFileServer. You should also beware of unwanted file
downloads, as it's not easy to apply security to them.

https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/appid
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz

gRPC and Other Topics Chapter 18

[685]

Then, we saw that resource files can be quite useful as we do not need to distribute the files
separately from the assembly, and can use the same versioning as the rest of the code. They
are definitely worth considering.

In the next section, we saw that we should use URL rewriting if we do not wish to expose
the inner structure of our site, to comply with an externally defined URL, and to use hosted
services to spawn background services automatically and have them linked to the
application's lifetime.

EF Core is a useful tool, but it has a few gotchas when used in a web environment. Make
sure you avoid lazy loading when returning data from a web API, use its asynchronous
methods, and do not track changes to entities that you aren't going to modify.

Then, we introduced gRPC, which offers a high-performance framework for distributed
programming that is language-agnostic and can, therefore, be very useful for putting
disparate systems in communication.

Finally, we saw that HTTPClient factories can improve the readability and scalability of
code that needs to call multiple microservices by registering the configuration needed for
each in a central location and allowing the injection of clients through a dependency
injection.

This chapter concludes our tour of the ASP.NET Core APIs. We looked at some of the less-
used features that nevertheless play an important role in ASP.NET Core. In the next
chapter, we will cover the different options we have regarding application deployment.

Questions
You should now be able to answer these questions:

What is gRPC?1.
What is the purpose of URL rewriting?2.
What are background services useful for?3.
What is the purpose of areas?4.
What are conventions useful for?5.
How can we execute code from a referenced assembly automatically?6.
Can we load files from inside assemblies?7.

19
Application Deployment

After reading the previous chapters and once you have implemented your application and
tested it, and you are happy with it, it's time to deploy it. This will make it available to the
outside world, or at least part of it!

In this chapter, we will see how we do that and explore some of the options available by
covering the following topics:

Deploying manually and compiling real-time changes
Deploying using Visual Studio
Deploying to IIS
Deploying to NGINX
Deploying to Azure
Deploying to Amazon Web Services (AWS)
Deploying to Docker
Deploying as a Windows service

Technical requirements
To implement the examples introduced in this chapter, you will need the .NET Core 3 SDK
and a text editor. Of course, Visual Studio 2019 (any edition) meets all of the requirements,
but you can also use Visual Studio Code, for example.

If you will be deploying to the cloud (Azure or AWS), you will need a usable account on
your provider of choice.

Application Deployment Chapter 19

[687]

Deploying the application manually
To deploy the application manually, the dotnet command-line tool offers the publish
command. In a nutshell, what it does is pack everything together, get all of the required
dependencies from the project file, build the application and any dependent projects, and
then copy all output to a target folder. It offers lots of options, but the most usual ones are
probably the following:

hey are running from the user interface. Let's see how:

-c | --configuration: This defines the build configuration. The default value
is Debug and the other common option is Release, but of course, you can create
other Visual Studio profiles.
-r | --runtime: This publishes the application for a given runtime, in the case
of self-contained deployments; the default is to use whatever runtime is available
on the target machine. See the description in the Self-contained deployments and
runtimes section.
-f | --framework: This sets the target framework. See the following list
in Setting the target framework section.
-o | --output: This sets the path of the target output folder.
-h | --help: This displays usage information.
-v | --verbosity: This sets the build verbosity level—from level one of
q[uiet] (no output), to m[inimal], n[ormal], d[etailed], and
diag[nostic] (highest level). The default is n[ormal].
--force: This forces all dependencies to be resolved even if the last restore was
successful; it effectively deletes all output files and tries to retrieve them again.
--self-contained: This publishes the .NET Core runtime together with your
application so that it doesn't need to be installed on the target machine.

For more information, please use the help command.

The following is an example of the dotnet publish command:

dotnet publish MyApplication -c Release -o /Output

Application Deployment Chapter 19

[688]

It is worth mentioning that you can also pass parameters to MSBuild, by making use of the
p flag:

dotnet publish /p:Foo=Bar

Do not forget that the target environment is defined by the
ASPNETCORE_ENVIRONMENT environment variable, so you may want to
set it before calling dotnet publish.

See the next section for the list of supported target frameworks.

Setting the target framework
When you target a framework in an app or library, you're specifying the set of APIs that
you'd like to make available to the app or library. If you target one of the .NET Standards,
you are making it available on a wider set of platforms, for example, Linux will not have
the full .NET Framework, but it will have .NET Standard. This framework is specified in
the project file, but you can override it for a particular publication.

The monikers to use for the framework command are as follows:

Target framework Name

.NET Standard

netstandard1.0
netstandard1.1
netstandard1.2
netstandard1.3
netstandard1.4
netstandard1.5
netstandard1.6
netstandard2.0
netstandard2.1

.NET Core

netcoreapp1.0
netcoreapp1.1
netcoreapp2.0
netcoreapp3.0
netcoreapp3.1 LTS

Application Deployment Chapter 19

[689]

An example setting the framework could be as follows:

dotnet publish MyApplication -c Release -o /Output -f netcoreapp3.0

For your information, I have only listed the most useful ones; you can find
the full (and updated) list at: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/
dotnet/ ​standard/ ​frameworks.

Let's now see the supported runtimes.

Self-contained deployments and runtimes
If you specify a target runtime for your app, you are also setting the default of self-
contained to true. What this means is that the publish package will include everything it
needs to run. This has some advantages and some disadvantages.

Here are its advantages:

You have full control over the version of .NET that your app will run on.
You can be assured that the target server will be able to run your app, as you are
providing the runtime.

Here are the disadvantages:

The size of the deployment package will be larger, as it includes the runtime; if
you deploy many different apps with their own runtimes, this is likely to take
lots of disk space.
You need to specify the target platforms beforehand.

The names to use with the runtime command are composed of the following:

A target operating system moniker
A version
An architecture

https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

Application Deployment Chapter 19

[690]

The examples for these include ubuntu.14.04-x64, win7-x64, and osx.10.12-x64. For
a full list and the general specifications, please refer to https:/ ​/​docs. ​microsoft. ​com/ ​en-
us/​dotnet/​core/​rid- ​catalog.

You may want to have a look at https:/ ​/ ​docs. ​microsoft. ​com/​en- ​us/
aspnet/ ​core/ ​publishing and https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/
dotnet/ ​core/ ​deploying for a more in-depth introduction to deploying
ASP.NET Core applications.

And finally, the next topic is monitoring the changes to the application and rebuilding them
in real time.

Real-time rebuilding
A dotnet command that offers a functionality by which it can monitor, in real time, any
changes to the code and automatically builds it in case it changes is dotnet watch. You
can read all about it at: https:/ ​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/ ​tutorials/
dotnet-​watch.

In a nutshell, to use this, you need to add the Microsoft.DotNet.Watcher.Tools
package to your project in the .csproj file:

<ItemGroup>
 <PackageReference Include="Microsoft.DotNet.Watcher.Tools"
Version="2.0.2" />
</ItemGroup>

After this, instead of issuing a dotnet run command, you would instead run dotnet
watch:

dotnet watch run

That is enough with the command line; let's move on to Visual Studio.

https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/aspnet/core/publishing
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/en-us/aspnet/core/tutorials/dotnet-watch

Application Deployment Chapter 19

[691]

Deploying with Visual Studio
Most of the time (for me, at least) we use Visual Studio for all of our development and
publishing work. All of the options for dotnet publish are available in Visual Studio as
well. We need to create a publish profile, which we can do by right-clicking the project in
Visual Studio and clicking Publish, as shown in the following screenshot:

After this, we need to select a publish method from the choices of File System, FTP, Web
Deploy, or Web Deploy Package (more on these two later).

Regardless of the publish method, we can configure the common publishing options by
clicking on Settings, as shown here:

Application Deployment Chapter 19

[692]

For a more in-depth guide, please refer to https:/ ​/​docs. ​microsoft. ​com/
en-​us/ ​aspnet/ ​core/ ​publishing/ ​web- ​publishing- ​vs.

Visual Studio publish profiles are stored in the Properties\PublishProfiles folder:

This section was about deployment with Visual Studio, but if the application is deployed to
IIS, we can use it to deploy as well. Let's see how.

Deploying through IIS
Probably the most common server for the application deployment will be Internet
Information Server (IIS). It actually happens that IIS merely acts as a reverse proxy,
directing HTTP/HTTPS traffic to the .NET Core host. IIS hosting supports Windows 7 and
above. It requires the ASP.NET Core Module, installed by default with Visual Studio 2019
and the .NET Core SDK.

Why would you use IIS rather than just Kestrel or HTTP.sys? IIS offers some more options
to you, such as the following:

Authentication: You can easily set up Windows authentication, for example.
Logging: You can configure IIS to produce logs for all accesses.
Custom response: IIS can serve different pages per HTTP response code.
Security: You can set up HTTPS for your site, and it's easy to configure SSL
certificates—IIS Manager even generates dummy ones.
Management: It provides easy management, even from remote servers, using the
IIS Manager tool.

You should have IIS/IIS Manager installed on the target machine and, in your host creating
code, add support for IIS hosting. ASP.NET Core 3.x already does this by default, so no
change is required.

https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs
https://docs.microsoft.com/en-us/aspnet/core/publishing/web-publishing-vs

Application Deployment Chapter 19

[693]

You can use Visual Studio to automatically create the website for you at run time or
publishing time, or you can do it yourself; the only two things that you need to keep in
mind are the following:

The application pool should not use a .NET CLR version (no managed code).
The AspNetCoreModule module should be enabled.

If you remember, two of the publish methods were Web Deploy and Web Deploy
Package. Web Deploy makes use of the Web Deployment Agent Service (MsDepSvc)
Windows service that is installable through the Web Deployment Tool (https:/ ​/​www. ​iis.
net/​downloads/​microsoft/ ​web- ​deploy). If it is running, you can have Visual Studio
directly connect to a remote (or local) site and install the web project there if you select the
Web Deploy method, as shown here:

https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy

Application Deployment Chapter 19

[694]

The Web Deploy Package, on the other hand, produces a .zip file containing a package
that you can deploy through the IIS Manager console; just right-click on any site and select
Deploy | Import Server or Site Package...:

You may have noticed the Web.config file that is produced by dotnet publish (or the
Visual Studio publish wizard). It is not used by ASP.NET Core but rather by the
AspNetCoreModule module. It is only required if you wish to host your app behind IIS.
You can tweak some settings, such as enabling output logging to a file:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.webServer>
 <aspNetCore
 processPath="dotnet"
 arguments=".\MyApplication.dll"
 stdoutLogEnabled="true"
 stdoutLogFile=".\logs\stdout.log" />
 </system.webServer>
</configuration>

Here, I changed the stdoutLogEnabled and stdoutLogFile attributes; this should be
pretty easy to understand.

Once again, for the full documentation, please refer to https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​aspnet/ ​core/ ​publishing/ ​iis.

Ler's see now how to use NGINX for proxying requests to ASP.NET Core.

https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis

Application Deployment Chapter 19

[695]

Deploying with NGINX
NGINX is a very popular reverse-proxy server for the Unix and Linux family of operating
systems. Like IIS, it offers interesting features that are not provided out of the box by the
ASP.NET Core hosts, such as caching requests, serving files straight from the filesystem,
SSL termination, and others. You can configure it to forward requests to an ASP.NET Core
application that is running standalone. This application needs to be modified to
acknowledge forwarded headers as in the following:

app.UseForwardedHeaders(new ForwardedHeadersOptions
{
 ForwardedHeaders =
 ForwardedHeaders.XForwardedFor |
 ForwardedHeaders.XForwardedProto |
 ForwardedHeaders.XForwardedHost
});

What this code does is extract information from the headers, X-Forwarded-For (requesting
the client IP and possibly the port), X-Forwarded-Proto (the requesting protocol), and X-
Forwarded-Host (the requesting host), and sets it in the appropriate properties of the
HttpContext.Connection property. This is because NGINX strips off this request
information and stores it in these headers, so ASP.NET Core needs this, and that you can
find it where you normally expect it.

We also need to configure NGINX to forward requests to ASP.NET Core
(/etc/nginx/sites-available/default):

server
{
 listen 80;
 server_name server.com *.server.com;
 location /
 {
 proxy_pass http://localhost:5000;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection keep-alive;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_cache_bypass $http_upgrade;
 }
}

Application Deployment Chapter 19

[696]

This code sets up NGINX to listen to port 80 and to forward requests to localhost on port
5000. The HTTP version is set to 1.1 and some additional headers (see the preceding .NET
code). The server name is set to server.com but also accepts anything below server.com.

Read all about NGINX at: https:/ ​/ ​docs. ​microsoft. ​com/ ​en- ​us/​aspnet/ ​core/ ​publishing/
linuxproduction.

Deploying to Azure
Microsoft Azure is also a very strong candidate for hosting your app. To publish to Azure,
right-click on your project and select publish:

https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction
https://docs.microsoft.com/en-us/aspnet/core/publishing/linuxproduction

Application Deployment Chapter 19

[697]

When creating a publish profile, select Azure App Service as the publish target:

You will need to select all of the appropriate settings: Subscription, Resource Group, App
Service Plan, and so on.

Of course, you need to have a working Azure subscription. There is no
need for resource groups or app service plans—these can be created from
inside the Visual Studio publish wizard.

If you need more information, navigate to https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/
core/​tutorials/​publish- ​to- ​azure- ​webapp- ​using- ​vs.

Deploying to AWS
AWS is the Amazon competitor to Microsoft Azure. It is a cloud provider that offers very
similar features to Azure. Visual Studio can interact with it through the AWS Toolkit for
Visual Studio, available for free from here: https:/ ​/ ​marketplace. ​visualstudio. ​com/
items?​itemName=​AmazonWebServices. ​AWSToolkitforVisualStudio2017. You will, of
course, need to have a working account with AWS.

https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017

Application Deployment Chapter 19

[698]

We will see how we can deploy an ASP.NET Core app to AWS Elastic Beanstalk, Amazon's
easy-to-use hosting and scaling service for web apps:

To deploy to Elastic Beanstalk, we must first create an environment using the1.
AWS Elastic Beanstalk Console (https:/ ​/​console. ​aws.​amazon. ​com/
elasticbeanstalk).
Then, we need to ZIP all our apps' contents, minus any third-party NuGet2.
packages or binary outputs, and upload them to AWS. Luckily, AWS Toolkit for
Visual Studio does all of this for us! Just right-click on the project in Solution
Explorer and select Publish to AWS Elastic Beanstalk:

Then, you can specify all aspects of the deployment or just stick with the3.
defaults, as shown here:

This was a very basic introduction to deployment to AWS. Next up, we have Docker.

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk

Application Deployment Chapter 19

[699]

Deploying with Docker
Docker offers an excellent option when it comes to creating and destroying containers very
quickly, with the same exact contents. This way, you can be pretty sure that things will
work as you expect them to!

Docker support comes built in for ASP.NET Core projects. When you create one, you get a
Dockerfile in your project. It will contain something like this:

FROM mcr.microsoft.com/dotnet/core/aspnet:3.1
ARG source
WORKDIR /app
EXPOSE 80
COPY ${source:-obj/Docker/publish} .
ENTRYPOINT ["dotnet", "MyApplication.dll"]

Notice an extra solution folder called docker-compose. Docker Compose is the tool used
to define and run multi-container Docker applications and you can read about it at: https:/
/​docs.​docker.​com/ ​compose. In this folder, you will find three files:

docker-compose.ci.build.yml: A Docker Compose file to be used for
Continuous Integration (CI)
docker-compose.yml: A base Docker Compose file used to define the collection
of images to be built and run
docker-compose.override.yml: An override to docker-compose.yml for
the development environment

You can create files similar to docker-compose.override.yml for other environments.

The toolbar will add extra options for Docker:

You can run and even debug your app using Docker; it is transparent. Visual Studio 2019
introduced excellent support for containers. In the following screenshot, you can see the
defined environment:

https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose

Application Deployment Chapter 19

[700]

Here is the filesystem:

Application Deployment Chapter 19

[701]

The following screenshot shows the execution logs:

Even if you have multiple Docker projects in your solution, you will be able to jump
seamlessly from one to the other while debugging, which is pretty cool! When building
your project, you just need to make sure that Docker is running beforehand and the Docker
image (mcr.microsoft.com/dotnet/core/aspnet:3.1) is available locally.

Docker images for ASP.NET Core are listed at https:/ ​/​hub. ​docker. ​com/ ​_
/​microsoft- ​dotnet- ​core- ​aspnet.
As of now, running under Docker requires Docker For Windows
(https:/ ​/​www. ​docker. ​com/ ​docker- ​windows).

For more information, jump to https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/
publishing/​docker and https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​aspnet/ ​core/ ​publishing/
visual-​studio-​tools- ​for- ​docker.

Docker is an invaluable tool for modern development and is at the root of cloud
development, so I strongly suggest you have a look. But since we have to live with other
setups, let's now see how we can deploy our app as a Windows service.

https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://hub.docker.com/_/microsoft-dotnet-core-aspnet
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/aspnet/core/publishing/visual-studio-tools-for-docker

Application Deployment Chapter 19

[702]

Deploying as a Windows service
A different alternative for deploying our apps is to host the ASP.NET Core app as a
Windows service. Of course, this is inherently not portable as Windows services are only
available, well, on Windows (Windows Docker containers do exist, of course). Anyway,
sometimes, especially for simple apps/APIs, this is the best option because you can easily
start and stop the service as you like, and easily see whether they are running from the user
interface. Let's see how:

Start by adding the Microsoft.AspNetCore.Hosting.WindowsServices and1.
Microsoft.Extensions.Hosting.WindowsServices NuGet packages.
Then, modify your Program class like this:2.

Host
 .CreateDefaultBuilder(args)
 .UseWindowsService()
 .ConfigureWebHostDefaults(builder =>
 {
 builder.UseStartup<Startup>();
 });

Then, use dotnet publish to deploy your app to a folder on your machine and3.
then register and start the service with Windows:

sc create MyService binPath="C:\Svc\AspNetCoreService.exe"
sc start MyService

In summary, this will do the following:

Set WindowsServiceLifetime as IHostLifetime of your app.
Set the current directory as AppContext.BaseDirectory.
Enable logging to the EventLog with the application name as the event source
name.

The page at https:/ ​/​docs. ​microsoft. ​com/​en- ​us/ ​aspnet/ ​core/ ​hosting/ ​windows- ​service
contains all of this information and more; make sure you read it.

https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service
https://docs.microsoft.com/en-us/aspnet/core/hosting/windows-service

Application Deployment Chapter 19

[703]

Summary
This chapter will help you to get a good understanding of the different hosting options
available and how to use them. In particular, Azure, AWS, and Docker can be quite useful;
both Azure and AWS fully support Docker, so make sure you consider all of them as part
of your deployment strategy!

Even if it's convenient to use Visual Studio to deploy your apps, it is useful that you know
how to do so using the command line, which is essentially what Visual Studio does.

Most of the time, we Windows developers will be deploying to IIS; so, you should learn
how to use the Web Deployment Tools service and user interface. You can distribute the
web deployment packages as .zip files quite easily. For users of other operating systems,
NGINX is a popular option, with a vast community of users.

Docker is the new (cool) kid on the block; it provides unprecedented easiness in creating
containers, which you can then just pick and deploy to Azure, AWS, or other cloud
providers or just run on your local infrastructure.

A Windows service sometimes is useful for simple things; you can just start and stop it
whenever you want and you don't need to care much about it. I don't expect you to be
making much use of them, but it's nice to know that this option is available.

And this concludes this book. I hope you have enjoyed it—I certainly enjoyed writing it!
Please let me and Packt know your thoughts about it and what could be improved in any
future editions! Many thanks for your company!

Questions
So, by the end of this chapter, you should know the following:

What are the advantages of using IIS for exposing your app to the outside?1.
Why would you host your web app as a Windows service?2.
What is the advantage of using Docker?3.
What is a self-contained deployment?4.
Is it possible to detect changes and recompile the code automatically at runtime?5.
Can we deploy using the command line or do we need Visual Studio?6.
To what cloud providers can you deploy from inside Visual Studio?7.

20
Appendix A: The dotnet Tool

The dotnet Tool
The dotnet tool is the Swiss Army knife of .NET Core development. It can be used for a lot
of things, from running and creating new projects, to building them, adding NuGet
references, running unit tests—you name it. It is installed with the .NET Core software
development kit (SDK). Here, we will see some of the most useful commands that it has to
offer.

By default, dotnet always operates with the latest .NET Core version it can find. You can
list all of the installed versions through the --info argument, as follows:

dotnet --info

Build
This tool can be used to build a project or a whole solution. The command used for
the build is build, and the most typical arguments are the following ones:

<solution | project>: Builds a specific project or solution; if none is
specified, it tries to find a single one in the current folder
-c <configuration>: One of the configuration values, such as Debug,
Release, and many others
-r <runtime>: One of the supported runtime configurations, if you wish to
target a specific one; for a list of the possible values, see Chapter 19, Application
Deployment

Appendix A: The dotnet Tool Chapter 20

[705]

-f <framework>: One of the supported frameworks; for a list of the possible
values, see Chapter 19, Application Deployment
-o <folder>: The destination output directory; if not specified, it defaults to the
current folder

In addition, the clean command cleans all previous builds, and it takes the same
parameters, except the solution or project.

Creating projects from templates
It is sometimes useful to create projects from templates, even without using Visual Studio.
The command for this is new, and typical arguments are the following ones:

-l: Lists the available templates
<template> -name <name>: Creates a project from a template with a given
name; if no name is specified, it defaults to the current folder name
<template> -lang <lang>: Creates a project from a template from a given
language; supported languages are C#, F#, and Visual Basic (VB), C# being the
default if not specified
-o <folder>: The destination output directory; if not specified, it defaults to the
current folder
--update-apply: Updates the local templates

Unit testing
dotnet can list and run unit test projects by using the test command. The most common
arguments are the following ones:

-t: Lists tests
--filter <expression>: Only executes tests that match the given expression;
see https:/ ​/ ​aka. ​ms/ ​vstest- ​filtering for the supported syntax
-d <logfile>: Enables logging to a file
-r <folder>: The folder in which to place the results
--blame: Generates a file (Sequence.xml) that describes the run sequence, so as
to isolate problems that caused the test host to crash
<solution | project>: Builds a specific project or solution; if none is
specified, it tries to find a single one in the current folder

https://aka.ms/vstest-filtering
https://aka.ms/vstest-filtering
https://aka.ms/vstest-filtering
https://aka.ms/vstest-filtering
https://aka.ms/vstest-filtering
https://aka.ms/vstest-filtering
https://aka.ms/vstest-filtering
https://aka.ms/vstest-filtering
https://aka.ms/vstest-filtering
https://aka.ms/vstest-filtering
https://aka.ms/vstest-filtering

Appendix A: The dotnet Tool Chapter 20

[706]

-c <configuration>: One of the configuration values, such as Debug,
Release, and many others
-r <runtime>: One of the supported runtime configurations, if you wish to
target a specific one; for a list the possible values, see Chapter 19, Application
Deployment
-f <framework>: One of the supported frameworks; for a list of the possible
values, see Chapter 19, Application Deployment
-o <folder>: The destination output directory; if not specified, it defaults to the
current folder

Managing package references
The dotnet tool can be used to add or remove references to NuGet packages or other
projects to a project file. The command is either add or remove, and some common
arguments are the following ones:

<project> package <nugetref>: Add or remove a NuGet reference to a
project; cannot be combined with reference
<project> reference <projectref>: Add or remove a project reference to a
project; the project reference must either be absolute or relative to the project
where it is to be added; cannot be combined with package

Run
The tool can run a project, optionally restoring dependencies and building it first. By
default, it builds the project with the default settings (profile, framework, and runtime) and
restores all dependencies. The command is run, and typical arguments (which can be
combined) are the following ones:

-p <project>: The path to the project to run; if it is not supplied, it tries to find
a single project or solution in the current folder
--launch-profile <profile>: Runs a profile from launchSettings.json
--interactive: Allows interactivity, such as asking for authentication or user
input
--no-restore: Does not restore dependencies (NuGet packages) before
building

Appendix A: The dotnet Tool Chapter 20

[707]

--no-dependencies: Does not restore dependent project dependencies, only
the target project
--force: Forces dependencies to be resolved, even if the last restore failed
--no-build: Does not build the project prior to running it; assumes that a
version is already built
-v <verbosity>: Sets the logging verbosity level for the output (quiet,
minimal, normal, detailed, and diagnostic)
-c <configuration>: One of the configuration values, such as Debug,
Release, and many others
-r <runtime>: One of the supported runtime configurations, if you wish to
target a specific one; for a list of the possible values, see Chapter 19, Application
Deployment
-f <framework>: One of the supported frameworks; for a list of the possible
values, see Chapter 19, Application Deployment

Publish
For publishing, the command is publish, and typical arguments are the following ones:

--manifest <manifest>: The path to a manifest file that contains the list of
packages to be excluded from the publish command
--self-contained: Will publish the app as self-contained—that is, so that it
does not need the .NET Core runtime installed on a target machine; cannot be
combined with --no-self-contained
--no-self-contained: Will publish the app so that it does require the .NET
Core runtime installed on the target machine; cannot be combined with --self-
contained; this is the default
--interactive: Allows interactivity, such as asking for authentication or user
input
--no-restore: Does not restore dependencies (NuGet packages) before
building
--no-dependencies: Does not restore dependent project dependencies, only
the target project
--force: Forces dependencies to be resolved, even if the last restore failed
--no-build: Does not build the project prior to running it; assumes that a
version is already built

Appendix A: The dotnet Tool Chapter 20

[708]

-v <verbosity>: Sets the logging verbosity level for the output (quiet,
minimal, normal, detailed, and diagnostic)
-o <folder>: The destination output directory; if not specified, it defaults to the
current folder
-c <configuration>: One of the configuration values, such as Debug,
Release, and many others
-r <runtime>: One of the supported runtime configurations, if you wish to
target a specific one; for a list of the possible values, see Chapter 19, Application
Deployment
-f <framework>: One of the supported frameworks; for a list of the possible
values, see Chapter 19, Application Deployment

NuGet
There are several commands available for producing and publishing NuGet packages. First,
we can pack a project as a NuGet package. This is achieved through the pack command,
and typical arguments are the following ones:

<project | solution>: Project or solution to pack
--include-symbols: Includes packages with debug symbols
--include-source: Includes .pdb and source files
--no-build: Does not build the project prior to running it; assumes that a
version is already built
-v <verbosity>: Sets the logging verbosity level for the output (quiet,
minimal, normal, detailed, and diagnostic)
--interactive: Allows interactivity, such as asking for authentication or user
input
--no-restore: Does not restore dependencies (NuGet packages) before
building
--no-dependencies: Does not restore dependent project dependencies, only
the target project
--force: Forces dependencies to be resolved, even if the last restore failed
-o <folder>: The destination output directory; if not specified, it defaults to the
current folder
-c <configuration>: One of the configuration values, such as Debug,
Release, and many others

Appendix A: The dotnet Tool Chapter 20

[709]

-r <runtime>: One of the supported runtime configurations, if you wish to
target a specific one; for a list of the possible values, see Chapter 19, Application
Deployment
-f <framework>: One of the supported frameworks; for a list of the possible
values, see Chapter 19, Application Deployment

Once you have the NuGet file (.nupkg), you can publish it to a NuGet repository or
remove an existing version. This is achieved through the nuget command, and these are
the most common arguments:

push <package> -s <url> -k <apikey>: Pushes a package with a specific
version to a source server using an NuGet application programming interface
(API) key
--skip-duplicate: Ignores if the package and version already exists on the
server
delete <package> -s <url> -k <apikey>: Deletes a package with a
specific version from a NuGet repository
locals -l: Lists the local NuGet cache locations
locals -c <all | http-cache | global-packages | temp>: Clears one
of the specified NuGet caches; all clears all of them

Global tools
.NET Core has global tools that can be used as extensions to the dotnet tool; for example,
user secrets and Entity Framework (EF) Core are global tools that are accessed and
installed through dotnet itself. The command is tool, and some of the most common
arguments are the following ones:

install <tool>: Installs a tool; obviously incompatible
with uninstall or update
uninstall <tool>: Uninstalls a tool; cannot be used with install or update
update <tool>: Updates a tool to the latest version; cannot be used
with install or uninstall
-g: Installs/uninstalls/updates the tool globally; if not specified, it operates on the
local folder
--version <version>: Installs a specific version; only for install
list: Lists the installed tools

Appendix A: The dotnet Tool Chapter 20

[710]

restore: Restores the tools specified in a manifest file; cannot be used with -g
--tool-manifest <manifest>: The path to a manifest file
--configfile <file>: Specifies the path to a NuGet configuration file
--add-source <location>: Adds an additional package
source; <location> can be a NuGet repository Uniform Resource Locator
(URL) or a local folder

Tools can either be installed globally in a default, operating system-specific location that is
added to the path or locally, in a bin folder. Tools are installed from NuGet repositories.

User secrets
dotnet can be used to manage user secrets too. The command is user-secrets, and the
most used arguments are the following ones:

-p <project>: The path to the project to run; if it is not supplied, it tries to find
a single project or solution in the current folder
-c <configuration>: One of the configuration values, such as Debug,
Release, and many others
clear: Clears the user secrets
init: Initializes the user secrets database
list: Lists the current keys
remove <key>: Removes a secret key
set <key> <value>: Sets a key value
--id <id>: The user secret's ID to use; it is normally specified on
the .csproj file

File watcher
The dotnet tool, through the watch extension, can be used to run a command while
monitoring the files under a folder. It is useful for detecting changes to files and reacting
immediately to them. Any command can be run through watch, and the Microsoft Build
(MSBuild) .csproj syntax supports specifying exclusions to extensions or files that need
not be monitored. The command is watch, and any other commands that you would pass
to dotnet can be passed after it, such as, for example, the following:

dotnet watch test

Appendix A: The dotnet Tool Chapter 20

[711]

By default, watch tracks all file extensions; if you wish to exclude and include only certain
ones, you can specify them on a .csproj file, using global patterns, as follows:

<ItemGroup>
 <Watch Include="***.js"
Exclude="node_modules***;***.js.map;obj***;bin***" />
</ItemGroup>

This monitors all .js files except any files under node_modules, obj, or bin, and any files
ending with .js.map. It is also possible to specify on a file-by-file basis which files should
not be monitored on a project file. It goes like this:

<ItemGroup>
 <Compile Include="File.cs" Watch="false" />
 <EmbeddedResource Include="Resource.resx" Watch="false" />
 <ProjectReference Include="..\ClassLibrary\ClassLibrary.csproj"
Watch="false" />
</ItemGroup>

In this example, we can see that we turned off monitoring for a single file, an embedded
resource, and a whole project reference.

EF Core
The way to have EF Core interact with a database is also through dotnet—specifically,
the ef tool. Here are a few useful commands:

database drop: Drops the target database
database drop -f: Forces the drop operation without confirmation
database drop --dry-run: Shows what would be dropped, but does not
actually do it
database update <0 | migration>: Updates the target database to a specific
migration; if none (or 0) is specified, it defaults to the latest
-c <context>: The context type name or fully qualified type name; if not
specified, it must be the only context on the target project
-p <project>: The project to use for the context
-s <startupproject>: The startup project to use
--no-build: Does not build the project prior to running it; assumes that a
version is already built
--configuration <configuration>: One of the configuration values, such as
Debug, Release, and many others

Appendix A: The dotnet Tool Chapter 20

[712]

-r <runtime>: One of the supported runtime configurations, if you wish to
target a specific one; for a list the possible values, see Chapter 19, Application
Deployment
-f <framework>: One of the supported frameworks; for a list of the possible
values, see Chapter 19, Application Deployment
migrations add <migration>: Creates a new migration with a given name
migrations add <migration> -o <folder>: The destination output
directory; if not specified, it defaults to Migrations
migrations list: Lists the existing migrations
migrations remove: Removes the latest migration
migrations script <0 | from> <to>: Generates a Structured Query
Language (SQL) script with the changes from the source migration (which, if not
specified, defaults to the initial one) to the target one (if not specified, is the last)
dbcontext list: Lists the available contexts on the target project
dbcontext info: Shows info about a specific context; requires the -c parameter
dbcontext scaffold <connection> <provider>: Generates Plain Old
Common Language Runtime (CLR) Object (POCO) classes for a specific
connection string and provider
--schema <schema>: The schema name for which to generate POCO classes;
multiple ones can be supplied; if none, all schemas are included
--table <table>: The table name for which to generate POCO classes;
multiple ones can be supplied; if none, all tables are selected
--use-database-names: Instead of using C#-like names, use the names as they
are in the database
-d: Uses attributes to configure the model generated from scaffold
--context-dir <path>: The path on which to place the generated context

Assessments

Chapter 1
What are the benefits of dependency injection?1.

It allows better separation of the interface and the actual implementation and
lets us change the implementation at any time. It also recursively injects all
required dependencies.

What are environments?2.

A named set of startup values.

What does MVC mean?3.

Easy peasy: model-view-controller!

What are the supported lifetimes in the built-in dependency injection4.
container?

Transient (a new instance is created every time), Scoped (a new instance is
created on each HTTP request and always returned), and Singleton (a
single instance is created).

What is the difference between .NET Core and .NET Standard?5.

.NET Standard is just a standard set of APIs that is implemented
by .NET and .NET Core, among others.

What is a metapackage?6.

A set of packages, as defined by Microsoft. It contains all the packages that
you will typically need for a simple ASP.NET Core project.

What is OWIN?7.

OWIN stands for Open Web Interface for .NET, and you can read about it
at http:/ ​/​owin. ​org. Essentially, it's a specification for decoupling a web
application from a particular server, like IIS.

http://owin.org
http://owin.org
http://owin.org
http://owin.org
http://owin.org
http://owin.org
http://owin.org

Assessments

[714]

Chapter 2
What is the root interface for retrieving configuration values?1.

It's IConfiguration. It's where IConfigurationRoot and
IConfigurationSection inherit from.

What are the built-in file-based configuration providers in .NET Core?2.

JSON, XML, and INI.

Is it possible to bind configurations to POCO classes out of the box?3.

Yes, but we need to add
the Microsoft.Extensions.Configuration.Binder NuGet package.

What is the difference between the IOptions<T> and IOptionsSnapshot<T>4.
interfaces?

IOptionsSnapshot<T> gets updated whenever the underlying
configuration changes (if we configured it for that), but IOptions<T>
always retains the original configured value.

Do we need to register the configuration object explicitly in the dependency5.
injection container?

No. As of ASP.NET Core 2.0, IConfiguration is injected automatically.

How can we have optional configuration files?6.

When registering a file-based configuration file, set the optional parameter
to true.

Is it possible to get notifications whenever a configuration changes?7.

Yes. We need to get a reload token and then register in it a change callback
delegate.

Assessments

[715]

Chapter 3
What are the special route tokens?1.

[controller], [action], and [area].

How can we prevent a route from being selected depending on the request's2.
HTTP verb?

Apply one of the [HttpPost], [HttpGet], [HttpPut], or other HTTP
attributes to its action method.

How can we prevent a route from being selected unless the request uses3.
HTTPS?

Apply the [RequireHttps] attribute to the route's action method.

How can we serve different views depending on the HTTP error code that4.
occurred?

One way is to use either UseStatusCodePagesWithRedirects
or UseStatusCodePagesWithReExecute inside the Configure method of
the Startup class, create an action method on a controller that responds to
the specific error code (for example, /error/401) by adding an
[HttpGet("error/401")] attribute to it.

How can we prevent methods in controllers from being called?5.

The best way is to apply a [NonAction] attribute to the methods that we
want to hide.

How can we force a route value to be of a particular type (for example, a6.
number)?

Add the number validation token—for example,
[HttpGet("{id:number]")].

What is a route handler?7.

It's the implementation of the IRouter interface that actually processes the
request. For MVC, it is normally the MvcRouteHandler class, which is
added to the pipeline by the UseMvc extension method.

Assessments

[716]

Chapter 4
What is the default validation provider for the model state?1.

It is the Data Annotations API.

What is an action?2.

A method that can be called on a controller in response to an HTTP request.

What is globalization and how does it differ from localization?3.

Globalization means your application will support multiple cultures.
Localization is the process of making your application work and react
accordingly to a specific culture.

What is temporary data used for?4.

Temporary data is used to persist data between two subsequent requests for
the same client, like a micro-session.

What is a cache good for?5.

A cache is useful for data that either takes a long time to produce or to
retrieve. We store such data in the cache and can quickly access it.

What is a session?6.

A session is a group of user interactions with a website that takes place
within a given time frame. Each interaction is associated with the session by
means of session ID.

What are the benefits of a controller inheriting from the Controller base7.
class?

The Controller class offers some useful methods that are not present in
ControllerBase, such as methods to return views (View).

Assessments

[717]

Chapter 5
What is the base class for a view?1.

It's RazorPage<T>, where the T generic type is dynamic by default.

How can you inject services into a view?2.

Either by using the @inject declaration on a .cshtml file or by inheriting
from the RazorPage<T> class and using constructor injection.

What is a view location expander?3.

It's a component that can be used to tell ASP.NET Core where to look for the
physical .cshtml files.

What is a view layout?4.

It is similar to master pages in ASP.NET Classic. Essentially, it defines the
layout, or structure, that different pages can use.

What are partial views?5.

Partial views are similar to web user controls (.ascx files) in ASP.NET
Classic. They are files containing reusable markup and possibly code that is
meant to be reused across different views.

What functionality can replace partial views?6.

View components.

What does the special file _ViewStart.cshtml do?7.

Whatever code, @using, or @inject declarations you put in it is executed
before the actual view.

Assessments

[718]

Chapter 6
What is the default validation provider?1.

It's the data annotations validator.

What do we call the methods that are used to render HTML fields?2.

HTML helpers.

What is model metadata?3.

It's the code that describes what a model's properties are, such as their
display name, whether or not they are required, what validation should they
use, and so on.

Does ASP.NET Core support client-side validation?4.

Yes, it does.

What is the base interface that can be bound to an uploaded file?5.

IFormFile.

What is unobtrusive validation?6.

It's the process by which adding a couple of JavaScript libraries
automatically sets up validation, based on some conventions.

How can we perform server-side validation?7.

By leveraging the [Remote] attribute and implementing a validation action
method on a controller.

Chapter 7
What attribute can we use to mark a method or controller so that it can only be1.
called through HTTPS?

[RequireHttps].

Assessments

[719]

What is the difference between role-based and policy-based authorization?2.

Policy-based authorization is more powerful; it can use both roles or any
other custom requirement that you can think of.

What is the purpose of CORS?3.

CORS is a mechanism by which servers can tell the browsers to bypass their
normal security restrictions and allow the loading of static resources
(normally scripts) from different sources (servers).

What is the purpose of HSTS?4.

It is a web policy for telling the browsers that they should only interact with
a server through HTTPS. It is specified in RFC 6797.

What is the challenge stage of the authentication process?5.

The challenge is when the server asks the client for valid credentials.

Why should we take care when binding requests to model classes?6.

We do not want sensitive information that should not be provided by the
client to be bound to the model.

What is the sliding expiration of a cookie?7.

It means that on each request, the cookie is renewed for the same amount of
time that it was initially set to.

Chapter 8
What is OData?1.

OData is an open protocol for exposing and consuming queryable RESTful
data models.

What is content negotiation?2.

It is a process by which the client and the server agree on the type of content
that is to be returned.

Assessments

[720]

Why is it not suitable to use cookies for authentication in web APIs?3.

Because usually the client for these APIs will not be a web browser, and
therefore may not have the capacity to store cookies.

What are the different ways by which we can ask for a specific version of our4.
API?

The query string or an HTTP header.

What is the purpose of conventions in regard to action methods?5.

A convention allows us to define the return type and HTTP status code that
is returned from each action method, and any exceptions that may arise.

What are problem details?6.

A way to return error information in a standard way. Problem details are
defined in RFC 7807.

What is REST?7.

An architectural style for defining web services, designed for
interoperability, that relies on HTTP verbs, URLs, and headers.

Chapter 9
How can we load partial views from a different assembly?1.

By using embedded resources, or better, Razor class libraries.

What are the two ways to render partial views?2.

One is to use the Html.PartialAsync method and the other is to use the
<partial> tag helper.

What is the difference between tag helpers and tag helper components?3.

Tag helpers render a component instead of a custom or an HTML tag, and a
tag helper component allows us to intercept and possibly modify all HTML
tags before they are rendered.

Assessments

[721]

How can we restrict what is displayed on a view depending on the4.
environment?

By using the <environment> tag helper.

What is the difference between Razor class libraries and class libraries?5.

Razor class libraries allow us to make static resources available to web
projects very easily, whereas class libraries are only about code.

What are embedded resources?6.

Static files (images, text, and others) that are included inside assemblies and
can be retrieved from them.

What are the two syntaxes for executing view components?7.

One is the code syntax—Component.InvokeAsync("mycomponent", new

{ arg1 = "...", arg2 = 123 })—and the other is
markup—<mycomponent arg1="..." arg2="123"/>.

Chapter 10
What are the two interfaces that are used to control authorization to a resource?1.

IAuthorizationFilter and IAsyncAuthorizationFilter.

Why are there two versions of each kind of filter?2.

There is always an asynchronous version, which should probably be
preferred.

How can we apply a filter by specifying its type on an action method?3.

Either through the ServiceFilterAttribute or TypeFilterAttribute.

How can we apply an ordering to the application of filters?4.

When applying a filter using attributes, we can use the Order property.

What are the different levels to which we can apply filters?5.

Global, controller, and action method.

Assessments

[722]

How can we pass context from one filter to others?6.

Using the HttpContext.Items collection.

How can filters make use of dependency injection?7.

The [ServiceFilter] can obtain filters from DI depending on their type.

Chapter 11
Do Razor Pages use code-behind?1.

Yes, they can, but it is not mandatory. The code-behind class must inherit
from PageModel and be located together with the .cshtml file.

What is the purpose of the Page Model?2.

It is where the handlers for the different HTTP verbs (GET, POST, and so on)
are implemented.

What are page handlers?3.

They are the code that processes the requests inside a PageModel class.

How can we restrict a Razor Page from being called by anonymous users?4.

We add a convention using the AllowAnonymousToPage extension method
when configuring Razor Page options with the AddRazorPagesOptions
method, following AddMvc.

What are the two ways by which we can inject services into a Razor Page?5.

One way is to use constructor injection on the PageModel class and the other
is by using the @inject directive on the .cshtml file.

Do Razor Pages use page layouts?6.

Yes—just make sure you keep them separated from the other view layouts.

Where are Razor Pages served by default?7.

The Pages folder.

Assessments

[723]

Chapter 12
What are event counters?1.

Lightweight code that is emitted by the applications and picked up by the
operating system.

What is the benefit of telemetry?2.

To centralize the storing of logs and events and monitor applications from a
single dashboard.

How can we filter logging?3.

By category name or log level.

What are health checks?4.

They indicate how well our application or dependencies (for example,
databases, external services, and so on) are.

How is middleware useful in logging?5.

It can sit in the middle of the request and log before and after the request is
processed.

What is ELM?6.

Error logging middleware—it is used to view events raised during the
processing of a request.

What are the benefits of diagnostics over common logging?7.

Diagnostics offers strong typed events and integration with ELM for the easy
viewing of events.

Assessments

[724]

Chapter 13
What are the more popular unit test frameworks?1.

NUnit, xUnit, and MSTest.

What is the benefit of mocking?2.

Substituting dependencies.

What is the difference between unit and integration testing?3.

A unit test should be fast, not have any side effects, and should only test a
specific operation, whereas an integration test works on a much bigger scale.

What is TDD?4.

Test-driven development: a methodology that advocates starting with the
unit tests.

What are the limitations of unit tests?5.

They usually do not test aspects such as user interfaces or database
operations.

How can we pass data automatically to unit tests?6.

All of the studied unit test frameworks allow the passing of data from
attributes to test methods.

What does red-green-refactor mean?7.

It's a practice of TDD where we start by writing the tests, which initially fail
(red), then we make them pass (green), and only then should we worry
about refactoring the code so as to make it more efficient.

Chapter 14
What are the benefits of TypeScript?1.

It has strong typing and is a full object-oriented programming model.

Assessments

[725]

Does JavaScript only run on browsers?2.

No—it can also run on the server side.

What are SPAs?3.

Single-page applications, applications based on JavaScript that call server-
side functionality through AJAX-style calls.

What is the purpose of Library Manager?4.

To install client-side libraries in local projects.

Are the templates for dotnet SPA frameworks hardcoded?5.

No—they are available as NuGet packages, and can be installed and
updated.

How can we run JavaScript code from .NET Core?6.

NodeServices provides this functionality.

Name a few SPA frameworks that have dotnet templates.7.

Vue, React, Angular, Aurelia, and Knockout.

Chapter 15
What are the two hosts available to ASP.NET Core 3?1.

Kestrel and HTTP.sys.

What are the two kinds of cache that are available?2.

In-memory and distributed.

What is the benefit of compressing a response?3.

Minimizing the latency of the response.

What is the purpose of caching a response?4.

Avoiding the need to request and send responses.

Assessments

[726]

Do asynchronous actions improve performance?5.

No, but they improve scalability.

What is bundling?6.

Bundling is the combining of multiple files in a single response.

What are profilers good for?7.

They can show us what parts of our code are taking the most time to execute.

Chapter 16
What are the two serialization formatters supported by SignalR?1.

JSON and Message Pack.

What transports does SignalR support?2.

AJAX long polling, WebSockets, and server-sent events.

What are the benefits of the Message Pack protocol?3.

Message Pack is more compact, thereby resulting in lower latency.

Which targets can we send messages to?4.

Single recipient, all users, or groups of users.

Why would we restrict the transport to be used by SignalR?5.

Some transports might not be supported or might be restricted—for
example, WebSockets.

Can we send messages to SignalR from outside the web application where it is6.
hosted?

Yes.

Can we use authentication with SignalR?7.

Yes.

Assessments

[727]

Chapter 17
What is the difference between a page and a component?1.

The only difference between the two is that pages can be directly accessed
from the browser.

What is the difference between the Server and WebAssembly hosting models?2.

The Server model relies on SignalR to communicate to and from the server,
whereas WebAssembly lives only on the client that is being compiled to
webassembly, hence the name. WebAssembly can work while disconnected.

Can we use tag helpers in Blazor pages?3.

No, we can't (in .razor files).

Is it possible to access the containing web page from inside Blazor?4.

Yes, it is, using JavaScript interoperability.

Does Blazor support dependency injection?5.

Yes, it does, but not constructor injection.

Do Blazor page layouts support regions?6.

Yes, but only a single region—body.

What is the difference between the different rendering modes of a component?7.

The difference lies in performance and capacities: Static is fastest, but does
not support server events, Server is the slowest and cannot take parameters,
and ServerPrerendered is a tradeoff between the two—a part of the
component is prerendered, but the actual interaction only starts when the
page fully loads.

Assessments

[728]

Chapter 18
What is gRPC?1.

gRPC is Google Remote Procedure Call, a cross-platform technology for
implementing web services that are agnostic regarding the technology.

What is the purpose of URL rewriting?2.

Presenting user-friendly URLs that will be translated to something
meaningful to the application.

What are background services useful for?3.

Running tasks on the background.

What is the purpose of areas?4.

Physically and conceptually separating parts of the application.

What are conventions good for?5.

Automatically enforcing defaults.

How can we execute code from a referenced assembly automatically?6.

By adding a [HostingStartup] attribute to a library and by including it in
the ASPNETCORE_HOSTINGSTARTUPASSEMBLIES environment variable.

Can we load files from inside assemblies?7.

Yes—either as embedded resources or from Razor class libraries.

Chapter 19
What are the advantages of using IIS for exposing your app to the outside?1.

You can add logging and Windows authentication, for example.

Why would you host your web app as a Windows Service?2.

It makes it easier to start and stop and to see whether the service is running.

Assessments

[729]

What is the advantage of using Docker?3.

You can accurately control the dependencies and the running environment.

What is a self-contained deployment?4.

It is a deployment that does not require .NET Core to be installed on the
target machine.

Is it possible to detect changes and recompile the code automatically at5.
runtime?

Yes—we just need to run the dotnet watch command.

Can we deploy using the command line or do we need Visual Studio?6.

We can use both the command line (dotnet) or Visual Studio.

To what cloud providers can you deploy from inside Visual Studio?7.

Azure and AWS are two examples.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

C# 8 and .NET Core 3 Projects Using Azure - Second Edition
Paul Michaels, Dirk Strauss, Et al

ISBN: 978-1-78961-208-0

Understand how to incorporate the Entity Framework Core 3 to build ASP.NET
Core MVC applications
Create a real-time chat application using Azure’s SignalR service
Gain hands-on experience of working with Cosmos DB
Develop an Azure Function and interface it with an Azure Logic App
Explore user authentication with Identity Server and OAuth2
Understand how to use Azure Cognitive Services to add advanced functionalities
with minimal code
Get to grips with running a .NET Core application with Kubernetes

https://www.packtpub.com/in/web-development/c-8-and-net-core-3-0-projects-second-edition

Other Books You May Enjoy

[731]

Hands-On RESTful Web Services with ASP.NET Core 3
Samuele Resca

ISBN: 978-1-78953-761-1

Gain a comprehensive working knowledge of ASP.NET Core
Integrate third-party tools and frameworks to build maintainable and efficient
services
Implement patterns using dependency injection to reduce boilerplate code and
improve flexibility
Use ASP.NET Core's out-of-the-box tools to test your applications
Use Docker to run your ASP.NET Core web service in an isolated and self-
contained environment
Secure your information using HTTPS and token-based authentication
Integrate multiple web services using resiliency patterns and messaging
techniques

https://www.packtpub.com/in/application-development/hands-restful-web-services-aspnet-core

Other Books You May Enjoy

[732]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

(
(a) tag 359
(cache) tag
 about 360
 properties 360
(component) tag 361
(component) tag helper 603
(environment) tag 362
(form) tag 362
(link) tag 363
(partial) tag
 about 364
 properties 365
(script) tag 363
(select) tag
 about 364
 properties 364

.

.NET Core environment 54, 55, 56

.NET Core SDK
 dotnet tool 65
 tools 65
.NET Core, configuration information
 Azure Key Vault 78
 command line 78, 79
 default providers 81
 Docker 80, 81
 environment variables 79, 80
 memory provider 80
 user secrets 76, 77
.NET Core, Logging framework
 about 457
 custom log providers, writing 464, 466
 DI, with log providers 467
 log levels, defining 459, 460

 logging attributes, using 467, 469
 logging providers, using 461, 462
 logging services, using 458
 logs, filtering 462, 464
.NET Core
 about 11, 12, 13, 15, 17
 configurations 69, 70, 71
 dependencies 18, 20
 frameworks 18, 20
 Node, calling from 530
 platforms 17, 18
 targeting 20, 21
 working with 68
.NET framework
 targeting 20, 21
.NET method
 calling, from JavaScript function 624, 625
 JavaScript function, calling 623
.NET MVC implementation
 actions 25
 controller 25
 filters 26
 views 26

[
[Authorize] attribute
 using 302

A
Absolute 551
Accept header
 reference link 318
action constraints 157
action filters 375, 377, 388, 390
action method
 about 107
 using, to retrieve files 447

[734]

action parameter 155, 159, 160, 161, 162
action results
 about 174, 175, 177, 178, 179
 caching 557, 559
 redirecting 179, 180
 streaming 181
actions
 about 155
 asynchronous actions 156
 context, accessing 157
 finding 155
 model binding 162
 model validation 170, 172, 174
 synchronous actions 156
Active Server Pages (ASP) 8
AddRazorOptions method
 features 232
AddViewOptions
 properties 231
admin area 233
AJAX Comet 572
AJAX long polling 572
AJAX
 content, returning 283
 restrictions, enforcing 282
 using, for validation 280, 281
 validation, performing 282
always-run-result filter 395, 396
Amazon Web Services (AWS)
 about 697
 deploying 698
 deploying by 697, 698
AngleSharp 523
anonymous types models
 using 248
anti-forgery
 properties 362
 requests, checking 435, 436, 437
Apache 39
API documentation
 adding 332, 333
 generating 326, 328, 329, 330, 332
API versioning
 about 323
 default version, specifying 325

 header values, using 324
 invalid versions 326
 query string, using 324
 version mapping 326
 versions, deprecating 325
Application Insights (AI) 485
application lifetime events 645, 646
application programming interface (API) 69, 488,

709

application
 manually, deploying 687, 688
 real-time rebuilding 690
 self-contained deployments 689
 self-contained runtime 689
 target framework, setting up 688, 689
areas
 about 135, 233
 HTML helpers 638
 implementing 684
 routing 131, 132
 tag helpers 638
 using 298
 using, for organizing code 636
 using, in code 637
Arrange-Act-Assert (AAA) 510
arrow function expression
 reference link 570
asp-action
 properties 359
ASP.NET Core 2.0 59
ASP.NET Core 2.1
 about 59
 API conventions 61
 GDPR-related template changes 61
 generic host builder 61
 HTTPS, by default 61
 Identity UI library 60
 MVC functional test improvements 61
 partial tag helper 60
 Razor class libraries 60
 Razor pages improvements 60
 scaffolding 60
 SignalR 59
 SPA templates, updating 62
 supporting types 61

[735]

 top-level parameter validation 60
 virtual authentication schemes 60
ASP.NET Core 2.2
 about 62
 API code analyzers 62
 endpoint routing 62
 Health check API 62
 problem details (RFC 7807) support 62
ASP.NET Core 3.0
 .NET Standard 2.1 63
 about 62
 Blazor 63
 built-in JSON support 63
 C# 8.0 63
 endpoint routing 63
 gRPC 63
 HTTP/2 support 63
 IdentityServer integration 63
ASP.NET Core 3.x
 migrating 64
 version set 64, 65
ASP.NET Core app, publishing with Visual Studio
 reference link 697
ASP.NET Core apps, with file watcher
 reference link 690
ASP.NET Core model conventions 651, 652, 653,

654, 655
ASP.NET Core module 37
ASP.NET Core Module 692
ASP.NET Core project
 Visual Studio template 57, 58, 59
ASP.NET Core, in Windows Service
 reference link 702
ASP.NET Core, listen port and address
 code, using 45
 command line, using 43, 44
 dynamically ports, setting 45
 environment variables, using 44
 launchSettings.json, using 44
ASP.NET Core, tuning parameters
 limits 544
 number of simultaneous connections 543
 timeouts 545, 546
ASP.NET Core, view files
 _ViewImports.cshtml 230

 _ViewStart.cshtml 230
ASP.NET Core
 about 8, 9, 10, 11
 Apache 39
 configuration 39
 configuration, launching 41, 42
 features 40, 41
 host, selecting 542, 543
 hosting 36, 37, 542
 HTTP.sys 542
 Internet Information Services (IIS) 39
 Kestrel 38, 542
 listen port and address, setting 43
 Nginx 39
 tuning, configuration 543
 WebListener/HTTP.sys 38
ASP.NET IIS Rewrite module
 reference link 442
ASP.NET Web API
 URL 306
assertions
 reference link 517
assets search order 290
asynchronous actions 156
 using 156, 547, 548, 549
asynchronous programming
 reference link 663
asynchronous version
 versus synchronous version 376
Attributes (string) 356
authentication 399
authorization filters
 applying 384
authorization policies 385
authorization
 anonymous access 434
AWS CloudWatch 492, 493
AWS Toolkit for Visual Studio
 about 697
 reference link 697
Azure Active Directory (Azure AD)
 about 419
 using 419, 420
Azure Application Insights
 about 485, 486, 487, 488

[736]

 custom events, sending 488, 489, 490, 491
Azure Key Vault 78
Azure
 deploying by 696, 697

B
background services
 hosting 649, 650, 651
base path 233
Blazor app, security
 applying 628
 authorization, requesting 628, 629
 CORS 632
 current user, identity checking 630, 631
 permissions, checking 632
Blazor app
 used, for creating HTTP calls 627, 628
Blazor component
 (component) tag helper 602, 603
 building 602
 cascading properties 604, 605
 catch-all properties 605
 child content properties 606
 HTTP context, accessing 611
 lifecycle 609, 610
 lists 608
 locating 608
 modes, rendering 609
 parameters 361
 properties 603, 604
 reusing, in projects 610
 sample component 611, 612, 613
 with generic parameters 607
Blazor Server
 implementing 590, 591
 versus Blazor WebAssembly 593
Blazor WebAssembly
 implementing 591, 592
 versus Blazor Server 593
Blazor
 about 586
 implementing 589
Brotli 562
Bundler & Minifier
 reference link 547

bundling 546

C
C# 705
cache profile 183, 558
cache
 distributed cache 191
 in-memory cache 190
 using 189
caching
 used, for improving performance 550
Cascading Style Sheets (CSS) 527, 617
catch-all properties 605
catch-all route 600
 using 139
central processing unit (CPU) 474
checkboxes 253
child content properties 606
circuit 588
claims
 using 401, 402
client-side development 527
client-side model validation
 about 275
 configuring 276
 custom validation 277, 278, 279
code syntax 348
command design pattern
 reference link 175
Common Language Runtime (CLR) 614
communication protocols
 AJAX long polling 572
 automatic reconnection 573, 574
 selecting 572, 573
 Server-sent events 572
 WebSockets 572
configuration sections 85
configuration values
 binding, to classes 87, 88
 change notifications, handling 91, 92
 change notifications, reloading 91, 92
 configuration sections 85, 86
 injecting 89, 90
 named configuration options, retrieving 91
 obtaining 86, 87

[737]

 post-configuration actions, running 92, 93
 pre-configuration actions, running 92, 93
 using 84
 values explicitly, obtaining 84
 values explicitly, setting 84
content negotiation
 output formatter 318
 output formatters, selecting 319
 performing 315, 317, 318
context
 accessing 157, 383
 action context 157
 controller context 157
 HTTP context 157
 obtaining 28, 29
 working with 30
Continuous Integration (CI) 699
controller action 106
Controller class
 properties 148
controller filters 376
controller life cycle 153, 154
ControllerBase class
 about 147, 149
 advantages 147
 properties 147
controllers
 about 107
 ControllerBase class 147, 148
 finding 152
 POCO controllers 149
 using 146
conventions 302, 303
cookie security 424, 425
Create, Retrieve, Update, and Delete (CRUD) 307
cross-origin resource sharing (CORS)
 about 443, 445, 628, 632
 reference link 443
Cross-Site Request Forgery (CSRF) 425, 435
cross-site request scripting (XSS) 303
custom authentication
 about 404, 405
 Azure AD, using 419, 420
 cookie security 424, 425
 IdentityServer, using 416, 417, 418

 JWT, using 309
 Microsoft Identity 405, 406, 408
 social logins, using 421, 422
custom feature filters 99, 100, 101
custom helpers 257, 259
custom logging middleware
 writing 469, 470
custom provider, for configuration
 creating 81, 83

D
data annotation validation
 about 269, 271
 error messages 272
Data Annotations API 617
Data Protection API 626
data protection providers
 about 446
 reference link 447
 using 446
data
 caching 550
 passing, to partial views 228
 passing, to view 223
Deflate
 reference link 562
dependency injection (DI)
 about 46, 48, 51, 52, 53, 153, 195, 207, 234,

235, 381, 382, 415, 457, 590, 622
 registered services 622
 resources 235, 237
 Scoped lifetime 623
 services, injecting 622
 translated views 238
 using 299
 using, with log providers 467
 validating 53, 54
developer exception pages
 using 138, 139
disabled features handler 101, 102
distributed cache
 about 189, 191, 554, 555, 556
 Redis 554
 SQL server 554
 use case 192

[738]

Docker Compose
 reference link 699
Docker For Windows
 reference link 701
Docker
 about 80, 699
 deploying with 699, 701
Dockerfile 699
Document Object Model (DOM) 590
DOM elements
 event handling 618, 619, 621
 referencing 621
 state, updating 621
 two-way binding 618
 working with 617
domain-specific language (DSL) 26
dotnet tool
 about 65, 704
 EF Core 711, 712
 executing 706, 707
 file watcher 710, 711
 global tools 709
 NuGet package 708, 709
 package references, managing 706
 project, building 704
 project, creating from templates 705
 publishing 707, 708
 unit testing 705, 706
 user secrets, managing 710
dropdowns 252
DRY (Don't Repeat Yourself) 227
dynamic binding 266
dynamic routing
 using 116, 118, 119
dynamic-link libraries (DLLs) 587

E
editor templates 261
EF context
 integrating, with HTTP context 665, 667
EF Core
 about 661
 asynchronous methods, using 662
 database, initializing 663, 664
 DbContext, registering 662

 eager loading 663
 migration errors, displaying 665
 migrations, executing 665
 using 661
Elastic Beanstalk
 reference link 698
embedded resources
 working with 646, 648
endpoint routing 107, 108, 109, 110
Entity Data Model (EDM) 334
Entity Framework (EF) 333, 406, 495, 587, 709
error handling 181, 320, 321, 322
error handling, in routing
 about 137
 catch-all route, using 139
 developer exception pages, using 138, 139
 error, routing to controller routes 138
 status code pages, using 140
Error Logging Middleware (ELM) 472
error
 routing, to controller routes 138
European Union (EU) 450
event handling 618, 619, 621
Event Tracing for Windows (ETW) 461
exception filters 392, 393
ExceptionDispatchInfo documentation
 reference link 387
exclude attribute 362
execution order 377, 378
Extensible Markup Language (XML) 68, 215
extensions
 code, hosting 649
 hosting 648

F
F# 705
F.I.R.S.T principles of unit testing 500
Facebook
 about 422
 reference link 422
fallback endpoints 112, 113
feature filters package
 including 98
 percentage filter 98
 window filter 99

[739]

feature toggling
 about 96, 97, 98
 custom feature filters 99, 100, 101
 disabled features handler 101, 102
 feature filters packages, including 98
file uploading
 about 284, 285
 direct access, to submitted files 285
 reference link 285
file-based providers
 about 73
 INI provider 76
 JSON provider 75
 XML provider 75
filter factory 380, 381
filter ordering 379
filter provider 380, 381
filter scope 376
filter types
 about 374, 376
 action filters 375
 always-run-result filter 375
 authorization filters 374
 exception filters 375
 execution order 377, 378
 page filters 375
 resource filters 374
 result filters 375
 synchronous version, versus asynchronous

version 376
filters
 applying, through attributes 378, 379
 in pipeline 374
 using 299
form components 616
form context
 about 242, 615, 616
 using 242
form editing 614, 615
form validation 617
forms
 about 249
 working with 614
frameworks, for .NET Core
 MSTest 501

 NUnit 501
 xUnit 501

G
garbage collector (GC) 475
generic display 256
generic editor 256
generic host 22
Global Assembly Cache (GAC) 14
Global Data Protection Regulation (GDPR)
 about 61, 409, 450
 personal data 452
 reference link 450
 required cookies 450, 451
global filters 376
globalization 195, 197, 198, 199, 200
globally unique identifier (GUID) 76
Google provider
 about 423
 reference link 423
gRPC framework
 about 670
 interceptors 676, 678
 interface, defining 671, 672, 673
 listening options 678
 messaging types 673
 service, hosting 674, 675
gRPC, messaging types
 bidirectional-streaming RPCs 673
 client-streaming RPCs 673
 server-streaming RPCs 673
 unary RPC 673
gRPC
 reference link 673
GZip
 reference link 562

H
health checking framework
 performing 494, 496, 497
hidden values 254
host
 selecting, from attributes 122, 123
hosting models, Blazor
 about 586, 587, 588

[740]

 server 586
 WebAssembly 586
HSTS preload
 about 443
 URL 443
HTML elements
 IDs 255
 names 255
 values 255
HTML encoding
 applying 437
HTML file upload specification
 reference link 284
HTML helpers
 checkboxes 253
 custom helper 257
 custom helpers 259
 dropdowns 252
 forms 249
 generic display 256
 generic editor 256
 hidden values 254
 labels 255
 links 254
 list boxes 253
 multi-line text boxes 251
 passwords 252
 radio button 253
 raw HTML 255
 single-line text boxes 250
 using 249
 utility methods 256
 utility properties 256
 validation messages 257
HtmlHelperOptions
 properties 231
HTTP calls
 creating, from Blazor app 627, 628
HTTP client factories
 using 678, 680, 681, 683, 684
HTTP context
 accessing 611
 used, for integrating EF context 665, 667
HTTP Cookie
 reference link 425

HTTP methods 127
HTTP redirection
 reference link 658
HTTP status code 301
 reference link 180
HTTP status code 302
 reference link 180
HTTP status code 308
 reference link 180
HTTP Strict Transfer Security (HSTS)
 about 442
 reference link 442
 using 442
HTTP.sys 441
hub communication
 from different application 579
 from outside 577
 from same web application 577, 579
hub
 about 568, 569
 hosting 569, 570, 571
HyperText Markup Language (HTML) 594
HyperText Transfer Protocol Secure (HTTPS)
 app, hosting 439
 certificates 438
 global filter, using 441
 HSTS preload 443
 HTTPS, using 442
 middleware, redirecting to 442
 working with 438

I
IdentityServer4
 reference link 416
IdentityServer
 using 416, 418
IIS Express 439
IIS Manager 10, 692
IIS Rewrite module 661
IIS Rewrite Module
 reference link 656
IIS URL Rewrite module
 reference link 656
in-memory cache
 about 189, 190, 551, 552, 553, 554

[741]

 operations 191
 properties 190
include attribute 362
INI provider 76
initialization (INI) 72
inline handlers
 routing to 124, 125
input formatters 168, 264
input/output (I/O) 473, 547
integration test
 about 522
 working 522
 working on 523, 524
Intermediate Language (IL) 482
International Organization for Standardization

(ISO) 88
Internet Information Services (IIS)
 about 31, 36, 39, 68, 402, 692
 authentication 692
 custom response 692
 deploying through 692, 694
 logging 692
 management 692
 security 692
inversion of control (IoC) 46, 48, 51, 52, 53
IResourceFilter interface, methods
 OnResourceExecuted 386
 OnResourceExecuting 386

J
Java Enterprise Edition (JEE) 8
JavaScript function
 .NET method, calling 624, 625
 calling, from .Net method 623
JavaScript interoperability 623
JavaScript modules
 reference link 275
JavaScript Object Notation (JSON) 72, 487, 531
jQuery 566
JSON provider 75
JSON Web Token (JWT)
 about 418
 URL 311
 using 309, 310, 311
JSON.NET

 about 266
 reference link 266
JUnit 501

K
Kestrel
 about 36, 38, 440
 reference link 38
Knockout.js
 reference link 530
KnockoutJS 586

L
labels 255
Large object heap (LOH) 475
LibMan
 using 527, 528
links 254
list boxes 253
localization 195, 197, 198, 199, 200
localStorage
 reference link 627
log levels 459, 460
logging 581, 583
logging attributes
 using 467, 469
logging providers
 using 461, 462
logging services
 using 458
Long polling
 reference link 568

M
markup 348
Mastering theme 211
Message Pack 574
message serialization 574
metadata, OData
 collections, listing 336
 entity metadata 337
metrics, obtaining with performance (event)

counters
 counters, including 474, 475
 custom counters 475, 476

[742]

 performance, monitoring 477, 478
 trace dumps 482
 tracing 478, 479, 480, 481
Microsoft Build (MSBuild) 535, 710
Microsoft configuration providers
 about 71, 73
 file-based providers 73
 other providers 76
Microsoft Identity
 about 405, 407, 408
 custom properties, adding 408, 409, 410
 provider, using 413, 415, 416
 reference link 406
 user interface, updating 410, 411, 412, 413
Microsoft
 about 423
 reference link 423
middleware component
 using, to enforce security 448, 449
minification 546
MiniProfiler
 about 539, 540
 reference link 539
mocking frameworks
 reference link 516
model binder 261, 262, 263
model binder provider 261
model binding sources 264, 265, 266
model binding
 about 25, 162, 308
 body 163
 custom binders 165, 166, 167
 dependency injection 164
 enforcing 261
 explicit binding 168, 169
 form 163
 header 163
 input formatters 168
 property binding 167
 query string 164
 requests, canceling 170
 route parameters 164
model metadata provider
 about 243, 245, 246, 247
 anonymous types models, using 248

 working 243, 244
model validation
 about 170, 172, 174, 267
 client-side validation 275
 server-side validation 267, 268
Model-View-Controller (MVC) 412, 458, 590
model-view-controller (MVC) 9, 24
model-view-presenter (MVP) 26
model-view-ViewModel (MVVM) 26
modes
 rendering 609
 Server 609
 ServerPrerendered 609
 Static 609
Moq 516
MSBuild 567
MSTest
 about 502, 504, 505
 reference link 501, 505
multi-line text boxes 251
MVC pattern 24, 26, 27, 28

N
namespace imports 595
Nancy
 URL 306
New Relic
 about 493, 494
 reference link 493
Nginx 39
NGINX
 about 695
 deploying with 695, 696
 reference link 696
node package manager (npm) 566
Node services 586
Node.js
 about 528
 calling, from .NET Core 530
 using 528, 529, 530
nuget tool
 about 65
 reference link 65
NUnit
 about 505, 506, 507

[743]

 reference link 501, 508

O
OAuth 2.0 416
object-oriented programming (OOP) 25
Object-Relational Mapper (ORM) 661
object-relational mapping (O/RM) 452
OData spec
 reference link 333
OData
 about 333
 configuring options 343
 counting 343
 entity, filtering 338, 339, 340
 expansion 342
 metadata, obtaining 336
 paging 341
 projections 340
 query limits, setting 343
 querying 338
 serving 333
 setting up 334, 335
 sorting 341, 342
 specification reference, reference link 340
OnActionExecuted
 properties 389
OnActionExecuting
 properties 389
OnPageHandlerExecuted
 properties 394
OnPageHandlerExecuting
 properties 394
OnPageHandlerSelected
 properties 394
OnResultExecuted
 properties 390
OnResultExecuting
 properties 390
OnResultExecutionAsync method 391
Open Web Application Security Project (OWASP)
 about 435
 reference link 435
Open Web Interface for .NET (OWIN)
 about 10, 31, 448
 reference link 36

OpenAPI REST conventions
 applying 312, 313, 314
 reference link 314
OpenAPI
 URL 326
OpenID Connect 416
operations 330
output formatter
 about 168
 null values, handling 319
OWIN pipeline 31, 32, 34, 36

P
page handlers
 implementing 292, 293, 294, 295
page layouts 597
page model
 areas, using 298
 binding 295, 296
 cross-site request scripting (XSS) 303
 dependency injection (DI), using 299
 filters, using 299
 options, configuring 299, 300
 page handlers, implementing 292, 293, 294,

295

 page routes, implementing 301
 partial views, using 297
 security, enforcing 302
 special files 298
 state, maintaining 297
 validating 297
 view layouts, using 297
 working with 290, 291
page navigation 601
page routes
 about 599
 implementing 301
pages
 about 593
 as code 596
 as components 596
 namespace imports 595
 partial classes 596
 Razor syntax 594, 595
parameter

[744]

 binding, from route 600
ParentTag (string) 356
partial classes 596
partial views
 about 227, 367, 368
 data, passing 228
 searching 229
 using 297
 versus view components 351, 368
passwords 252
performance (event) counters
 using, for obtaining metrics 474
PerfView
 about 477
 reference link 477
ping-pong service 673
pipeline
 filters 374
Plain Old CLR Object (POCO) 25, 88, 413, 614,

712

Platform Invoke (P/Invoke) 18
POCO controllers
 about 149
 actions, intercepting 151
 context, adding 149, 151
Portable Class Libraries (PCL) 18
profilers
 about 539
 MiniProfiler 540
 Stackify Prefix 541

Q
quality assurance (QA) 68
query limits, setting
 about 343
 expansion 344
 maximum returnable records 344

R
radio button 253
raw HTML 255
Razor 26, 204
Razor class libraries
 about 368, 369, 370
 external components, referencing 370

 static content, referencing 370
Razor page filters 393, 395
Razor page filters, methods
 OnPageHandlerExecuted 394
 OnPageHandlerExecuting 394
 OnPageHandlerSelected 394
Razor pages 288, 289
Razor syntax 594, 595
RazorPagesOptions class
 properties 300
red-green-refactor 501
Redis
 about 192
 URL 189
Relative 551
Remote Procedure Calls (RPC) 670
Representational State Transfer (REST) 306, 307,

590

request context 676
Request for Comments (RFC) 88, 425
requests authorization
 about 427
 handlers 429, 430, 431, 433
 policies 428, 429
 resource-based authorization 433, 434
 roles 427
resource filters
 about 282, 386, 387, 388
 uses 386
resources
 access, authorizing to 309
response buffering 562, 563
response caching 182, 183, 184
response compression 560, 561, 562
REST service
 building 667, 669, 670
RESTful APIs
 reference link 308
result filters
 about 390, 392
 uses 390
ResultExecutingContext
 properties 391
reverse proxy 402, 692
RFC 6265

[745]

 reference link 186
RFC 6265bis 425
RFC 7234, HTTP/1.1 Caching
 reference link 182
RFC 7234
 URL 557
route constraints
 about 599
 applying 126
 custom constraints, creating 128, 129, 130
 default constraints 127, 128
 HTTP methods 127
route data token 130, 131
route handler 107
route parameters
 matching 115, 116
route templates
 using 113, 114, 115
route
 configuration 110
 defaults setting 123
 selecting, from attributes 119, 120, 121
routing attributes
 about 133, 134
 action names, specifying 136
 areas 135
 default controller 135
 non-actions, defining 136
 route values, setting 137
 routes, constraining 135
 routes, restricting 136
 using 132
routing table
 about 107
 creating 110, 111, 112
 fallback endpoints 112, 113
routing
 about 106, 107, 598, 599
 catch-all route 600
 page navigation 601
 page routes 599
 parameter, binding from route 600
 route constraints 599
runtime 689
runtime host

 configuring 95, 96
runtime store 14

S
SameSite 425
SameSite cookies 425, 426
sandbox 586
script injection
 reference link 438
Search Engine Optimization (SEO) 26, 106, 656
Secure Sockets Layer (SSL) 439
security
 binding 452
SelectListGroup class
 properties 252
SelectListItem class
 properties 252
Selenium
 about 518
 reference link 520
self-contained 689
self-contained deployments
 advantages 689
 disadvantages 689
self-contained runtimes
 advantages 689
 disadvantages 689
Separation of Concerns (SoC) 280
Server-sent events
 about 572
 reference link 568
server-side validation
 about 267, 268
 automatic model validation 275
 configuring 269
 custom validation 273, 274
 data annotation validation 270
 data annotations validation 269, 271
 preventing 275
 self-validation 272
ServiceStack
 URL 306
sessionStorage
 reference link 627
shared resources 237

[746]

SignalR context
 exploring 575
 query string, using 575
SignalR message targets
 about 576, 577
 all 576
 client 576
 group 576
 group except 576
SignalR
 core concepts, learning 568
 setting up 566, 567
Single Responsibility Principle (SRP) 280
single sign-on (SSO) 416
single-line text boxes 250
single-page application (SPA) 62, 588
Sliding 551
social logins
 Facebook 422
 Google provider 423
 Microsoft 423
 Twitter 422
 using 421, 422
software development kit (SDK) 704
Son of Strike (SOS) 482
source maps
 reference link 547
SPA files
 serving 531, 532
SPA templates
 using 533
special routes
 using 122
Speedscope
 URL 481
SQL Server 192
Stackify Prefix
 about 541
 download link 541
Stackify
 URL 541
state management 625, 626, 627
state
 cache, using 189
 cookies, using 186, 187

 form data, using 185
 maintaining 184
 maintenance techniques, comparing 194
 query string, using 185
 request, using 184
 route, using 185
 sessions, using 187, 188, 189
 temporary data, using 193, 194
static files
 configuring 638
 default documents, serving 643
 directory browsing, allowing 639, 640
 file providers 644
 middleware component, using to enforce security

448, 449
 protecting 447
 retrieving, using action method 447
 security, applying 643
 serving 640, 641, 642
 working with 638
static folders
 working with 638
status code pages
 about 140, 141
 any status code 142
 routing 141, 142
 using 140
Structured Query Language (SQL) 404, 712
Swagger 326
Swashbuckle 327
Swashbuckle.AspNetCore
 reference link 327
synchronous actions 156
synchronous version
 versus asynchronous version 376

T
tag helper components 365, 366
tag helpers, methods
 init 352
 ProcessAsync 352
tag helpers
 (a) tag 359
 (cache) tag 360
 (component) tag 361

[747]

 (environment) tag 362
 (form) tag 362
 (link) tag 363
 (partial) tag 364
 (script) tag 363
 (select) tag 364
 about 358, 359
 applicability, restricting 356
 dependency injection (DI) 357
 discovering 357
 exploring 351, 353, 354
 properties 355
 validation message and summary 365
TagHelperContext
 properties 353
TagHelperOutput
 properties 353
TagStructure (TagStructure) 356
telemetry
 AWS CloudWatch 492, 493
 Azure Application Insights 485, 486, 487, 488
 New Relic 493, 494
 trace identifiers, using 483, 484, 485
 using 483
templates
 using 260, 261
Test-Driven Design (TDD)
 about 500
 reference link 501
Trace Context World Wide Web Consortium (W3C)
 reference link 483
trace identifiers
 using 483, 484, 485
tracing and diagnostics
 advantages 470
 using 471, 473, 474
translated views 238
Twitter
 about 422
 reference link 422
two-way binding 618
TypeScript Playground
 reference link 534
TypeScript SDK
 reference link 534

TypeScript
 about 534
 reference link 534
 using 534, 535, 536

U
Uniform Resource Identifier (URI) 601
Uniform Resource Locator (URL) 102, 424, 473,

598, 710
unit test frameworks
 about 502
 MSTest 502, 504, 505
 NUnit 505, 506, 507
 xUnit 508, 509, 510, 512
unit testing 633
unit tests
 about 500
 assertions 517
 command line, using 521
 dependencies, injecting 512, 513, 514, 515
 limitations 522
 object, mocking 515, 516
 setting up 512
 user interface 518, 519, 520
 writing 501
Universal Windows Platform (UWP) 18
URL redirection 657
URL rewriting
 about 658
 applying 656, 657
 enforcing 661
 HTTPS, redirecting 660
 platform-specific 661
 runtime evaluation 658, 659, 660
user authentication
 about 399, 400
 claims, using 401, 402
 custom authentication 404, 405
 using 581
 Windows authentication 402, 403, 404
user interface (UI) 24
user secrets 76, 77
utility methods 256
utility properties 256

V
validation message 257, 365
validation result
 returning 314, 315
validation summary 365
version 2.x
 modifying from 94, 95
view class
 about 206, 207
 properties 206
view compilation 220, 221, 223
view components, syntax
 code syntax 348
 markup 348
view components
 about 347
 dependency injection (DI) 350, 351
 discovering 347, 348
 result 349
 using 348, 349
 versus partial views 351, 368
view engine
 URL 213
 using 212, 213, 214, 215, 216, 218
view files
 about 230
 diagnostics 218, 219, 220
 locating 209, 210
 logging 218, 219, 220
 model, using 223, 224
 temporary data, using 225
 ViewBag property, using 224
view layouts
 about 225, 226, 227
 base path 233
 partial views 227
 using 297
view life cycle 207, 209

view location expander 637
 about 210, 238
 using 210, 211
view options 231, 232
views
 about 204, 205
 caching 560
Visual Basic (VB) 705
Visual Studio template
 for ASP.NET Core project 57, 58, 59
Visual Studio
 deploying 691, 692

W
web APIs 306
Web Deployment Agent Service (MsDepSvc) 693
Web Deployment Tool
 reference link 693
WebAssembly 586
WebListener 36
WebListener/HTTP.sys 38
WebSockets
 about 572
 reference link 568
Windows authentication 402, 403, 404
Windows service
 deploying with 702

X
X-Forwarded-For 695
X-Forwarded-Host 695
X-Forwarded-Proto 695
XML provider 75
XMLHttpRequest object
 URL 283
xUnit
 about 508, 509, 510, 512
 reference link 501, 512

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: The Fundamentals of ASP.NET Core 3
	Chapter 01: Getting Started with ASP.NET Core
	Technical requirements
	Getting started
	Beginning with .NET Core
	Supported platforms

	Dependencies and frameworks
	Targeting .NET Core or the full .NET framework

	Understanding the generic host
	Understanding the MVC pattern
	Getting your context
	Working with the context

	Understanding the OWIN pipeline
	Hosting ASP.NET Core
	Kestrel
	WebListener/HTTP.sys
	IIS
	NGINX
	Apache
	Configuration
	Features
	Launch configuration
	Setting the listen port and address
	Using the command line
	Using environment variables
	Using launchSettings.json
	Using code
	Setting ports dynamically

	Inversion of control and dependency injection
	Validating dependencies

	Knowing the environments
	Understanding the project templates
	What's new since version 2.0?
	ASP.NET Core 2.1
	SignalR
	Razor class libraries
	Razor pages improvements
	New partial tag helper
	Top-level parameter validation
	Identity UI library and scaffolding
	Virtual authentication schemes
	HTTPS by default
	GDPR-related template changes
	MVC functional test improvements
	API conventions and supporting types
	Generic host builder
	Updated SPA templates

	ASP.NET Core 2.2
	API code analyzers
	Health check API
	Endpoint routing
	Problem details (RFC 7807) support

	ASP.NET Core 3.0
	C# 8.0
	.NET Standard 2.1
	Blazor
	Built-in JSON support
	HTTP/2 support
	gRPC
	IdentityServer integration
	Endpoint routing

	Migrating to ASP.NET Core 3.x
	Version set

	The NuGet and dotnet tools
	Summary
	Questions

	Chapter 02: Configuration
	Technical requirements
	Getting started
	Configurations in .NET Core
	Providers
	File-based providers
	JSON provider
	XML provider
	INI provider

	Other providers
	User secrets
	Azure Key Vault
	Command line
	Environment variables
	Memory
	Docker
	Default providers

	Creating a custom provider

	Using configuration values
	Getting and setting values explicitly
	Configuration sections
	Getting all values
	Binding to classes
	Injecting values
	Retrieving named configuration options
	Reloading and handling change notifications
	Running pre- and post-configuration actions

	Changes from version 2.x
	Configuring the runtime host
	Understanding feature toggling
	Included feature filters
	Percentage filter
	Time window filter

	Custom feature filters
	Consistency between checks
	Disabled features handler

	Summary
	Questions

	Chapter 03: Routing
	Technical requirements
	Getting started
	Endpoint routing
	Route configuration
	Creating routing tables
	Fallback endpoints

	Using route templates
	Matching route parameters
	Using dynamic routing
	Selecting routes from attributes
	Using special routes

	Host selection from attributes
	Setting route defaults
	Routing to inline handlers
	Applying route constraints
	HTTP methods
	Default constraints
	Creating custom constraints

	Route data tokens
	Routing to areas
	Using routing attributes
	Defining routes
	Default routes
	Constraining routes
	Defining areas
	Specifying action names
	Defining non-actions
	Restricting routes
	Setting route values

	Error handling in routing
	Routing errors to controller routes
	Using developer exception pages
	Using a catch-all route
	Using status code pages middleware
	Status code pages
	Routing to specific status code pages
	Any status code

	Summary
	Questions

	Chapter 04: Controllers and Actions
	Technical requirements
	Getting started
	Using controllers
	Controller base classes
	POCO controllers
	Adding context to POCO controllers
	Intercepting actions in POCO controllers

	Finding controllers
	Controller life cycle
	Actions
	Finding actions
	Synchronous and asynchronous actions
	Getting the context
	Action constraints
	Action parameters
	Model binding
	Body
	Form
	Header
	Query string
	Route
	Dependency injection
	Custom binders
	Property binding
	Input formatters
	Explicit binding
	Canceling requests

	Model validation
	Action results
	Redirecting
	Streaming

	Error handling
	Response caching
	Maintaining the state
	Using the request
	Using form data
	Using the query string
	Using the route
	Using cookies
	Using sessions
	Using the cache
	In-memory cache
	Distributed cache
	Redis
	SQL Server

	Using temporary data
	Comparing state maintenance techniques

	Dependency injection
	Globalization and localization
	Summary
	Questions

	Chapter 05: Views
	Technical requirements
	Getting started
	Understanding views
	Understanding the view life cycle
	Locating views
	Using view location expanders

	Using view engines
	Logging and diagnostics
	View compilation
	Passing data to views
	Using the model
	Using the ViewBag property
	Using temporary data

	Understanding view layouts
	Understanding partial views
	Passing data to partial views
	Finding partial views

	Understanding the special view files
	Understanding the view options
	Referencing the base path of the application

	Using areas
	Dependency injection
	Using translations
	Using resources
	Using translated views

	Summary
	Questions

	Section 2: Improving Productivity
	Chapter 06: Using Forms and Models
	Technical requirements
	Getting started
	Using the form context
	Working with the model
	Using models of anonymous types

	Using HTML helpers
	Forms
	Single-line text boxes
	Multi-line text boxes
	Passwords
	Dropdowns
	List boxes
	Radio buttons
	Checkboxes
	Hidden values
	Links
	Labels
	Raw HTML
	IDs, names, and values
	Generic editor and display
	Utility methods and properties
	Validation messages
	Custom helpers

	Using templates
	Enforcing model binding
	Model binders
	Model binding sources
	Dynamic binding

	Model validation
	Server-side validation
	Configuration
	Data annotation validation
	Error messages

	Self-validation
	Custom validation
	Preventing validation
	Automatic validation

	Client-side model validation
	Configuration
	Custom validation

	Using AJAX for validation
	Validation
	Enforcing restrictions
	Returning content from AJAX

	Uploading files
	Direct access to submitted files

	Summary
	Questions

	Chapter 07: Implementing Razor Pages
	Technical requirements
	Getting started
	Assets search order
	Working with the page model
	Understanding page handlers
	Doing model binding
	Doing model validation
	Maintaining state
	Using view layouts
	Using partial views
	Using areas
	Special files
	Using filters
	Using dependency injection
	Configuring options
	Understanding page routes
	Enforcing security
	Using the [Authorize] attribute
	Conventions

	Cross-site request scripting

	Summary
	Questions

	Chapter 08: API Controllers
	Technical requirements
	Getting started with web APIs
	Understanding REST
	Model binding
	Authorizing access to resources
	Using JWTs

	Applying OpenAPI REST conventions
	Returning validation results
	Performing content negotiation
	Output formatters
	Handling null values

	Handling errors
	Understanding API versioning
	Using header values
	Using the query string
	Deprecating versions
	Default versions
	Version mapping
	Invalid versions

	Generating API documentation
	Adding API documentation

	Serving OData
	Setting up OData
	Getting metadata
	Listing collections
	Entity metadata

	Querying
	Filtering an entity
	Projections
	Paging
	Sorting
	Expansion
	Counting

	Configuring options
	Limits
	Maximum returnable records
	Expansion

	Summary
	Questions

	Chapter 09: Reusable Components
	Technical requirements
	Diving into the view components
	Discovering view components
	Using view components
	View component results
	Dependency injection
	View components versus partial views

	Exploring the tag helpers
	Understanding the properties of a tag helper
	Restricting the applicability of a tag helper
	Discovering tag helpers
	Dependency injection
	Studying the included tag helpers
	The <a> tag
	The <cache> tag
	The <component> tag
	The <distributed-cache> tag
	The <environment> tag
	The <form> tag
	The <script> tag
	The <link> tag
	The <select> tag
	The <partial> tag
	Validation message and summary

	Tag helper components
	Partial views
	Partial views versus view components

	Understanding Razor class libraries
	Referencing static content
	Referencing external components

	Summary
	Questions

	Chapter 10: Understanding Filters
	Technical requirements
	Filters in the pipeline
	Understanding the filter types
	Synchronous versus asynchronous
	Filter scope
	Execution order
	Applying filters through attributes
	Filter ordering
	Factories and providers
	DI
	Accessing the context

	Applying authorization filters
	Authorization policies

	Resource filters
	Understanding action filters
	Result filters
	Exception filters
	Razor page filters
	Always-run-result filters
	Summary
	Questions

	Chapter 11: Security
	Technical requirements
	Authenticating users
	Using claims
	Windows authentication
	Custom authentication
	Identity
	Adding custom properties
	Updating the user interface
	Using the Identity provider

	Using IdentityServer
	Using Azure Active Directory
	Using social logins
	Facebook
	Twitter
	Google
	Microsoft

	Cookie security
	Supporting SameSite cookies

	Authorizing requests
	Authorization based on roles
	Policy-based authorization
	Authorization handlers
	Resource-based authorization
	Allowing anonymous access

	Checking requests for forgery
	Applying HTML encoding
	Working with HTTPS
	Certificates
	Hosting our app
	IIS Express
	Kestrel
	HTTP.sys

	Forcing HTTPS
	Redirecting to HTTPS
	Using HSTS
	HSTS preload

	Understanding CORS
	Using data protection
	Protecting static files
	Using an action to retrieve files
	Using middleware to enforce security

	Learning about the GDPR
	Required cookies
	Personal data

	Binding security
	Summary
	Questions

	Section 3: Advanced Topics
	Chapter 12: Logging, Tracing, and Diagnostics
	Technical requirements
	Introducing the .NET Core Common Logging framework
	Using logging services
	Defining log levels
	Using logging providers
	Filtering logs
	Writing custom log providers
	Using DI with the log providers
	Using logging attributes

	Writing custom logging middleware
	Using tracing and diagnostics
	Using performance (event) counters for obtaining metrics
	Included counters
	Custom counters
	Performance monitoring
	Tracing
	Trace dumps

	Using telemetry
	Using trace identifiers
	Azure Application Insights
	Sending custom events

	AWS CloudWatch
	New Relic

	Performing health checking
	Summary
	Questions

	Chapter 13: Understanding How Testing Works
	Technical requirements
	Getting started with unit tests
	Writing unit tests
	Unit test frameworks
	MSTest
	NUnit
	xUnit

	Test setup
	Injecting dependencies
	Mocking
	Assertions
	User interface

	Using the command line
	Limitations of unit tests

	Working on integration tests
	Summary
	Questions

	Chapter 14: Client-Side Development
	Technical requirements
	Introducing client-side development
	Using LibMan
	Using Node.js
	Calling Node from .NET Core
	Serving SPA files
	Using SPA templates

	Using TypeScript
	Summary
	Questions

	Chapter 15: Improving Performance and Scalability
	Technical requirements
	Getting started
	MiniProfiler
	Stackify Prefix

	Hosting ASP.NET Core
	Choosing the best host
	Configuration tuning
	Maximum number of simultaneous connections
	Limits
	Timeouts

	Understanding bundling and minification
	Using asynchronous actions
	Improving performance with caching
	Caching data
	In-memory cache
	Distributed cache

	Caching action results
	Caching views

	Compressing responses
	Buffering responses
	Summary
	Questions

	Chapter 16: Real-Time Communication
	Technical requirements
	Setting up SignalR
	Learning core concepts

	Hosting a hub
	Choosing communication protocols
	Automatic reconnection

	Message serialization
	Exploring the SignalR context
	Using the query string

	Knowing the message targets
	Communicating from the outside
	Communication from the same web application
	Communicating from a different application

	Using user authentication
	Logging
	Summary
	Questions

	Chapter 17: Introducing Blazor
	Technical requirements
	Getting started with Blazor
	Hosting models

	Implementing Blazor
	Implementing Blazor Server
	Implementing Blazor WebAssembly
	Comparing Server and WebAssembly

	Pages
	Razor syntax
	Namespace imports
	Partial classes
	Pages as code
	Pages as components

	Page layouts
	Routing
	Page routes
	Route constraints
	A catch-all route
	Parameter binding from route
	Page navigation

	Building components
	The <component> tag helper
	Blazor component properties
	Cascading properties
	Catch-all properties
	Child content properties

	Components with generic parameters
	Lists of components
	Locating components
	Rendering modes
	The component life cycle
	Reusing components in different projects
	Accessing the HTTP context
	Sample components

	Working with forms
	Form editing
	Form context
	Form components
	Form validation

	Working with DOM elements
	Two-way binding
	Event handling
	Referencing elements
	Updating the state

	DI
	Injecting services
	Registered services
	Scoped lifetime

	JavaScript interoperability
	Calling JavaScript functions from .NET
	Calling .NET methods from JavaScript

	Maintaining state
	Making HTTP calls
	Applying security
	Requesting authorization
	Getting the current user
	Checking permissions explicitly
	CORS

	Unit testing
	Summary
	Questions

	Chapter 18: gRPC and Other Topics
	Technical requirements
	Using areas for organizing code
	The use of areas in code
	Tag and HTML helpers

	Working with static files and folders
	Configuration
	Allowing directory browsing
	Serving static files
	Serving default documents
	Applying security
	File providers

	Application lifetime events
	Working with embedded resources
	Hosting extensions
	Hosting startup

	Hosting background services
	ASP.NET Core model conventions
	Applying URL rewriting
	URL redirection
	URL rewriting
	Runtime evaluation
	Redirecting to HTTPS
	Platform-specific
	Enforcing URL rewriting

	Using EF Core
	Registering DbContext
	Using asynchronous methods
	Eager loading
	Initializing a database
	Showing migration errors and running migrations
	Integrating an EF context with an HTTP context
	Building a REST service

	Understanding the gRPC framework
	Interface definition
	Messaging kinds
	Hosting a service
	Request context

	Interceptors
	Listening options

	Using HTTP client factories
	Summary
	Questions

	Chapter 19: Application Deployment
	Technical requirements
	Deploying the application manually
	Setting the target framework
	Self-contained deployments and runtimes
	Real-time rebuilding

	Deploying with Visual Studio
	Deploying through IIS
	Deploying with NGINX
	Deploying to Azure
	Deploying to AWS
	Deploying with Docker
	Deploying as a Windows service
	Summary
	Questions

	Chapter 20: Appendix A: The dotnet Tool
	The dotnet Tool
	Build
	Creating projects from templates
	Unit testing
	Managing package references
	Run
	Publish
	NuGet
	Global tools
	User secrets
	File watcher
	EF Core

	Assessments
	Other Books You May Enjoy
	Index

